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We study the fate of superconductivity in the vicinity of a class of metallic quantum

critical points obtained by coupling a Fermi surface to a critical boson. In such

systems there is a competition between the enhanced pairing tendency due to the

presence of long-range attractive interactions near criticality, and the suppression

of superconductivity due to the destruction of the Landau quasiparticles. We show

that there are regimes in which these two effects offset one another, resulting in a

novel non-Fermi liquid fixed point with finite, scale invariant, BCS coupling. While

these interactions lead to substantial superconducting fluctuations, they do not drive

the system into a superconducting ground state. The metallic quantum critical fixed

points are connected to the superconducting regime by a continuous phase transition.

These results are established using a controlled expansion in the deviation from d = 3

spatial dimensions, as well as in a large number N of internal flavors. We discuss

the possible relevance of our findings to the phenomenon of superconducting domes

condensing out of a non-Fermi liquid normal state near quantum critical points.
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I. INTRODUCTION

One of the central unresolved issues of modern condensed matter physics involves the

enhancement of superconductivity near metallic quantum critical points1–5. Indeed, many

of the strongly correlated electron materials, such as the cuprates6, iron pnictides7, organic8,

and heavy fermion systems9 appear to have enhanced superconducting “domes” when they

are tuned experimentally towards a quantum critical point. And often, the normal state

exhibits scaling behavior that is inconsistent with Fermi liquid theory. The manner in which
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such “non-Fermi liquid” behavior is related to the enhanced pairing scale remains a long-

standing, yet exciting and actively pursued topic of investigation.

The reason for the enhancement of pairing near quantum critical points has been known

for some time: there are induced attractive long-range interactions between electrons near

the Fermi surface mediated by critical order parameter fluctuations. These interactions are

long-ranged because of the diverging correlation length at criticality, and, like phonons, or-

der parameter fields mediate attractive forces. However, precisely the same order parameter

fields have an opposing effect: they tend to destroy the quasiparticles, enhancing their scat-

tering rate relative to their energy. If this second effect is dominant, the effective description

of such fermion modes is then no longer governed by Fermi liquid theory. The fermion fields

develop an anomalous dimension, and there is no longer a quasiparticle description of the

low energy dynamics. The system will then be governed by a non-Fermi liquid fixed point.

The destruction of the Landau quasiparticle therefore has a pair-breaking effect, weakening

the superconducting tendency of the system.

A challenge remains to predict the circumstances under which the enhanced supercon-

ducting interaction dominates, and those in which the fermion anomalous dimension dom-

inates. Furthermore, given the fascinating properties of quantum criticality, it would be

extremely interesting to construct models of metallic systems exhibiting quantum critical

points with non-Fermi liquid behavior in the deep IR. However, in most examples so far, the

superconducting instability sets in before non-Fermi liquid effects become important. As a

result, the fixed point is fully covered by a superconducting dome, and quantum criticality

is not observed.

In this paper we address these questions in a class of quantum metals where the order

parameter fields condense at zero momentum. Examples include the Ising nematic transi-

tion in metals, which have been argued to be relevant to the phenomenology of both the

cuprate10 and iron pnictide11 superconductors. We consider a solvable large N limit where

exact statements about pairing instabilities can be made. Our first key result is that the

competition between the long-ranged attraction and the destruction of Landau quasiparti-

cles can lead to a fixed point where the BCS interaction among fermions is finite. This is

in sharp contrast to the behavior of Fermi liquids, where the BCS coupling flows to zero for

repulsive forces, or grows indefinitely, leading to a BCS instability if the couplings are attrac-

tive. The finite BCS interaction fixed point here corresponds to a metallic phase with scale
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invariant interactions in the BCS channel which do not result in Cooper pair condensation.

As a result, we will be able to exhibit a “naked” fixed point with critical BCS coupling, not

covered by a superconducting dome.12 The thermodynamic and transport signatures at such

finite BCS interaction fixed points are interesting in their own right and may be relevant

to experiments involving quantum critical metals. We will study these phenomenological

properties in future work.

Our second main result is that there is a continuous transition between the regime where

the RG flows are always towards enhanced superconductivity, and the regime where IR stable

fixed points with finite BCS couplings occur. Approaching the transition from the critical

regime, the IR fixed point annihilates against an unstable UV fixed point and disappears.

From the other side, the superconducting parameter and all its derivatives vanish as we tune

towards the transition. This is reminiscent of the Berezinski Kosterlitz Thouless (BKT)

transition, as we will explain in detail below.

The paper is organized as follows. In section II, we define the bare tree-level action and,

neglecting superconductivity for the moment, we describe the dominant quantum corrections

by solving the Schwinger-Dyson (SD) equations for the system. These equations are exact

to all orders in perturbation theory, for the large N limit we consider. Next, in section

III we study the system using the renormalization group. We construct a scaling theory

consistent with the analysis of the SD equations, determine the one loop beta functions, and

characterize the non-Fermi liquid fixed point. Section IV is devoted to the analysis of the

BCS interaction: we show that there is a regime where the 4-Fermi coupling flows to a stable

fixed point, and another regime where it leads to a superconducting instability. We establish

that both states are connected by a continuous phase transition. Section V contains our

conclusions regarding the phase diagram of the theory and discusses future directions. Some

technical calculations are presented in two appendices.

II. EFFECTIVE ACTION AND QUANTUM CORRECTIONS

In this section we present the classical theory and compute quantum effects. We use the

Schwinger-Dyson equations for the boson and fermion two point functions and work in a

large N limit, which will allow us to obtain results that are exact to all orders in perturbation

theory. Here we focus on the correlation functions that are local on the Fermi surface, while
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in sections III and IV we take into account the 4-Fermi interaction in the BCS channel.

A. The model

In this work we will analyze the quantum theory for a Fermi surface coupled to a gapless

boson φ. Our starting bare euclidean Lagrangian is

L =
1

2
Tr
[
(∂τφ0)2 + (∇φ0)2]+ ψ†i0 (∂τ + ε0(i∇)− µF )ψi0 + Lψ,φ + LBCS

Lψ,φ =
g0√
N
φi0j(q)ψ

†
0i(k + q)ψj0(k)

LBCS = − v0

2kd−1
F

λ0

N
ψ†0i(p+ q)ψj0(p)ψ†0j(−p− q)ψi0(−p) . (II.1)

The subscript ‘0’ denotes bare quantities (we will consider the effects of renormalization

after integrating out high energy modes below); the indices i, j will be defined shortly. The

bare band dispersion of the fermions is denoted by ε0(k) and for simplicity we consider a

rotationally invariant Fermi surface; the chemical potential is µF = ε0(kF ). The sign in

LBCS is such that λ0 > 0 corresponds to an attractive interaction.

We will consider a soluble limit of the theory above. First, we introduce an internal

SU(N) global flavor symmetry (a generalization of spin rotation symmetry) under which

the fermion fields transform in the fundamental (vector) representation, whereas the bosons

transform in the adjoint (matrix) representation. In this case, i, j = 1, . . . , N in (II.1).

We work in the limit N � 1 with g0 and λ0 fixed; many diagrams will be shown to be

subleading, and it will be possible to resum exactly the leading quantum corrections. We

note that the large N theory here explores a distinct asymptotic regime than the standard

large N approach to this problem, in which the boson remains a scalar while the fermions

are fundamental fields of a global flavor symmetry group. Furthermore, we work in d = 3−ε

spatial dimensions with ε� 1, namely near the critical dimension for the Yukawa coupling.

As discussed below, the small parameter ε will be used to avoid infrared divergences from

corrections to the cubic vertex.

Besides providing limits where quantum corrections simplify, N and ε will also affect

the infrared dynamics of the theory. Our task will be to determine the low energy phase

diagram of the theory as a function of N and ε. Before proceeding to the discussion of

quantum corrections, let us develop some intuition by comparing the scales of non-Fermi
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liquid effects and superconductivity. Corrections from the anomalous dimension γ become

important at a scale

µNFL ∼ e−
1

2γ(Λ) Λ (II.2)

where in the large N theory the anomalous dimension will be found to be related to the

Yukawa coupling g by

γ =
g2

24π2v
≡ α

2
. (II.3)

Here g and v are physical couplings (see below), and Λ is an energy scale. We will deduce

this result shortly, but for now we just want to explore some of its consequences. On the

other hand, the scale of the superconducting gap taking into account the enhancement from

boson exchange is (see [13] and below)

µsc ∼ e
−π

2

√
N
α(Λ) Λ . (II.4)

At the quantum critical point described below, α ∼ ε. We see here the interplay between

NFL and gap effects: for ε � 1/N , superconductivity dominates, and the Fermi surface is

gapped before the NFL regime is reached. However, in the opposite limit N � 1/ε, µNFL �

µsc and hence we expect (and will find) strong NFL corrections to the superconducting gap.

This is the range where a new quantum critical point for the BCS interaction will obtain.

We will show that both regimes are connected by a continuous phase transition that occurs

when Nε ∼ 1. As we will demonstrate below, our analysis is controlled by the presence of

both small parameters 1/N and ε; it remains controlled for arbitrary values of the ratio of

these two parameters, even in the regime where Nε� 1.

Our strategy will be to first determine the dynamics in the non-Fermi liquid regime, cor-

responding to N � 1/ε. Here we will neglect the superconducting gap, and then check that

this is a self-consistent approximation. We will then incorporate effects from superconduc-

tivity and will characterize this phase that occurs when 1 � N � 1/ε. This will be done

by analyzing the RG β function for the 4-Fermi BCS coupling.

B. Quantum corrections

Let us then begin the analysis of quantum effects focusing on the self-energies and boson-

fermion coupling. At sufficiently high energies, the scaling behavior of the theory can easily

be understood. Considering the Yukawa coupling to be small, scaling is constructed about
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the limit wherein a Fermi liquid is decoupled from the order parameter field. Scaling behav-

iors of the fermions and bosons are governed by Fermi liquid theory and Landau-Ginzburg-

Wilson effective theories respectively. The dimension of any composite operator, such as

ψ†ψφ is then immediately known from the decoupled scaling dimensions of these fields. The

conclusion of such an analysis is that the Yukawa coupling has a bare scaling dimension

[g] =
3− d

2
=
ε

2
. (II.5)

Our next task is to determine the way in which quantum corrections alter this behavior.

As discussed in many previous works14–26, there are many subtleties involved with taking

a strict large N limit in this class of theories. Indeed, the scaling behavior in the large N

limit depends quite strongly on the order in which the N → ∞ and low energy ω → 0

limits are taken. If the N →∞ limit is taken first, the resulting fixed points obtained only

govern behavior at intermediate energy scales27, because they only take into account a subset

of the important quantum corrections. In particular, in this limit, key O(1/N) quantum

corrections that qualitatively alter the IR behavior are neglected; these quantum corrections

act as effective relevant coupling constants that destabilize potential N = ∞ fixed points.

Here, we wish to avoid such peculiarities, and build in all the important quantum corrections,

even those that formally are 1/N corrections, into our theory.

Our strategy for obtaining a scaling theory will be to look for effects that are exact to

all orders in perturbation theory at large N . This will be obtained by investigating the

Schwinger-Dyson (SD) equations for this system. A key simplification of large N is that

quantum corrections to the cubic vertex are suppressed by an extra power of 1/N compared

to the tree level term, at fixed g0. This allows us to neglect vertex corrections.28 In this case

we find a closed system of SD equations for the boson and fermion self-energies, expressed

as follows (see Fig. 1):

Π(q0, q) ≡ D−1(q0, q)−D−1
0 (q0, q) =

g2
0

N

∫
dk0d

dk

(2π)d+1
G(k0, k)G(k0 + q0, k + q)

Σ(p0, p) ≡ G−1(p0, p)−G−1
0 (p0, p) = −g2

0

∫
dk0d

dk

(2π)d+1
G(k0, k)D(p0 − k0, p− k) (II.6)

where D(G) refer to the exact boson (fermion) propagator. Here q0 is the frequency or

energy, while q denotes the spatial momentum; the same holds for k and p.

There are many possible solutions to these equations, depending on the parameter that

is being held fixed while taking the large N limit. We will solve these equations, in d = 3− ε
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Σ(p) =

Π(p) =

FIG. 1. Schwinger-Dyson equations for the fermion (full line) and boson (wiggly line) two-point

functions in the large N theory.

spatial dimensions, and in the limit where both N →∞, kF →∞ holding fixed the following

quantity

M2
D = cd

kd−1
F

2πv0

g2
0

N
, (II.7)

where cd is a constant that depends on the dimensionality of space. The factor kd−1
F /v0

is proportional to the density of states at the Fermi energy. Physically, this is the scale

below which Landau damping of the boson becomes very important and is equivalent to

the “Debye” screening scale, below which long range Coulomb interactions are screened in a

metal. As we will see below, by holding M2
D fixed, the theory simplifies substantially in the

IR. These equations build in the dominant quantum corrections in the large N limit above

the scale of the superconducting gap.

Above the scale of MD, there are logarithmic corrections to the fermion self-energy, which

are both frequency and momentum-dependent. They produce a small anomalous dimension

(proportional to ε) and cause a slight reduction of the Fermi velocity. Both of these effects

can be seen directly in perturbation theory in the UV. For large enough MD, however, these

effects are subdominant in relation to the Landau damping of the bosonic order parameter
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fields, which is a UV finite, non-local quantum correction to D(q), and therefore is invisible

in a Wilsonian treatment of the problem. Nevertheless, it strongly affects the dynamic

scaling of the boson. This quantum correction comes directly from the first equation in

(II.6) and can be interpreted as coming from resumming the geometric series of fermion

bubbles (analogous to RPA):

D(q0, q)
−1 = q2

0 + ~q 2 + Π(q0, q) . (II.8)

The behavior in the regime |q0| � v0|~q |, which will be relevant for us, is24

Π(q0, q) ≈M2
D

|q0|
v|~q |

. (II.9)

The boson propagator then takes the approximate form

D(q0, q)
−1 ≈ ~q 2 +M2

D

|q0|
v0|~q |

(II.10)

and is characterized by a zb = 3 scaling q0 ∼ |~q |3/M2
D. MD therefore acts as a crossover

scale, separating the z = 1 UV behavior from the z = 3 IR behavior in this regime. Our

analysis will focus on scales smaller than MD.

Below the scale MD, the self-energy ceases to have substantial momentum dependence

and depends mainly on frequency. Therefore, at energies much less than MD the velocity

renormalization is primarily due to the fermion anomalous dimension (i.e. the velocity will

vanish at the fixed point where Z vanishes). The non-zero anomalous dimension will also

cause the renormalization of the Yukawa coupling (note again that vertex corrections are

suppressed in our large N limit; only field rescaling due to the anomalous dimension causes

renormalization of the bare Yukawa coupling). Given (II.10), the solution to the fermion

SD equation in (II.6) is

Σ(p0) = −ip0
3α0

ε

(
M2

D|p0|
)−ε/3

, α0 ≡
g2

0

12π2v0

. (II.11)

Recalling that the bare coupling α0 has engineering dimension ε, the self-energy has en-

gineering dimension 1 (as it should), but the scaling dimension with p0 is 1 − ε/3. We

emphasize again that this scaling applies below MD, which plays the role of a UV scale in

our effective theory.

We conclude that the effective (quantum) Lagrangian involving the fermion kinetic energy

and the Yukawa coupling is

Leff,ψ = −ψ†0 [iZ(p0)p0 − v0p⊥]ψ0 +
g0√
N
ψ†0(k + q)ψ0(k)φ0(q) (II.12)
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where Z(p0) is the quasiparticle residue,

Z(p0) = 1− Σ(p0)

ip0

= 1 +
3α0

ε

(
M2

D|p0|
)−ε/3

. (II.13)

The fermion momentum here is decomposed radially towards the Fermi surface,

~p = n̂(kF + p⊥) , (II.14)

and n̂ is a unit vector that defines the position on the Fermi surface.

The second term in (II.13) represents the effects of quantum corrections. Below a scale

µNFL defined by

µNFL =

(
3α0

ε

)3/ε

M−2
D , (II.15)

the quasiparticle residue Z is dominated by quantum corrections, and the frequency depen-

dence of the fermion kinetic term has the following behavior:

po � µNFL : Z(p0)p0 ≈
3α0

ε
M
−2ε/3
D p

1−ε/3
0 . (II.16)

This is of the form p1−2γ
0 : in other words, at low energies the fermions develop an anomalous

dimension,

2γ ≈ ε

3
(II.17)

and the quasiparticle residue becomes

Z(µ) ≈
(
µNFL
µ

)ε/3
. (II.18)

C. Physical quantities and IR dynamics

The bare quantities written above are not physically measurable. Once quantum correc-

tions arise, the physically observable fields and couplings depend on the energy scale. In

the large N limit this occurs only because of 1) Landau damping of the bosons and 2) a

non-zero fermion anomalous dimension.

The physical quantities are obtained after canonically normalizing the fermion fields at a

scale µ, ψ ≡ Z1/2(µ)ψ0. The physically observable Fermi velocity (as seen in heat capacity

or in tunneling density of states, for instance) will depend on the energy scale µ as

v(µ) = Z−1(µ)v0 . (II.19)
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Note that for µ� µNFL, the velocity flows to zero with a power-law determined by (II.18),

v(µ) ∼ v0

(
µ

µNFL

)ε/3
. (II.20)

Next, we have to determine the relation between the physical dimensionless coupling g(µ)

and g0 or, more usefully,29

α(µ) ≡ g2(µ)

12π2v(µ)
. (II.21)

From the effective Lagrangian in terms of canonical fields, we read off α(µ) ∝ Z(µ)−1α0.

Here two powers of Z(µ)−1 come from g2(µ) in (II.21), while v(µ) gives an additional factor

of Z(µ) according to (II.19).

It remains to determine the dimension δ of α(µ). For this, we write the relation between

bare and renormalized couplings as

α0 = M ε−δ
D Z(µ)µδ α(µ) , (II.22)

where MD is added to match engineering dimensions. The dimension δ by definition cancels

factors of the external frequency in loop integrals, such that we get a perturbative expansion

in terms of α and dimensionless ratios µ/p0. The one loop fermion self-energy calculated

using renormalized perturbation theory is

Σ(p0) = −ip0
3α(µ)

ε
M

ε/3−δ
D

µδ

|p0|ε/3
. (II.23)

Therefore, δ = ε/3, namely

[α(µ)] =
ε

3
(II.24)

and, as expected, the microscopic scale MD cancels when working in terms of the physical

coupling.

Combining this with (II.22) obtains the relation between α0 and α(µ) to all-orders in the

large N theory,

α(µ) =
α0

3α0

ε
+ (M2

Dµ)
ε/3

. (II.25)

This energy dependence of α(µ) has the property that for scales µ � µNFL the coupling

flows to

α(µ)→ ε

3
, (II.26)

a non-Fermi liquid fixed point that will be analyzed in more detail in Sec. III.
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Eqs. (II.19) and (II.25) are the main results of this section. They tell us how the physical

fermion velocity and Yukawa coupling at a scale µ behaves. Thus, while perturbation theory

about the decoupled fermion-boson limit would suggest that [α] = ε, quantum corrections

treated by the SD equations instruct us how these classical dimensions are altered.

To summarize: using the SD equations we have computed the quantum corrections that

occur to all orders in perturbation theory in the large N limit, at scales E < MD, and

with MD fixed. Our next objective is to obtain this behavior using scaling and Wilsonian

RG below the Debye scale. This method will then allow us to determine the evolution of

the BCS interaction. An alternative analysis of the superconducting gap in terms of its

Schwinger-Dyson equation (the Eliashberg equation) will be presented in [30].

III. RENORMALIZATION GROUP APPROACH INCLUDING BCS

COUPLINGS

We next determine the RG β functions that define the flow of physical couplings for our

theory. The first step will be to reproduce the SD results in a Wilsonian RG framework.

We will then focus on the RG flow for the BCS coupling. A Schwinger-Dyson treatment of

superconductivity effects including the anomalous dimension is more involved, and will be

presented in30. Before proceeding, we note that in the theory in d = 3−ε spatial dimensions,

it will be computationally more convenient to organize quantum corrections in powers of

1/ε (effectively using ε as a regulator), instead of employing the physical cutoffs Λf and Λb.

The map between both approaches was given in25.

A. Scaling theory

The first step in an RG approach is to construct a consistent scaling. The solution of

the SD equations places strong constraints on a scaling theory which, in particular, has

to reproduce (II.24). We now present the scaling that agrees precisely with the form of

quantum corrections obtained above.

Ref. [25] showed that a consistent renormalization of the Fermi surface coupled to a

massless boson requires two independent decimation procedures: the Fermi surface high
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momentum modes are integrated on shells

Λf − dΛf < |p⊥| < Λf , (III.1)

where the fermion momentum is decomposed radially towards the Fermi surface,

~p = n̂(kF + p⊥) , (III.2)

and n̂ is a unit vector that defines the position on the Fermi surface. This is known as

the “spherical RG” for the Fermi surface. On the other hand, the boson momentum ~q is

decimated towards the origin, with an independent cutoff Λb:

Λb − dΛb < |~q | < Λb . (III.3)

These two independent momentum-shell integrations with fermion and boson cutoffs Λf,b

are needed to capture the leading quantum corrections to correlation functions. The reason

is that some contributions that look IR from the point of view of the fermions, actually come

from UV bosonic modes, and hence have to be taken into account in the Wilsonian RG.

Important consequences of this were the running Fermi velocity, and tree-level logarithmic

running of 4-Fermi couplings.

This approach has to be modified if the boson has a nontrivial dynamical exponent zb.

This is discussed in detail in Appendix A. First, we find that the scaling of the fermions is

not changed by zb,

[p0] = [p⊥] = 1 , [ψ(p)] = −3/2 . (III.4)

The dimension of the 4-Fermi BCS coupling is classically marginal in any dimension, since

we work in the spherical RG for the fermions.

On the other hand, the bosonic scaling is modified as follows. Given a patch with an-

gular position n̂ on the Fermi surface, we decompose the boson momentum into orthogonal

components

~q = n̂q⊥ + ~q‖ . (III.5)

We show in the Appendix that the correct scaling obeys

[q0] = [q⊥] = 1 , [q‖] = 1/3 , [φ(q)] = −10− ε
6

(III.6)

for d = 3− ε.
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With these scalings, the classical dimension of g becomes

[g] =
ε

6
. (III.7)

Therefore, the dimension of g is nearly marginal with this scaling for the overdamped boson,

as is also the case above the Landau damping scale. This scaling reproduces the quantum

result (II.24) obtained from solving the SD equations.

The near-marginality of g after including Landau damping is important, as it is consis-

tent with a smooth crossover between the undamped and overdamped regimes (see also24),

and perturbation theory does not break down. Had we scaled the boson momentum homo-

geneously, the result would have been [g] = (2 + ε)/6 ≈ 1/3, giving an order one relevant

interaction in the overdamped regime. Such a relevant coupling would be inconsistent with

the results of the SD equations.

B. Local non-Fermi liquid behavior

Let us discuss first the RG for correlations that are local on the Fermi surface because

they do not involve antipodal patches –the self-energies and the boson-fermion coupling.

The one loop corrections are shown in Fig. 2.

FIG. 2. One loop corrections to the boson self-energy, fermion self-energy and cubic Yukawa vertex.

We argued in Sec. II that below the Landau damping scale the boson flows to a zb = 3

dynamical exponent. This is not a Wilsonian effect: it comes from integrating particle-hole

pairs at the Fermi surface; it is a finite renormalization effect that becomes relevant below
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the scale MD. Here we start from this dressed boson propagator and focus on E < MD, but

we note that the crossover between zb = 1 and zb = 3 is smooth24.

In the zb = 3 regime, the fermion self-energy depends only on frequency. This results in

a velocity flowing to zero with a rate determined by the anomalous dimension, Zv = Z−1.

Furthermore, quantum corrections to the cubic vertex are suppressed by 1/N at large N ,

and can be neglected in our perturbative framework. Therefore, the one loop β functions

characterizing quadratic and cubic correlators are determined purely in terms of the fermion

anomalous dimension γ. Using renormalized perturbation theory at one loop, the anomalous

dimension is24

γ =
g2

24π2v
. (III.8)

In terms of α defined in (II.21), the one loop β functions on a local patch of the Fermi

surface then become

2γ = −µd logZ

dµ
= α

µ
d log v

dµ
= 2γ (III.9)

µ
dα

dµ
= − ε

3
α + 2γα .

This agrees with the β functions obtained from the SD analysis by requiring that the bare

parameter in the relation (II.25) be independent of the RG scale µ. Note that the one loop

approximation here is exact at large N .

This system admits a non-Fermi liquid fixed point,

α∗ =
ε

3
, γ∗ =

ε

6
(III.10)

that is perturbatively controlled at small ε and large N . Although we can make no definite

prediction for ε ∼ 1, we note that as ε → 1 (i.e. for d = 2 spatial dimensions) this fixed

point approaches the strongly coupled non-Fermi liquid of17. It would be interesting to use

the ε expansion to understand more systematically the ε→ 1 limit.

C. BCS β function

We now want to include the effects from the BCS 4-Fermi coupling, which is classically

marginal and can destabilize this fixed point. The renormalization of the BCS interaction
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proceeds in two steps25,31. First, at tree level the boson exchange gives rise to running of

the BCS couplings in the angular momentum basis; see Fig. 3. At one loop there are two

additional contributions: from the anomalous dimension and the BCS one loop diagram.

This is shown in Fig. 4.

= +

FIG. 3. Tree-level running of the BCS interaction.

FIG. 4. Diagrammatic one loop contributions to the BCS coupling.

The one loop beta function then becomes (see also13)

µ
dλ

dµ
= −2π2α + 2γλ− λ2

2π2N
. (III.11)
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(We recall that λ > 0 corresponds to an attractive interaction.) To our knowledge, the

term linear in λ has not been included in previous works. It captures the non-Fermi liquid

corrections to fermion scattering on antipodal points of the Fermi surface and hence the

formation and condensation of Cooper pairs. We will find that it has dramatic effects on

the IR phase structure of the theory, which we consider in Sec. IV.

There are two and higher loop quantum corrections to the 4-Fermi coupling. At the same

order in N as in (III.11) there is a geometric series of fermion bubbles, as well as anomalous

dimension insertions in internal fermion lines. These are automatically resummed into the

solution of the RG β function. Subleading in N effects come from vertex corrections (as

before) as well as higher loop contributions containing BCS interactions that are not sums

of fermion bubbles. This large N suppression is a consequence of the non-planarity of the

BCS coupling in our theory. We then conclude that (III.11) is exact at large N . The last

aspect to understand is whether the 4-Fermi interaction corrects the local non-Fermi liquid

behavior of Sec. III B.32 All such contributions are again subleading at large N , again due to

the non-planarity of the BCS interaction (recall that the non-Fermi liquid behavior above

arises at the planar level).

Another way of organizing these quantum corrections is to study the Schwinger-Dyson

equation for the superconducting gap together with (II.6). This approach will be presented

in30, with conclusions that are consistent with the present renormalization group results.

IV. QUANTUM CRITICALITY AND FATE OF SUPERCONDUCTIVITY

In this section, we consider the consequences of Eq. (III.11). We start by describing, at a

heuristic level, the various possible fates of the BCS coupling encoded in this equation. We

then perform a more detailed RG study and discuss the phase diagram of the theory.

A. Qualitative analysis of the BCS interaction

For the present analysis, we treat γ as an independent parameter to exhibit more clearly

the effects from anomalous dimension corrections (in our theory, γ = α/2). Furthermore, at

this heuristic level we will ignore effects from the running of α; these will be incorporated

below in a more detailed RG treatment.
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First, for simplicity consider the case of α = γ = 0. In this case, the scalar is effectively

absent from the theory and we recover the marginally relevant flows of the BCS coupling

in a Fermi liquid. Attractive interactions grow under the RG whereas repulsive interactions

weaken. The only difference here, is that BCS couplings are N suppressed because of the

large N limit we have taken. Thus, there is a limiting case where ordinary Fermi liquid

theory is captured.

Consider next the regime where the term proportional to γλ is subdominant. In this

case, the effect of the anomalous dimension in (III.11) can be neglected but the term ∝ α

alters the qualitative nature of the superconducting instability. There is an exponentially

enhanced pairing instability, and the pairing scale far exceeds the scale at which the Landau

quasiparticles would have been destroyed. The inverse correlation length at which λ� 1 in

the IR is of order

µsc ∼ exp

[
−
√
N

α

π

2

]
Λ . (IV.1)

This is what one finds in color superconductivity, and is also what has been recently been

reported in Ref.33 in the context of 2d quantum criticality. Next, consider the regime in

which the anomalous dimension plays the most important role. In this case, one can neglect

the λ2 term of the β function, and one finds a stable non-Fermi liquid fixed point with zero

BCS coupling.

Finally, consider the full expression, where all three terms play an important role. Now,

there are competing, and offsetting effects between the anomalous dimension, and the en-

hanced pairing tendency. Since the β function is quadratic in λ, depending on its discrimi-

nant there are three different possibilities, illustrated in Fig. 5.

Neglecting the running of α (to be incorporated shortly), we can write the zeroes as

λ± = λ0

(
1±

√
1− γ2

c/γ
2
)

(IV.2)

where λ0 = 2π2Nγ, and γc =
√
α/N . The quantity γc plays the role of a “critical anomalous

dimension” which separates two regimes. The fixed points are only physical when γ > γc,

that is, when the zeroes of the β function occur on the real axis. In this case, there is a UV

fixed point λ+, and an IR fixed point λ−. We should emphasize that the critical behavior

associated to λ− is qualitatively different from a non-Fermi liquid fixed point that is local

on the Fermi surface, since it affects correlation functions with support on antipodal points

of the surface. We will discuss further properties of this fixed point in the next section.
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FIG. 5. BCS β function for different values of the anomalous dimension. The two real roots at

γ > γc give stable and unstable fixed points. These merge at γ = γc and then annihilate; this gives

rise to a superconducting instability for γ < γc.

As γ → γc, the two fixed points meet at λ0. Finally, when γ < γc, the zeroes move off

the real axis, and fixed points no longer occur. Note that near the IR fixed point, γ ∼ ε,

whereas γc ∼
√
ε/N . Thus, for sufficiently large N , the critical value of the anomalous

dimension needed to have finite BCS fixed points can be made arbitrarily small. Therefore,

in this theory, N acts as a tuning parameter in the space of theories for γc.

Next, consider what happens as γ → γc from above. In this limit, the UV and IR fixed

points approach one another, and when this ratio becomes unity, the fixed points annihilate.

Once this happens, for γ < γc the system develops a superconducting instability, and the

metallic phase is lost. In this case, the fermion anomalous dimension is not strong enough

to avoid a superconducting instability. The inverse correlation length associated with the

BCS coupling can be estimated as follows (see also Ref.34 where such behavior is studied in

detail):

ξ−1
sc ' Λ exp

[∫ λir

λuv

dλ

β(λ, α)

]
' exp

[
− π

2
√
γ2
c − γ2

]
Λ . (IV.3)

The correlation length diverges exponentially as γc/γ → 1, signaling a continuous phase

transition that separates the quantum critical and superconducting states. This behavior is

similar to the way in which the correlation length of the 2d XY model diverges at the BKT

transition. The analog of critical temperature is played here by γc.

Notice that for γ → 0, (IV.3) reproduces the boson-enhanced scale (IV.1). On the
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other hand, as γ ∼ γc, we find strong non-Fermi liquid corrections to the superconducting

order parameter, which eventually destroy it via a continuous phase transition. Passing

this phase transition obtains a quantum critical point characterized by non-Fermi liquid

exponents for the quasiparticle dimension, Yukawa coupling, and BCS interaction. This

QCP is characterized by a finite BCS coupling, with no superconductivity, and with a

power-law behavior for the superconducting correlation function.

B. Quantum criticality and superconductivity

Before, we presented a qualitative discussion of Eq. (III.11). Our task now will be to

study in more detail the phase structure and low energy dynamics as a function of N and ε

To begin with, let us start from the non-Fermi liquid fixed point at α = 2γ = ε/3. Then,

the discriminant of the BCS β function vanishes at

εN = 12 . (IV.4)

For N > 12/ε, the BCS coupling flows to the stable IR fixed point

λ− =
π2

3
εN(1−

√
1− 12/(εN)) . (IV.5)

Note that λ− ∼ O(1) over all the critical range. An important point here is that the

attractive fixed point has a finite domain of attraction: for sufficiently large initial values of

λ, the suppression from the anomalous dimension term does not set in fast enough and λ

will diverge in the IR, signaling a superconducting instability. This is due to the existence

of the unstable fixed point at λ+. The size of the domain of attraction at the NFL fixed

point is of order |λ+−λ−|. This is much bigger than 1 for N � 12/ε, and shrinks to zero as

the continuous transition is approached at N = 12/ε. These results are explained in more

detail in the Appendix.

It is possible to solve exactly the coupled system of equations

µ
dα

dµ
= − ε

3
α + α2

µ
dλ

dµ
= −2π2α + αλ− λ2

2π2N
(IV.6)

in terms of hypergeometric functions. The boundary conditions for the RG are imposed at

some high scale µ = M which should be below MD given our approximations on the zb = 3
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boson scaling. In accordance with our previous analysis, this obtains a fixed point α = ε/3

and λ = λ− for N > 12/ε, a superconducting phase for N < 12/ε, and a continuous phase

transition at N = 12/ε.

Near the continuous phase transition at Nε = 12, the scale of the superconducting insta-

bility (namely the scale at which λ diverges) is found to be

µsc ' exp

[
−π

2

√
3N

ε

1√
1− εN/12

]
Λ . (IV.7)

For εN � 12 this shows the enhancement due to boson exchange; however, as εN → 12

non-Fermi liquid effects dominate over this enhancement and destroy the superconducting

parameter by a characteristic BKT scaling. This is one of our main results regarding the

competition between superconducting and non-Fermi liquid effects due to a critical boson.

An illustrative way of presenting these RG results is in terms of streamlines for (βλ, βα)

as a function of (λ, α). The left panel in Fig. 6 shows the case N > 12/ε, and the red

points correspond to the stable, unstable and Gaussian fixed points. The flows in the

superconducting range N < 12/ε are presented in the right panel, where we also show the

Gaussian fixed point.

Λ

Α

Λ

Α

FIG. 6. Streamlines for (βλ, βα), with N > 12/ε (left), and N < 12/ε (right). The red dots are

fixed points; we show the stable, unstable and Gaussian fixed points in the left panel, and the

Gaussian fixed point in the right panel. We thank A. Maharaj for help in generating this plot.
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V. DISCUSSION

In this paper, we have studied a class of quantum metals (such as the Ising nematic

quantum phase transition), obtained by coupling a Fermi surface to a nearly critical bosonic

order parameter which preserves translation invariance, and condenses at zero momentum.

We analyzed the interplay between superconductivity and non-Fermi liquid effects in a

theoretically controlled setup depending on N (the rank of an internal global symmetry) and

ε (the deviation from spatial dimension d = 3). We found a novel class of fixed points, stable

against the superconducting instability, where the BCS interactions flow to scale invariant

values. These QCPs display non-Fermi liquid behavior in observables that are local on

the Fermi surface (the anomalous dimension and Fermi velocity) but also in operators that

combine fermions on antipodal points, such as the Cooper pair field or the BCS operator.

We also showed that for sufficiently small N a superconducting instability sets in, via a

continuous phase transition. We next consider the possible relevance of our findings to the

experimental observations of superconducting domes near quantum critical points in a broad

class of correlated electron materials.

We consider the phase diagram as a function of temperature and the parameter that

tunes the boson to criticality (e.g. doping, pressure), which we label x. For N � 1/ε, the

massless boson produces a strong enhancement in the BCS interaction, but a negligible non-

Fermi liquid anomalous dimension. In this case we find a superconducting dome covering

the critical point. As N is increased, non-Fermi liquid effects become stronger, with the

result that the fermion anomalous dimension tends to make the 4-Fermi attraction irrelevant

and decreases the scale of superconductivity. Finally, for N > 12/ε, superconductivity is

destroyed and the non-Fermi liquid fixed point emerges. The competition between non-

Fermi liquid and superconducting fluctuations is summarized in the scaling (IV.7) for the

gap. These different regimes are presented schematically in Fig. 7.

In this work, we have considered a large N theory where the fermion is in the funda-

mental of SU(N) and the scalar is in the adjoint. The N × N bosonic degrees of freedom

were crucial for obtaining a quantum critical point stable against the BCS interaction. An-

other possibility, discussed before in e.g.16–18,20,33,35,36, is to introduce a large number NF

of fermionic fields while the order parameter remains a singlet. In such theories, it seems

unlikely to obtain superconducting domes that condense out of a non-Fermi liquid normal
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FIG. 7. Fate of the superconducting domes for different values of Nε: (a) Nε � 1 (left), and (b)

Nε > 12. Here the various labels denote the following: the ordered phase (I), Fermi liquid (II),

and non-Fermi liquid (III).

state. The primary reason for this is that the fermion anomalous dimension in such theories

is proportional to α/NF . By contrast, in our formulation, the fermion anomalous dimension

γ ∼ α. Comparing scales, in large NF theories,

µNFL ∼ e−
NF
α Λ (V.1)

whereas the scale at which the superconducting instability develops is the same as in our

theory,

µsc ∼ e−
π
2

√
NF
α Λ . (V.2)

It therefore is virtually impossible in a perturbative framework for non-Fermi liquid behavior

to occur at scales above the superconducting instabilities in the large N limit of this class

of theories. A similar conclusion, though from a somewhat different approach, has been

reported in33.
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In future work, we wish to study the phenomenological consequences of the IR stable

fixed point with finite BCS coupling. In particular, it would be interesting to determine

the effect of a scale-invariant BCS interaction on thermodynamics (e.g. heat capacity) and

transport (e.g. magnetoresistance, resistivity) properties. We wish also to study the effect

of a magnetic field in our scenario. For instance, in the regime of N, ε where there is a

superconducting dome enveloping a quantum critical point, it is natural to ask what the

properties of the system are when a magnetic field is used to destroy superconductivity. It

is conceivable that when the superconducting dome is destroyed by a magnetic field, there

still remain substantial superconducting fluctuations governed by the BCS coupling; we can

then ask whether the Cooper pair fields retain power-law correlations.

We also found regimes where even though Nε > 12, for sufficiently small initial α or for

large enough λ, the system still flows towards the superconducting phase; see Fig. 6. This

gives to a superconducting instability deep inside the non-Fermi liquid state. It would be

interesting if this is of relevance to the phase diagram of some of the high Tc superconductors.

Finally, the analysis of the superconducting phase using the gap equation, and its connection

with the present RG approach, will be discussed in30.
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Appendix A: Scaling analysis

In this Appendix we construct the scaling theory (within the spherical RG) that agrees

with the form of the SD quantum corrections.
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In the presence of a nontrivial dynamical exponent zb, the RG approach of Ref. [25] needs

to be modified. First, the scaling of the fermions is not changed by zb: from the action near

the Fermi surface,

Sf = −
∫
dp0dp⊥d

d−1n̂ ψ†(ip0 − vp⊥)ψ , (A.1)

we read off the scaling dimensions

[p0] = [p⊥] = 1 , [ψ(p)] = −3/2 . (A.2)

On the other hand, the bosonic momenta that dominate quantum corrections appear as

differences of close-by fermionic momenta, as can be seen from the cubic interaction,

SYuk =

∫
dp0dp

′
0 d

dp ddp′ g φ(p′ − p)ψ†(p′)ψ(p) , (A.3)

Given ~p = n̂(kF + p⊥), let us decompose the other fermion momentum as

~p ′ = n̂′(kF + p′⊥) ≈ n̂(kF + p′⊥) + kF δn̂ . (A.4)

The boson momentum decomposed with respect to the local Fermi surface direction n̂ then

satisfies

~q = n̂q⊥ + ~q‖ , q⊥ = p⊥ − p′⊥ , ~q‖ = kF δn̂ . (A.5)

Therefore, [q0] = [q⊥] = 1, and it remains to understand how to scale δn̂.

The scaling of ~q‖ is determined by the zb = 3 boson propagator (II.10). Since [q⊥] = 1, it

is q‖ that is affected by the dynamical exponent, and hence is the component that dominates

the momentum transfer. We conclude that for bosonic momenta,

[q0] = [q⊥] = 1 , [q‖] = 1/3 , [φ(q)] = −10− ε
6

(A.6)

for d = 3 − ε. The scaling of the bosonic momenta has become anisotropic due to the

dynamical exponent.

From a purely bosonic point of view it seems somewhat artificial to select a direction

n̂ and scale the two components q⊥ and q‖ differently, as this breaks the isotropy of the

boson dispersion relation. Our statement, however, is that this is the scaling that will

dominate inside correlation functions, where the boson momentum behaves as a difference

of two fermionic momenta. In many condensed matter systems, the bosons indeed represent

fermionic collective modes, hence it is very natural to identify their momenta with the

25



difference between those of fermions. The scaling of q‖ is then equivalent to scaling differences

in fermionic angles kF δn̂, a process that determines the size of the Fermi surface patch that

couples more relevantly to a given fermion ψ(p, n̂). We note the related RG analysis of the

fermion-boson system in the patch picture19, though we stress that the spherical RG being

used here is not the same as the patch scaling of17,35,36.

With these scalings, the classical dimension of g calculated from

Sb =

∫
dp0dp

′
0dp⊥dp

′
⊥ d

2−ε(n̂+ n̂′)d2−ε(n̂− n̂′) g φ(p′ − p)ψ†(p′)ψ(p) . (A.7)

becomes

[g] =
ε

6
. (A.8)

Appendix B: RG solution for the BCS coupling

We found that the stable fixed point λ− has a finite domain of attraction due to the

existence of the unstable fixed point at λ+. One interesting consequence of this is that we

could have an RG trajectory that ends in a superconducting instability even if N > 12/ε.

This may then realize a superconducting dome condensing out of a non-Fermi liquid and

could be of relevance for certain strongly correlated materials. For this reason, in this

Appendix we discuss in more detail how this occurs in a simple case.

By fixing α to its critical value α = ε/3, we can solve the RG analytically across the

transition, starting from arbitrary UV boundary condition λ(M) = λ0. Denoting µ = Me−t,

the solution takes the form:

λ(t) = π2αN

{
1−
√
αN − 4 tanh

(
t

√
α2

4
− α

N
+

1

2
log

(
λ+ − λ0

λ0 − λ−

))}
αN > 4, λ− < λ0 < λ+

= π2αN

{
1−
√
αN − 4 coth

(
t

√
α2

4
− α

N
+

1

2
log

(
λ+ − λ0

λ− − λ0

))}
αN > 4, otherwise

= π2αN

1−
√

4− αN cot

t√ α

N
− α2

4
+ tan−1


√

4
αN
− 1

1− λ0

π2αN

 αN < 4 . (B.1)

From these solutions we can see that for αN > 4, the only possible pole occurs when the

argument of the coth function becomes zero. Since the log term in the argument is positive

for λ0 < λ−, for t > 0 a pole can only exist for λ0 > λ+. The corresponding superconducting
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scale is at:

µ+
sc = M

(
λ0 − λ+

λ0 − λ−

) 1√
α2− 4α

N (B.2)

Viewing λ0 as a tuning parameter, there is a phase transition at λc = λ+, whose order

is given by 1√
α2− 4α

N

. The order diverges as we tune αN towards the critical value 4. For

αN < 4, the superconducting scale is given by:

µ−sc = M exp

− 2π√
4α
N
− α2

f(λ0) , (B.3)

where

f(λ0) = exp

[
− tan−1

(
π2
√

4αN − α2N2

π2αN − λ0

)]1/

√
α
N
−α2

4

. (B.4)

We see that once we cross below αN = 4, the phase transition in λ0 reduces to a step

discontinuity across λdisc = π2αN : there is no choice of λ0 that can kill the superconducting

instabilities.
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