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topological insulator Bi2Se3: A first-principles quantum transport study
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We predict that unpolarized charge current injected into a ballistic thin film of prototypical
topological insulator (TI) Bi2Se3 will generate a noncollinear spin texture S(r) on its surface. Fur-
thermore, the nonequilibrium spin texture will extend into ≃ 2 nm thick layer below the TI surfaces
due to penetration of evanescent wavefunctions from the metallic surfaces into the bulk of TI. Av-
eraging S(r) over few Å along the longitudinal direction defined by the current flow reveals large
component pointing in the transverse direction. In addition, we find an order of magnitude smaller
out-of-plane component when the direction of injected current with respect to Bi and Se atoms
probes the largest hexagonal warping of the Dirac-cone dispersion on TI surface. Our analysis
is based on an extension of the nonequilibrium Green functions combined with density functional
theory (NEGF+DFT) to situations involving noncollinear spins and spin-orbit coupling. We also
demonstrate how DFT calculations with properly optimized local orbital basis set can precisely
match putatively more accurate calculations with plane-wave basis set for the supercell of Bi2Se3.

PACS numbers: 72.25.Dc, 75.70.Tj, 71.15.Mb, 72.10.Bg

The newly discovered three-dimensional topological in-
sulator (3D TIs) materials possess a usual band gap in
the bulk while also hosting metallic surfaces. The low-
energy quasiparticles on these surfaces behave as mass-
less Dirac fermions whose spins are locked to their mo-
menta due to strong spin-orbit coupling (SOC).1 Such
spin-momentum locking is viewed as a resource for spin-
tronic applications.2 For example, very recent experi-
ments3 have demonstrated magnetization dynamics of a
single ferromagnetic metallic (FM) overlayer deposited
on the surface of 3D TIs due to current-induced SO
torques. Another recent experiment4 has detected spin-
to-charge conversion5,6 when precessing magnetization of
the FM overlayer pumps pure spin current into the metal-
lic surface of 3D TIs.

The microscopic mechanism behind these phenomena
can be traced to the so-called Edelstein effect (EE), orig-
inally predicted7 for a diffusive two-dimensional elec-
tron gas (2DEG) with the Rashba SOC8 and observed
much later experimentally.9 In the EE in 2DEG, longi-
tudinal unpolarized charge current flowing along the x-
axis drives a homogeneous nonequilibrium spin density
S = (0, Sy, 0) pointing in the transverse direction. The
diffusive metallic surface of TIs also exhibits EE where a
current-driven spin density S is substantially enhanced2

(by a factor ~vF /αR ≫ 1, with vF being the Fermi veloc-
ity in TI and αR is the strength8 of the Rashba SOC in
2DEG). Such enhancement can be explained by the spin-
momentum locking along the single Fermi circle,1 formed
in k-space at the intersection of the Dirac cone energy-
momentum dispersion and the Fermi energy plane, in
contrast to spin-momentum locking along the two cir-
cles8 in the case of Rashba 2DEG which counter the
effect of each other. This has motivated recent exper-
iments10 probing S directly in three-terminal geometry
where nonmagnetic electrodes inject unpolarized charge
current into a TI, while a third FM contact deposited
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FIG. 1. Schematic view of a two-terminal setup where a thin
film of Bi2Se3 is attached to two macroscopic reservoirs biased
by the electrochemical potential difference eVb = µL − µR.
The clean Bi2Se3 film is infinite along the x-axis (i.e., the di-
rection of transport) and the y-axis, while its thickness along
the z-axis is chosen as 5 QLs. The shaded cell of length
dx ≃ 5 Å defines volume for averaging S(r) from Fig. 2, which
is then plotted in Fig. 3 over the corresponding cross section
of thin film within the yz-plane.

in the middle of the top surface of the TI film detects a
voltage signal when a non-zero S is induced. These se-
tups quantify the projection of S onto the magnetization
of the third FM contact.
However, this picture of EE on the surface of TI is

based on simplistic model Hamiltonians.2,3 Here we em-
ploy first-principles quantum transport approach to an-
alyze microscopic details, over . 1 Å length scale, of
current-driven S(r) in the two-terminal ballistic thin
film geometry hosting realistic TI material, as illus-
trated in Fig. 1. We choose Bi2Se3 as the prototypi-
cal TI material—with its single Dirac cone in the sur-
face band structure, relatively large bulk band gap, and
Dirac point (DP) inside the gap—on which many re-
cent experiments probing EE directly10 or indirectly3,4

have been performed. The central region of the de-
vice in Fig. 1, which has length Lx = 21.5 Å along the
x-axis and infinite width along the y-axis, is attached
to two semi-infinite electrodes made of the same mate-
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FIG. 2. (a) The arrangement of Bi and Se atoms within a supercell of Bi2Se3 thin film of thickness 5 QLs. The inset in panel
(a) shows BZ in the kx-ky plane at kz = 0 with special k-points Γ, M , and K marked. (b) The vector field of nonequilibrium
S(r) within selected planes shown in (a), generated by injection of unpolarized charge current along the x-axis (see also Fig. 1).
The planes 1 and 3 correspond to the top and bottom metallic surfaces of Bi2Se3 thin film, while plane 2 resides in the bulk at
a distance d ≈ 0.164 nm away from plane 1. (c) The vector fields in (b) projected onto each of the selected planes in (a). The
real space grid of r-points in panels (b) and (c) has spacing ≃ 0.4 Å.

rial. The electrodes are assumed to terminate at infin-
ity into macroscopic Fermi liquid reservoirs where elec-
trons are thermalized to acquire electrochemical poten-
tial µL in the left reservoir and µR in the right one. The
Hamiltonian of the central region and the electrodes is
obtained from the noncollinear density functional the-
ory (ncDFT), implemented by us in ATK package11, us-
ing optimized pseudo-atomic localized basis functions12

and SOC introduced via the total-angular-momentum-
dependent pseudopotentials.13 The transport properties
of the system in Fig. 1 are computed using the nonequi-
librium Green function (NEGF) formalism,14 so that
our approach represents an extension of the widely used
NEGF+DFT framework15 to transport problems involv-
ing noncollinear spins and SOC.
In the simplest picture—based on effective Hamilto-

nian ĤTI = vF (σ̂ × p̂) · ez (σ̂ is the vector of the Pauli
matrices; p̂ is the momentum operator; and ez is the
unit vector along the z-axis in Fig. 1) describing mass-
less Dirac electrons on the metallic surfaces of TIs—the
spin and momentum of electronic eigenstates are orthog-
onal to each other along the single Fermi circle. This
generates net homogeneous S = (0, Sy, 0) after an ap-
plied electric field Ex shifts the Fermi circle2,3,16 along
the momentum parallel to Ex. Such manifestation of
EE persists in ballistic samples as well17,18 where there

is no electric field within the TI but instead one applies
bias voltage eVb = µL − µR to inject a current into the
TI, as illustrated in Fig 1. The relations Sy ∝ Ex or
Sy ∝ Vb describing EE in the diffusive or ballistic trans-
port regimes, respectively, are allowed only in nonequi-
librium since in equilibrium S changes sign under time
reversal, and, therefore, has to vanish (assuming absence
of magnetic field).
This simplistic picture can be contrasted with our prin-

cipal results in Figs. 2 and 3. When a small (ensur-
ing linear-response transport regime) Vb is applied be-
tween the reservoirs in Fig. 1, the unpolarized charge cur-
rent injected into Bi2Se3 thin film generates a nonequi-
librium S(r) whose complex noncollinear texture within
three planes selected in Fig. 2(a) is plotted in Figs. 2(b)
and 2(c). For the visualization we use real-space grid
for r whose spacing is ≃ 0.4 Å. Furthermore, Figs. 2
and 3 demonstrate that nonequilibrium spin texture S(r)
will appear not only on the TI surface, but also within
≃ 2 nm thick layer of its bulk just below the top and
bottom surfaces. This feature is explained in Figs. 3(a)
and 3(b) showing spatial profile of the local density of
states (LDOS) at the Fermi energy EF over the cell de-
picted in Fig. 1. The non-zero LDOS and the corre-
sponding S(r) in the bulk of the TI thin film stem from
evanescent wavefunctions which originate from the top
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and bottom metallic surfaces and penetrate into the en-
ergy gap of the insulating bulk. The Bi2Se3 is a strongly
anisotropic material composed of quintuple layers (QLs)
of Bi and Se atoms, illustrated in Fig. 2(a), where one
QL consists of three Se layers strongly bonded to two Bi
layers in between. For Bi2Se3 film thinner than 5 QLs,
the evanescent wavefunctions from the top and bottom
metallic surface can overlap to create a minigap19,20 at
the DP. We select the thickness of Bi2Se3 to be 5 QLs
along the z-axis in Fig. 1, which ensures that the LDOS
in Figs. 3(a) and 3(b) goes to zero on the plane half way
between the top and bottom surfaces of the TI thin film.
Upon averaging nonequilibrium S(r) over a dx ≃ 5 Å

long cell depicted in Fig. 1, we obtain spatial profiles in
Figs. 3(c) and 3(d) which show that Sy is the largest
component independently of the direction of incoming
electrons. An order of magnitude smaller Sz component
shown in Fig. 3(d) appears for electrons incoming along
current direction 2 marked in panel (e). This is in ac-
cord with experiments in equilibrium where spin- and
angle-resolved photoemission spectroscopy22 finds largest
out-of-plane spin component along the corresponding di-
rection in the 2D Brillouin zone (BZ). This is due to
hexagonal warping of the Dirac cone surface band struc-
ture, as confirmed by DFT calculations19,21 finding that
equilibrium expectation value of spin in the eigenstates
of Bi2Se3 surfaces tilts out of the 2D BZ. Thus, Fig. 3
offers a novel prescription for probing hexagonal warping
via transport measurements where charge current is in-
jected in different directions relative to the orientation of
the lattice of Bi and Se atoms.
We now explain the technical details of our calcu-

lations. The extension of DFT to the case of spin-
polarized systems is formally derived in terms of total
electron density n(r) and vector magnetization density
m(r). In the collinear DFT, m(r) points in the same
direction at all points in space, which is insufficient to
study magnetic systems where the direction of the local
magnetization is not constrained to a particular axis or
systems governed by SOC. In ncDFT,23 the exchange-
correlation (XC) functional EXC[n(r),m(r)] depends on
m(r) pointing in arbitrary directions. The local den-
sity approximation(LDA) and most often employed ver-
sion of generalized gradient approximation (GGA), im-
plemented also by us in ATK,11 make additional ap-
proximations23 that lead to the XC magnetic field
BXC(r) = δEXC[n(r),m(r)]/δm(r) being parallel every-
where to m(r).
The single-particle spin-dependent Kohn-Sham (KS)

Hamiltonian in ncDFT takes the form

ĤKS = −
~
2∇2

2m
+ VH(r) + VXC(r) + Vext(r)−σ ·BXC(r),

(1)
where VH(r), Vext(r) and VXC(r) =
EXC[n(r),m(r)]/δn(r) are the Hartree, external and XC

potential, respectively. Diagonalization of ĤKS proceeds
by approximating the Hilbert space of all single-electron
eigenfunctions with a finite set of basis functions. A
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FIG. 3. (a),(b) The spatial profile of LDOS at EF over the
cross section of the cell denoted in Fig. 1. (c),(d) The spatial
profile of the components of S(r), obtained by averaging its
texture plotted in Fig. 2, over the cell of Bi2Se3 thin film
marked in Fig. 1. The direction of injected charge current for
the results in panels (a) and (c), or the results in panels (b)
and (d), is denoted in panel (e) relative to the orientation of
the lattice of Bi and Se atoms. The bottom surface of Bi2Se3
is located at z = 0 nm, and the top TI surface is located at
z ≈ 4.56 nm. In panels (c) and (d) we also mark position of
planes 1–3 from Fig. 2.

popular basis set is plane-waves (PWs), where varying
only one parameter (the energy cutoff) allows one to
improve the basis systematically. Linear combination of
atomic orbitals (LCAO) basis sets require more tuning,
however, they simplify the NEGF calculations15 where
one has to spatially separate system into the central
region and semi-infinite electrodes, as illustrated in
Fig. 1.

Since the pioneering screening24 of candidate TI ma-
terials via ncDFT calculations, their electronic band
structure has most often been calculated19,20 using
PW ncDFT with electron-core interactions described
via projector augmented wave (PAW) method.25 In
Fig. 4(a) we demonstrate that such calculations, per-
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FIG. 4. (a) The electronic band structure computed for a su-
percell of Bi2Se3 film shown in Fig. 2(a) using LCAO12 ncDFT
implemented in ATK11 package. This is compared with the
electronic band structure obtained using PW ncDFT imple-
mented in VASP package.27 (b) Zero-bias transmission function
of Bi2Se3 thin film in the two-terminal geometry of Fig. 1, for
electrons injected along the Γ–M direction (ky = 0) in the
inset of Fig. 2(a), computed using NEGF+ncDFT formalism
implemented in ATK package.

formed by VASP package,27 can be accurately reproduced
by pseudopotential-based LCAO ncDFT implemented in
ATK.11 The supercell considered in both calculations is
shown in Fig. 2(a), which includes 5 QLs terminated by
Se atomic layer on both the top and bottom surface, as
well as 7.5 Å thick vacuum layer above and below these
Se atomic layers.
We note that previous attempts21 to apply

pseudopotential-based LCAO ncDFT to Bi2Se3 have
yielded either poor accuracy of its electronic band
structure (e.g., compare our Fig. 4(a) with Fig. 1
in Ref. 21) or have required intricate fine tuning.26

Therefore, we provide here a complete recipe for the
proper usage of LCAO ncDFT to reproduce Fig. 4(a).
In ATK calculations in Fig. 4(a), the electron-core
interactions are described by norm-conserving pseudopo-
tentials. The pseudopotentials are obtained by mapping
the solution of the Dirac equation, which naturally
includes SOC,13 to non-relativistic pseudopotential,

VPS = VL + V
1/2
NL + V

−1/2
NL , with local contribution VL

and non-local contributions VNL from the total angular
momentum j = l + 1/2 and j = l − 1/2. The non-local
terms are expanded in terms of SO projector functions,

V
±1/2
NL =

∑

l,ξ,α,β νl±1/2,ξP
l±1/2,ξ
αβ , where νl±1/2,ξ are

normalization constants and the indices α, β denote
the possible spin orientations (↑, ↓). We use Perdew-
Burke-Ernzerhof (PBE) parametrization of GGA for the
XC functional and a LCAO basis set {φi} generated
by the OpenMX package,12,28 which consists of s2p2d1

orbitals on Se atoms and s2p2d2 on Bi atoms. These
pseudoatomic orbitals were generated by a confinement
scheme12 with the cutoff radius 7.0 a.u. and 8.0 a.u.
for Se and Bi atoms, respectively. The energy mesh
cutoff for the real-space grid is chosen as 75.0 Hartree.
In VASP calculations27 in Fig. 4(a), the electron-core
interactions are described by PAW method,25 and we
employ PBE GGA for the XC functional. The cutoff
energy for the PW basis set is 350 eV. In both ATK and
VASP calculations we employ 11× 11× 1 k-point mesh
within Monkhorst-Pack scheme for the BZ integration.
The eigenstates |Ψn〉 of the KS Hamiltonian in

Eq. (1) make it possible to construct the equilibrium
density matrix ρeq =

∑

n |Ψn〉〈Ψn|f(E) for electrons
at µL = µR and temperature T described by the
Fermi distribution function f(E). The local electron
and magnetization density, as the central variables of
ncDFT, are obtained from n(r) = 〈r|Trspin[ρeq]|r〉 and
m(r) = 〈r|Trspin[ρeqσ]|r〉, where the trace is taken over
the spin Hilbert space.
In steady-state nonequilibrium due to dc current flow-

ing between the left and right reservoirs in Fig. 1, we
construct the nonequilibrium density matrix29 ρneq us-
ing NEGFs:

ρneq =
1

2πi

+∞
∫

−∞

dEG<(E)− ρeq. (2)

This yields S(r) = ~

2
〈r|Trspin[ρneqσ]|r〉 plotted in

Figs. 2 and 3. The NEGF formalism14 for steady-
state transport operates with two central quantities—
the retarded GF, G(E), and the lesser GF, G<(E)—
which describe the density of available quantum
states and how electrons occupy those states, re-
spectively. In the absence of inelastic processes,
these are given by G = [EO−HKS −ΣL −ΣR] and
G< = iG[fLΓL + fRΓR]G

†. Here the self-energies ΣL,R

are due to semi-infinite electrodes, fL,R = f(E − µL,R)

and ΓL,R = i(ΣL,R −Σ
†
L,R) is the level broadening ma-

trix. For the chosen LCAO basis set, the Hamilto-
nian matrix HKS is composed of elements 〈φi|ĤKS|φj〉
and the overlap matrix O is composed of elements
〈φi|φj〉. In the linear-response transport regime con-
sidered here, Eq. (2) can be expanded29 to first or-
der in bias voltage Vb. Since S(r) is zero in equilib-
rium (because of assumed absence of external magnetic
field), the linear-response density matrix can be sim-

plified to,29 ρneq = eVb

2π

+∞
∫

−∞

dEGΓLG
†
(

− ∂f
∂E

)

. Other-

wise, the gauge-invariant form of ρneq requires additional
terms29 to properly remove the equilibrium expectation
value of a considered physical quantity.
The retarded GF also allows us to obtain the

transmission function of the device in Fig. 1,
T (E, ky) = Tr[ΓRGΓLG

†], which depends on energy and
transverse momentum ky due to assumed periodicity in
the y-direction. The total transmission function T (E)
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is obtained by integrating over ky, which determines the
linear-response conductance via the Landauer formula,

G = e2

h

∫

dE T (E)
(

− ∂f
∂E

)

. We confirm in Fig. 4(b) that

T (E, ky = 0) = 2 for E within the bulk gap shown
in Fig. 4(a) because only one doubly degenerate helical
conducting channel is open for transport in that energy
range30 for injected electrons with momentum along the
Γ–M direction (ky = 0).
In conclusion, using NEGF+ncDFT framework imple-

mented by us in ATK package,11 we computed a nonequi-
librium spin texture S(r) within a thin film of current-
carrying Bi2Se3 TI material. The non-zero texture ap-
pears on the TI metallic top and bottom surfaces, as
well as within bulk layers of thickness ≃ 2.0 nm below
the surfaces that effectively dope the bulk by evanescent
wavefunctions. The spin texture is noncollinear and com-
plex on length scales. 1 Å. Upon averaging it over a few
Å we find a simpler pattern (in accord with EE discussed
using model Hamiltonians2)—where either S = (0, Sy, 0),
or S = (0, S′

y, S
′
z) with S′

y/S
′
z ≫ 1, depending on the di-

rection of injected current with respect to orientation of
the lattice of Bi and Se atoms. Such dependency offers
a novel probe, via electronic transport measurements,10

of the hexagonal warping of the Dirac cone surface band
structure. For the envisaged spintronic applications of
TIs, it is essential to understand how S(r) changes due to
finite bias voltage or self-consistent coupling31 to magne-
tization of a ferromagnetic (metal or insulator) overlayer,
which we relegate to future studies.
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