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The interplay of interactions and disorder is studied using the Anderson-Hubbard model within
the typical medium dynamical cluster approximation. Treating the interacting, non-local cluster
self-energy (Σc[G̃](i, j 6= i)) up to second order in the perturbation expansion of interactions, U2,
with a systematic incorporation of non-local spatial correlations and diagonal disorder, we explore
the initial effects of electron interactions (U) in three dimensions. We find that the critical disorder
strength (WU

c ), required to localize all states, increases with increasing U ; implying that the metallic
phase is stabilized by interactions. Using our results, we predict a soft pseudogap at the intermediate
W close to WU

c and demonstrate that the mobility edge (ωǫ) is preserved as long as the chemical
potential, µ, is at or beyond the mobility edge energy.
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Introduction.– The metal-insulator transition (MIT)
driven by random impurity has been an important topic
in physics since the pioneer work by Anderson [1]. A sig-
nificant advance in the MIT theory is achieved by study-
ing it in the context of critical phenomena. Concepts
from scaling, renormalization group (RG), and random
matrix theory are used to understand the mechanism of
localization at different dimensions for different symme-
try classes [2–5]. It has been demonstrated that an in-
finitesimal amount of disorder can lead to localization for
the models in the orthogonal class at lower (one and two)
dimensions, whereas there is a MIT for three dimensions
(3D) [2]. In 3D, a sharp mobility edge separating local-
ized and delocalized states develop as disorder strength
increases [6].

While the MIT of non-interacting systems by now is
fairly well understood [4, 5, 7], earlier studies suggested
that interaction could play an important role in the
MIT [8]. Over the last few decades, experimental works
ranging from doped semiconductors [6, 9, 10], perovskite
compounds [11–15]), to cold atoms in optical lattices[16–
19] have highlighted the importance of the interplay of
disorder (W ) [1, 2, 4, 5] and interactions (U) [6].

At the Fermi level, Altshuler-Aronov [20] showed that
interactions can induce a square-root and logarithmic sin-
gularity in two and three dimensions, respectively, while
Efros-Shklovskii demonstrated the Coulomb gap [21].
Field theory perturbative RG method and diagrammatic
theory which go beyond the Hartree-Fock approxima-
tions have suggested a metallic state for two dimen-
sions [22, 23]. The recent RG work by Finkelstein
and co-workers has further indicated the possibility of
a MIT for a model with degenerate valleys [24], the va-
lidity of which was confirmed through experiments in Si-
MOSFETs [24, 25].

In this letter, we focus on the system with weak local
interactions on disorder systems in 3D. Our approach is

an extension of the recently developed typical medium
dynamical cluster approximation (TMDCA), which has
shown to be highly successful in describing the Ander-
son localization transition (ALT) for the non-interacting
systems [26]. The typical medium approaches assume
that the typical density of states (TDoS), when appro-
priately defined, acts as the “proper” order parameter
for the ALT. Such an assumption is well justified not
only for the non-interacting case [26–28] but also in the
presence of interactions, as shown experimentally[9, 29].
The typical medium theory (TMT) of Dobrosavljević et

al [27] is a special case of the TMDCA when the clus-
ter size Nc = 1. Even though the TMT cannot include
weak localization effects due to coherent backscattering,
it still does qualitatively predict a disorder-driven ALT,
and hence incorporates ’strong localization’ effects. The
TMDCA incorporates non-local effects via systematic fi-
nite cluster increment and achieves almost perfect agree-
ment with numerical exact calculations. The extension
of the TMT to finite interactions show that interactions
screen the disorder[30–32]. In this letter, we show that
such a conclusion is robust in the thermodynamic limit
through increasing cluster size calculations.

While there have been significant efforts to understand
the combined effect of disorder and interactions on the
local density of states close to the Fermi level, the band
edges have received scant attention. Specifically, the ef-
fect of weak interactions on the mobility edge has not
been discussed thus far. We are particularly interested
in the evolution of the mobility edge under the influ-
ence of the Hubbard interaction for spin−1/2 system.
The transition between metal–the Fermi liquid phase;
and insulator–the Anderson localized phase is discussed,
whereas the possibility of the Mott insulator is excluded
in this study, as only short range, weak interactions will
be considered.

The main result of this letter is that for µ < ωǫ,
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arbitrary small interactions lead to the masking of the
sharp mobility edge that separates localized and ex-
tended states in the non-interacting regime below the
critical disorder strength WU=0

c . Thus, interactions can
radically modify the spectrum of a non-interacting sys-
tem at the band edges, i.e., in the ‘localized band’. How-
ever, when the chemical potential (µ) is at or above the
mobility edge energy (i.e., µ ≧ ωǫ), the well-defined lo-
calization edge is restored. Nevertheless, unlike the non-
interacting systems where the TDoS just shifts rigidly
as one scans through µ, in the presence of interactions,
there is a non-trivial decrease of the TDoS vis-à-vis the
change in the filling. Further, we find a soft-pseudogap
at intermediate W just below WU

c .
Method.– The Anderson-Hubbard model (AHM) is

a model for studying the interplay between electron–
electron interactions and disorder. The Hamiltonian for
this model is

H = −
∑

〈ij〉σ

tij(c
†
iσcjσ+h.c.)+

∑

iσ

(Vi−µ)niσ+U
∑

i

ni↑ni↓.

(1)
The first term describes the hopping of elect rons on the
lattice, c†i (ci ) is the creation (annihilation) operator of

an electron on site i with spin σ, ni = c†i ci is the number
operator, tij = t is the hopping matrix element between
nearest-neighbor sites. The second term represents the
disorder part which is modeled by a local potential Vi

randomly distributed according to a probability distri-
bution P (Vi), µ is the chemical potential. The last term
describes the Coulomb repulsion between two electrons
occupying site i. We set 4t = 1 as the energy unit and
use a “box” distribution with P (Vi) =

1
2W Θ(W − |Vi|),

where Θ(x) is the Heaviside step function. We use the
short-hand notation: 〈...〉 =

∫

dViP (Vi)(...) for disorder
averaging.
Our focus is on the single-particle Green function and

the associated density of states. To obtain these for
the AHM (1), we modify the TMDCA to treat both
disorder and interactions. Here, an initial guess for
the hybridization function (Γ(K, ω) ≡ ℑ10−2) is used
to form the cluster-excluded Green function G(K, ω) =
(ω − Γ(K, ω) − ǭK + µ)−1, where ǭK is the coarse-
grained bare dispersion. G(K, ω) is then Fourier trans-
formed to form the real space Green function, Gn,m =
∑

K
G(K) exp(iK·(Rn−Rm)) and then for a given disor-

der configuration V̂ , we may calculate the cluster Green
function Gc(V̂ ) = (G−1 − V̂ )−1.
Utilizing Gc(V̂ ), we then calculate the Hartree-

corrected cluster Green function G̃−1
c (V̂ , U) = Gc(V̂ )−1+

ǫd(U) (where ǫd(U) = µ̃ − Uñi/2 and ñi =

−1/π
∫ 0

−∞
ℑG̃c(i, i, ω)dω is the site occupancy at zero

temperature, T = 0). Both G̃ and ñi are converged and
then used to compute the second-order diagram shown
in Fig. 1. We note that ñi obtained at G̃c-level is nu-
merically the same as using the full Green function since

ñi is self-consistent at the TMDCA level. This also en-
ables the incorporation of crossing diagrams (for Nc > 1)
from both disorder and interactions at equal footing and
it is computationally cheaper (for Nc = 1, it is ∼ 8 times
cheaper), enabling simulation of large systems.
Here, we choose the chemical potential µ̃ = µ + U/2

to enable simulations both at and away from half-filling.
Thus, the full self-energy due to interactions is then

ΣInt
c (i, j, ω) = ΣH

c [G̃] + Σ
(SOPT )
c [G̃], where the first term

is the static Hartree correction and the second term is
the non-local second-order perturbation theory (SOPT)
contribution. We note that the computational cost grows
exponentially with each order of the perturbation series
making it numerically prohibitive to include more dia-
grams. However, since our focus is on the weak inter-
action regime U/4t ≪ 1, we expect that higher order
diagrams are suppressed by at least ∼ U3.
We have carried out extensive benchmarking of the

TMDCA-SOPT cluster solver against numerically exact
quantum Monte-Carlo calculations [33–41] within the dy-
namical cluster approximation (DCA) framework. For
weak interactions and essentially all disorder strengths,
the corrections due to perturbation orders higher than
the second are found to be negligible (for details, see
Supplemental Material (SM) [42]).

δ ij j+ ii

FIG. 1. The first and
second-order diagrams
of the interacting self-
energy between sites i
and j.

For a given interaction
strength U and randomly
chosen disorder configuration
V , we calculate the fully
dressed cluster Green func-
tion G̃c(V̂ , U) = (G−1 − V̂ −
ΣInt(U) + U/2)−1. With
G̃c(K, ω, V, U), we calculate
the typical density of states
as

ρctyp(K, ω) = exp

(

1

Nc

Nc
∑

i=1

〈ln ρci (ω, V )〉

)〈

ρc(K, ω, V )
1
Nc

∑

i ρ
c
i (ω, V )

〉

(2)
following the prescriptions of Ref. [26], which avoids self-
averaging. The disorder and interaction averaged typi-
cal cluster Green function is obtained using the Hilbert
transform Gc

typ(K, ω) =
∫

dω′ρctyp(K, ω′)/(ω − ω′). We
close the self-consistency loop by calculating the coarse-
grained cluster Green function of the lattice G(K, ω) =
∫ N c

0 (K, ǫ)dǫ

(Gc
typ(K, ω))−1 + Γ(K, ω)− ǫ+ ǫ(K)

, where N c
0(K, ǫ)

is the bare partial density of states.
Results and Discussion– We start the analysis of our

results by comparing the algebraic (or average) density
of states (ADoS) (obtained from the DCA, where the
algebraic averaging is utilized in the self-consistency) and
the typical density of states (TDoS) (obtained from the
TMDCA-SOPT, where the self-consistency environment
is defined by a typical medium) for a finite cluster Nc =
38 at various disorder strengths for U = 0.0 and 0.1 at
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half-filling (Figs. 2(a) and (b)).

At weak disorder, W ∼ 0.5, the TDoS resembles the
ADoS. However, for larger W , comparing the U = 0.0
results (Fig. 2(a)) with those of U = 0.1 (Fig. 2(b)), a
noticeable renormalization of the spectrum is observed.
There is a gradual suppression of the TDoS as the dis-
order strength is increased for both U = 0.0 and 0.1.
The TDoS at ω = 0 is noticeably larger when the U
is finite. This indicates a delocalizing effect of inter-
actions which is consistent with a real space renormal-
ization group study [43] and has been interpreted as a
screening of the disorder [30, 44]. For a given disorder
strength, the band edges at half-filling for the interact-
ing case appear to be identical to that of the U = 0
spectrum. This seems to imply that the mobility edge is
preserved when U is turned on. However, this is not the
case, and this becomes clear upon examining the tails of
the density of states.

To explore the effect of weak interactions on the lo-
calization edge of a disordered electron system, we show
in Fig. 3, the evolution of the TDoS with δ = W/WU

c

for various values of U on a linear log plot at various µ.
Clearly for U = 0, a sharp, well-defined mobility edge is
observed (see also Fig.2(a)). However, even for a very
small U = 0.1 (1/30 of the bandwidth), and for both the
TMT and TMDCA-SOPT, the sharp localization edge is
replaced by an exponential tail, when µ < ωǫ. Hence, the
incorporation of Coulomb interactions in the presence of
disorder for µ < ωǫ leads to long band tails that are ex-
ponentially decaying. This fingerprint can be understood
from a Fermi liquid perspective.

If we inject an electron into a Fermi liquid with an en-
ergy ω above the Fermi energy, then, we expect the parti-
cle to experience an inelastic scattering, due to U which is
proportional to ω2. One factor of ω is due to energy con-
servation and the other to momentum conservation with
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FIG. 2. (Color online). Evolution of the ADoS and TDoS at
various W at U = 0 (a) and U = 0.1 (b) for the TMDCA-
SOPT with Nc = 38 for the half-filled Anderson-Hubbard
model (AHM).
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FIG. 3. (Color online). The evolution of the TDoS of the
AHM for increasing U -values for the TMT (Nc = 1, (a))
and finite clusters (Nc = 12 (b) and 38 (c)) at fixed δ =
W/WU

c = 0.86 on a log-linear plot for increasing µ-values.
For U = 0.0, we show the plot for µ = 0 only, since changing
µ only involves a rigid shift of the TDoS. For U > 0, notice the
systematic disappearance of the exponential tails (indicated
by arrow) and the non-trivial decrease of the TDoS for the
finite U (unlike the rigid shift in U = 0) as one approaches
the mobility edge energy.

both constrained by the Pauli principle. I.e., the inelas-
tic scattering vanishes as ω → 0. However, if we apply
the same logic to an interacting disordered system, then,
we might expect the edge of the TDoS to be smeared out
by these inelastic scattering processes, whenever the edge
energy is above the Fermi energy, but become sharp as
the edge, approaches it. Though, some argue that this
reasoning fails for a disordered system, especially for a
strongly disordered system since a well-defined quasipar-
ticle no longer exists [45]. As a consequence, the concept
of a mobility edge would not hold and the TDoS should
have pronounced exponential “tails” even when the Fermi
energy approaches the top or bottom of the TDoS bands.
As it is evident from Fig. 3, the sharp mobility edge is
restored as the mobility edge energy is approached in
tandem with the Fermi liquid description.

The smearing of the TDoS edge can further be in-
ferred from the convolutions found in the second order
(and higher) diagrams (cf. Fig. 1), which will mix states
above and below the non-interacting localization edge.
Consider two such states: one localized and the other
extended, which are now degenerate due to this mixing.
Since these states hybridize with each other, both states
will become extended [6].
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FIG. 4. (Color online). (a) The evolution of the TDoS (at
ω = 0) as a function of the disorder strength W for various
interactions for Nc = 1, 12, and 38 at half-filling. The integral∫
ℑΓ(K, ω) dK dω vanishes at the same Wc as the TDoS for

a given U (not shown), signifying that the absence of the
hybridization paths leads to the vanishing of the TDoS. As
indicated by the arrow, increasing U pushes Wc to larger
values. (b) The interaction dependence of the critical disorder
WU

c for different cluster sizes Nc = 1, 12, and 38 of the AHM
at half-filling. The unit is fixed by setting 4t = 1. The plot is
generally in agreement with the results of Ref. [46]. (c) The
WU

c vs 1/Nc on a semi-log plot at U = 0.0 and U = 0.2 for the
half-filled AHM. Note the systematic and fast convergence of
WU

c with cluster size for both cases.
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FIG. 5. (Color online). The TDoS vs energy (ω) for Nc = 12
(U = 0.0) (a) and Nc = 12 (U = 0.2) (b) at various δ =
W/WU

c showing the formation of a pseudogap at intermediate
W just before WU=0.2

c , which is absent when U = 0. (c)
Shows the TDoS vs ω at a fixed W (close to WU=0.2

c = 2.50)
for various U . Note, the data has been scaled with U . (d)
Same data as in Fig. 5(c) showing the linear dependence of
the pseudogap on ω.

Next, we explore the effect of interactions on the half-
filled, disorder-driven localization transition. We show
in Fig. 4 the evolution of the TDoS at the band cen-
ter, ω = 0, for various cluster sizes. The integrated
escape rate (

∫

ℑΓ(K,ω)dKdω) (not shown) character-
izes the rate of diffusion of electrons between the impu-
rity/cluster and the typical medium. The vanishing of

the hybridization paths leads to a localization transition.
The TDoS vanishes at the same value of WU

c as the in-
tegrated escape rate.

Figure 4(a) shows that an increase in U from 0.1 to
0.5 leads to a concomitant increase in WU

c . One can say
loosely that, the zero-temperature effect of correlations
is an effective reduction in the disorder strength [32, 44],
leading to the increase in Wc as indicated by the arrow.
For the TMT (Nc = 1), the WU

c increases as 1.83, 1.96,
2.06, 2.22, and 2.25 for U = 0.1 – 0.5, while for the
TMDCA (Nc = 12), WU

c increases as 2.34, 2.48, 2.52,
2.57, and 2.60, and for for the TMDCA (Nc = 38) as
2.48, 2.59, 2.65, 2.71, and 2.76 for U = 0.1 – 0.5. We
note that WU

c increases more quickly with U as one goes
from single-site (Nc = 1) to finite clusters (Nc = 12 and
38). This is likely due to the effect of a finite U on the
coherent backscattering, which is absent for Nc = 1 and
is systematically incorporated as Nc increases.

In Figure 4(b), we show the interaction U dependence
of the critical disorder strength WU

c for Nc = 1, 12, and
38 for the half-filled AHM. For each of the Nc, we obtain
a correlated metal below the lines, and above we have the
gapless Anderson-Mott insulator. The trend in both the
single site and finite cluster are alike (i.e., WU

c increases
with increasing U) except for the difference in WU

c . The
almost linear trend observed for the low U is in agreement
with previous studies [31, 46]. Figure 4(c) depicts the
WU

c as a function of 1/Nc at U = 0.0 and U = 0.2
for the half-filled AHM. Note the systematic and fast
convergence of Wc with Nc for both cases.

We further show in Fig. 5 the evolution of the TDoS(ω)
for Nc = 12 at U = 0.0 (Fig. 5(a)) and 0.2 (Fig. 5(b))
for various δ = W/WU

c . For finite U a soft-pseudogap,
which is linear in ω (cf. Fig.5(d)) develops at the Fermi
energy (note, this is true irrespective of electron filling) at
intermediate disorder strengths immediately before the
system becomes localized. In Fig. 5(c), we show that the
pseudogap is robust as a function of U < 1. Noting that
we have only short-range interaction, this soft-pseudogap
cannot be attributed to excitonic effects (which are neg-
ligible here) as in the Efros-Shklovskii theory [21]. Also,
since it occurs only in the TDoS and even for Nc = 1, it
cannot be due to the multivalley structure of the energy
landscape [47] since a single-site cannot generate a mul-
tivalley energy landscape to sustain sets of metastable
states, and it should be contrasted from the Altshuler-
Aronov zero-bias anomaly, which is due to weak non-
local interactions and weak disorder [48]. We ascribed
this soft pseudogap to the same scenario, which causes
well-defined mobility edge to only exist when µ ≧ ωǫ.
U suppresses localization and increases the TDoS. How-
ever, near the Fermi energy the phase space for scattering
by U is drastically reduced leading to the opening of a
soft pseudogap. Put differently, the pseudogap is due to
the suppression of inelastic scattering by U due to the
Pauli principle and energy conservation. It is linear (cf.
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Fig.5(d)), rather than quadratic in ω, due to the lack of
momentum conservation.

Conclusions– Based on experiment, theory, and simu-
lations, there is a growing consensus that the local den-
sity of states in a disordered system develops a highly
skewed [49], log-normal distribution [9, 29, 50] with a
typical value given by the geometric mean that vanishes
at the localization transition, and hence, acts as an order
parameter for the ALT. New mean field theories for local-
ization, including the TMT and its cluster extension, the
TMDCA, have been proposed. In this letter, we extend
the TMDCA to weakly interacting systems using second
order perturbation theory. We find that weak local inter-
actions lead to an increase in Wc, with the localization
edge preserved when the chemical potential is at or above
the mobility edge energy. For finite U we observe a soft-
pseudogap for values of the disorder strength just above
WU

c .
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[27] V. Dobrosavljević, A. A. Pastor, and B. K. Nikolić, EPL
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