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Many-body localization and mobility edge in a disordered spin 1/2 Heisenberg ladder

Elliott Baygan, S. P. Lim and D.N. Sheng
Department of Physics and Astronomy, California State University, Northridge, California 91330, USA

We examine the interplay of interaction and disorder for a Heisenberg spin-1/2 ladder system with random

fields. We identify many-body localized states based on the entanglement entropy scaling, where delocalized

and localized states have volume and area laws, respectively. We first establish the dynamic phase transition at

a critical random field strength hc ∼ 8.5 ± 0.5, where all energy eigenstates are localized beyond that value.

Interestingly, the entanglement entropy and fluctuations of the bipartite magnetization show distinct probability

distributions which characterize different phases. Furthermore, we show that for weaker h, energy eigenstates

with higher energy density are delocalized while states at lower energy density are localized, which defines a

mobility edge separating these two phases. With increasing disorder strength, the mobility edge moves towards

higher energy density, which drives the system to the phase of the full many-body localization.

PACS numbers: 75.10.Pq,71.30.+h, 73.22.Gk

I. INTRODUCTION

Anderson localization theory1 predicts that noninteracting

electrons are generally localized in one and two-dimensional

(1D and 2D) disordered systems without either a magnetic

field or spin-orbit coupling due to destructive quantum inter-

ference. It is generally believed that low energy states remain

localized for weakly interacting systems 2–7 with characteris-

tic features different from noninteracting systems. Recently,

there is renewed interest to examine the Anderson localization

for interacting systems, where the phenomenon of many-body

localization (MBL)8,9 has attracted intense studies. Many re-

markable properties of an MBL phase has been established8–49

based on combined theoretical and numerical studies. For dis-

ordered interacting systems, the random disorder can drive a

dynamic phase transition8,22,50 from a delocalized state to an

MBL phase, where energy eigenstates at finite energy density

become localized. From the quantum information perspec-

tive, energy eigenstates in an MBL phase have suppressed

entanglement entropy satisfying an area law8,17,26,36 scaling

with the subsystems boundary area in contrast to the vol-

ume law scaling expected for an ergodic delocalized state.

As a consequence, the MBL phase is non-ergodic and can

not thermalize11,51,52, which also challenges the fundamen-

tal “eigenstate thermalization hypothesis” (ETH) for quantum

statistical physics53. The MBL state may exhibit quantum or-

der or topological order16,36,43,54–58 at finite temperature as ex-

citations at finite energy density are localized. A phenomeno-

logical study14 further establishes that the MBL phase behaves

like integrable systems, respecting extensive numbers of local

conservation laws 15,20,59. The phase transition from an MBL

phase to a delocalized ergodic phase may be continuous char-

acterized by a jump of the entanglement entropy in the ther-

modynamic limit17, where both entropy and its variance grow

with the system volume at the critical point14,26. Interestingly,

it is conjectured that an MBL phase can also have a continuous

localization-delocalization transition to a new state, where the

delocalized phase is non-ergodic whose volume law entangle-

ment entropy tends to zero as the transition is approached17. It

may be possible to have the MBL phase in multi-component

systems without random disorder60,61. The MBL phase may

be detected experimentally in cold atom systems12,13,18,19,62.

So far, much of the quantitative understanding of MBL

systems are based on numerical exact diagonalization (ED)

studies12,19,21–36,63 of spin and electron systems, where the dy-

namic phase transition between a delocalization phase to an

MBL phase has been demonstrated for different 1D model

systems with spin (or particles) numbers in the range of N =
10−2226,46. There are also some recent developments64–69 us-

ing tensor network and density matrix renormalization group

approaches to study such systems. One of the conceptually

important and unsettled issue is if the mobility edge exists for

microscopic system to separate the low energy localized state

from the higher energy extended states. On the one hand,

these ED studies26,46 have demonstrated the energy density

dependence of the critical random field, consistent with the

existence of the mobility edge. In particular, Luitz et al.46

studied the 1D spin 1/2 Heisenberg chain in a random field

using the shift-inverted spectral transformation method deal-

ing with up to 22 spins, where the finite-size scaling has been

demonstrated with convincing accuracy supporting the exis-

tence of the mobility edge. However, the recent numerical

linked cluster expansion study70 for a thermodynamic system

finds that a higher disorder strength (as the lower bound) is

required to enter the MBL phase than that obtained by ED

studies. The reason for such a discrepancy remains not under-

stood. On the theoretical side, it is not clear32,44,71–73 if some

spatial region with higher energy density may play an impor-

tant role with more extensive wavefunctions, which may melt

the lower energy eigenstates in the system into delocalized

states with increasing the system size. Some insight on this is-

sue may come from the earlier study of interacting many-body

systems with random disorder74–76, which exhibit the fraction-

alized quantum Hall effect. In such a system, we have demon-

strated that low energy states below a mobility edge have topo-

logical order protected by a mobility gap which separates the

low energy localized insulating states from the metallic states

above the mobility edge. These earlier studies suggest that it is

possible to follow the evolution of the low energy eigenstates

in disordered interacting systems to detect if the mobility edge

generally exists for MBL systems.

In this paper, we numerically examine the interplay of

interaction and random disorder field for two-leg spin 1/2
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Heisenberg ladder systems, which stands between 1D and

2D systems40,62, with the latter being much harder to be sys-

tematically studied based on ED method. We identify MBL

states based on the bipartite entanglement entropy scaling,

and the spectral statistics of many-body energy levels. We

first establish the phase transition at a critical random field

strength hc ∼ 8.5 ± 0.5, where all energy eigenstates are

localized beyond that value. Interestingly, the entanglement

entropy shows distinct probability distribution in different

phases, while the transition is associated with the fast growing

of the variance for the entropy with the increase of the sys-

tem size N 26,46. Despite the small system sizes we can access

with the number of spins N = 12− 20, our entropy distribu-

tion matches to the theoretic prediction71 in both delocalized

phase and MBL phase indicating we were able to access uni-

versal characteristics of these different phases. Furthermore,

we show that at weaker h, energy eigenstates with higher en-

ergy density are delocalized while states at lower density are

localized, which defines a mobility edge separating these two

dynamically distinct phases in agreement with earlier results

for 1D spin chain systems26,46. Using the energy resolved en-

tanglement entropy, we observe that the mobility edge moves

to higher energy density with the increase of the random field

strength, which eventually drives the system to the phase with

full MBL where all energy eigenstates are localized.

The remaining of the paper is organized as following: In

Sec. II, we first introduce the two-leg ladder spin-1/2 model

with random fields and briefly discuss the method we use to

study the system. We present the evidence of the MBL phase

determined by the entanglement entropy, fluctuations of the

half system magnetization, and the energy level statistics stud-

ies. In Sec. III, we study the characteristic features of differ-

ent phases and the transition between the delocalized phase

and the MBL phase. We also present the evidence for the mo-

bility edge separating the low energy localized phase from the

higher energy extended states. Finally, in Sec. IV, we summa-

rize our main results and discuss open questions.

II. SPIN MODEL AND TRANSITION TO AN MBL PHASE

We study the spin 1/2 Heisenberg two leg ladder system on

the square lattice with the following Hamiltonian:

H = J
∑

〈i,j〉

~Si · ~Sj −
∑

i

hiS
z
i ,

where the summation 〈i, j〉 runs over all distinct nearest

neighbor bonds with antiferromagnetic coupling J , which is

set as the units of the energy J = 1. The hi is a ran-

dom magnetic field coupling, which distributes uniformly be-

tween window (−h, h)with h as the strength of random fields.

The number of sites of the ladder system can be written as

N = NxNy with Ny = 2 and Nx is the number of sites along

each spin chain.

We perform Lanczos ED calculations to obtain energy

eigenstates around a fixed value E determined by the target

energy density ε (which is the normalized dimensionless en-

ergy) for systems with the number of sites N = 12 − 20 in
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FIG. 1: (Color online) (a) The ratio of entanglement entropy over the

number of system sites S/N for different systems from N = 6×2 to

9× 2 at the energy density ε = 0.5 as a function of random disorder

strength h. Curves for different N approximately cross each other

around a critical hc = 8.5 ± 0.5. (b) The adjacent gap ratio r for

states with energy density ε = 0.5 as a function of h. Here we see

that on small h side, r approaches the Gaussian orthogonal ensem-

ble value (0.5307) representing delocalized states, while at larger h
side, r reaches the Poisson value (2ln2 − 1 ≃ 0.3863) for larger

systems representing localized states. All curves cross around the

critical value hc = 8.0 ± 0.5. (c) The ratio of the fluctuations of

half system magnetization over the number of system sites F/N as

a function of h. Curves for even (odd) Nx approximately cross each

other around hc ∼ 8− 9. The standard error bars for largest system

N = 18 are shown in (a-c), while other data for smaller N have

smaller error bars. Combining above results, we estimate the critical

point is around hc = 8.5 ± 0.5.

the total Sz = 0 sector. Specifically, for each disorder con-

figuration, we first calculate the ground state energy E0 and

the maximum energy Emax, which are used to define the tar-

get energy density ε = (E − E0)/(Emax − E0). Physical

quantities46 at finite energy density including the bipartite en-

tanglement entropy, energy level statistics and bipartite fluc-

tuations of the subsystem magnetization are obtained and av-
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eraged over more than 1000 disorder configurations and 30

energy eigenstates from each configuration near the given en-

ergy density ε. For mobility edge simulations (see Fig. 4(a-

b)), we follow up to 360 lowest energy eigenstates, and obtain

entanglement entropies for each of these eigenstates by per-

forming 1000 disorder configuration average.

The bipartite entanglement entropy has been extensively

used as an effective tool to characterize many-body phases

for such an interacting system8,26,46 We compute the Von

Neumann entanglement entropy of the ladder system from

all eigenvalues of the reduced density matrix ρA as S =
−TrρA ln ρA, by partitioning the system in the middle along

the vertical direction (the lengths for two subsystems A and B

are the integer-parts of Nx/2 and (Nx + 1)/2, respectively).

For an interacting system with weak disorder, the entangle-

ment entropies of higher energy eigenstates are expected to
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FIG. 2: (Color online) (a) The probability density distributions of

the bipartition entanglement entropy P (S) for spin system at en-

ergy density ε = 0.5 with different disorder strengths h = 4,

6, 8 and 10 for N = 6 × 2 and 8 × 2. These results illustrate

that for stronger disorder case, the distribution always has a long

tail into higher S values, while for smaller h the long tail is on

small S side. (b) The probability distributions P (F ) of the vari-

ance F =< (Sz
A)

2 > − < Sz
A >2 (in units of the square of

the Planck constant ~2) of the magnetization of the half system A

for spin system at energy density ε = 0.5 with different disorder

strengths h = 4, 6, 8 and 10 for N = 6× 2 and (b) 8× 2. Error bars

for all data points in (a-b) are comparable to the size of symbols.

follow the volume law and these states are ergodic satisfying

the ETH8,9. This is in contrast to the behavior of the ground

state, where the entanglement entropy follows the area law

(with possibly up to the logarithmic correction depending on

if there are gapless excitations)17. By varying the disorder

strength h, one can detect the possible phase transition from

the behavior of the entanglement entropy26,46. As shown in

Fig. 1(a), we plot the ratio of entanglement entropy over

the number of system sites S/N for different systems from

Nx = 6 to 9 at the energy density ε = 0.5 as a function of

random field strength h. On the smaller h side, we see the ra-

tio S/N increases with system sizes N and approaches a con-

stant indicating the volume law growth of S. With varying h,

all data points approximately cross each other around a critical

value hc ∼ 8.5 ± 0.5. On the larger h side, S/N approaches

zero indicating the low entanglement and non-ergodic behav-

ior where energy eigenstates are localized. The ladder systems

we study here have stronger finite size effect (from the even-

odd effect of Nx) than the 1D spin chain systems, which is the

reason that not all curves cross at the same point in Fig. 1(a).

We further use the level statistics analysis from the ran-

dom matrix theory21,77 to probe the localization-delocalization

characteristics of energy eigenstates. In the delocalized

regime, the level-spacing distribution is described by the

Gaussian orthogonal ensemble (GOE) statistics, which rep-

resents extended levels with level-repulsion between them be-

cause of the overlap of energy eigenstates in real space. In

the localized regime, the level-spacing distribution is deter-

mined by Poisson statistics as wave-functions close in energy

are exponentially localized with no level repulsion between

them78. In the energy spectrum analysis46, we define the en-

ergy gap δn = En − En−1 as the energy difference between

the n-th and (n − 1)-th eigenstates, then the adjacent gap ra-

tio can be defined as rn = min(δn, δn+1)/max(δn, δn+1).
We average the gap ratio r =< rn > over states near the

spectrum center at ε = 0.5 for 30 eigenstates from each

disorder configuration and 1000 random disorder configura-
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FIG. 3: (Color online) (a) The variance (∆S)2 =< S2 > − <
S >2 of the entanglement entropy at energy density ε = 0.5 for

different h. ∆S reaches the peak value at hp smaller than the iden-

tified hc for phase transition. Clearly, hp shifts to higher h with the

increase of N . The error bars are comparable to the size of symbols.
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tions for each disorder strength h. As shown in Fig. 1(b),

we see that at the small h side, r approaches the Gaussian

orthogonal ensemble value (0.5307) representing delocalized

states, while at stronger h side, r reaches the Poisson value

(2ln2− 1 ≃ 0.3863) for larger systems representing the level

statistics of localized states. All curves cross around the criti-

cal value hc ∼ 8.0− 8.5.

We compare the entanglement entropy behavior with the bi-

partite fluctuations F of the subsystem magnetization Sz
A

46,79,

which is defined as F = 〈(Sz
A)

2
〉 − 〈Sz

A〉
2 as shown in

Fig. 1(c). We plot the ratio F/N for different systems from

Nx = 6 to 9 at the energy density ε = 0.5 as a function of ran-

dom field strength h. On the smaller h side, we see that F/N
increases with system sizes N and approaches a constant in-
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FIG. 4: (Color online) The entropy of each energy eigenstate Si

for low energy eigenstates averaged over disorder configurations is

shown as a function of its average energy density. Si/N curves for

different system sizes N = 6× 2, 8× 2 and 10× 2 cross at a criti-

cal energy density εc, which separates the higher energy delocalized

ergodic states from the lower energy MBL states. The error bars for

N = 18 system in (c) are shown, while all other data in (a-c) have

typical error bar smaller than or around the size of symbols.

dicating the volume law growth of F . On the larger h side,

F/N approaches zero indicating the low fluctuations where

energy eigenstates are localized. However, comparing curves

with different N , we observe a larger finite-size effect for F
(from the even-odd effect of Nx). This is due to the fact that

the half system partition for odd Nx will cut through a vertical

bond, which gives rise to larger F at larger h side. Combining

results from Fig. 1(a-c), we find that the ergodic behavior is

established around h < 8 side, while the MBL phase is robust

at h > 9 side, which leads to the estimate of the critical point

for the dynamic phase transition hc = 8.5 ± 0.5. Due to the

stronger finite size effect here and also we only have a small

range of Nx = 6 − 9, we are not attempting to do a finite-

size scaling. Instead, we will focus on the general behavior

of the different phases to explore characteristic features of the

phases and the transition involved here.

III. CHARACTERISTIC FEATURES OF DIFFERENT

PHASES AND PHASE TRANSITION

A. Probability distributions of entanglement entropy and

variance of bipartite magnetization

Now we turn to the study of the probability density distri-

bution of the entropy P (S) for spin system at energy density

ε = 0.5 for different disorder strengths h = 4, 6, 8 and 10
crossing two different phases obtained for ensembles with 30

energy eigenstates (for each disorder configuration) and 1000

disorder configurations for each h. As shown in the Fig. 2(a),

on the small h side, we see that the peak position of the distri-

bution P (S) (which reflects the average of S) moves to the

larger S value with increasing system size N , indicating a

consistency with the volume law for the entropy. Close to the

transition point for h = 6 we find that the distribution P (S)
becomes much broadened while the peak position moves to

the higher S with the increase of N , but the peak height re-

duces at the same time. As we move to the higher h side,

we see that the distribution again becomes sharper, with two

peaks showing for each P (S) curve which may be related to

the non-ergodic character of the localized phase. The second

peak is located at the entropy value S = ln2 indicating the

contribution of the locally entangled spin pairs. Furthermore,

we also see that for the stronger disorder case, the distribution

always has a long tail into higher S values, while for smaller

h the long tail is at the smaller S side. To compare with re-

cent theoretical description of the MBL of 1D system71, we

find that the entropy distribution is very similar to the ones

obtained based on their real space renormalization group sim-

ulations. Specifically, at h = 4 our distribution has a long tail

in small S region for our finite size results, which indicates the

remaining localized states (regions) inside the ergodic phase.

However, with the increase of N , the physics will be domi-

nated by states with larger S and the distribution will become

a delta function. At h = 10, we find the P (S) is peaked

at S = 0 and shows an exponential decay tail on the larger

S side. Furthermore, the P (S) shows weak N dependence,

which will remain broad in the thermodynamic limit charac-
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terizing the MBL phase.

We compare the entanglement entropy behavior with the

bipartite fluctuations F of the subsystem magnetization as

shown in Fig. 2(b). The distribution P (F ) exhibits very sim-

ilar behavior as P (S) for h closer to the phase transition and

in the MBL phase. The similar two-peaks structure is also

clear for P (F ) on the larger h side in the MBL phase. The

only difference worth mentioning is that with weaker disorder

h = 4, the P (F ) demonstrates the normal Gaussian distribu-

tion, which is sharp and near symmetric about the peak.

The variance of the entanglement entropy has been shown

to be an excellent quantity26,71 for identifying the phase tran-

sition from 1D spin chain studies. Here we show the variance

∆S of the entanglement entropy averaged over 1000 disorder

configurations and 30 different energy eigenstates from each

configuration around the energy density ε = 0.5. In agree-

ment with these observations for 1D systems26,46, we find that

the ∆S is small in both small h and large h sides, and demon-

strates a peak for the intermediate h as shown in Fig. 3. We

observe that the peak value of ∆S increases with N , which

may diverge at the transition point. The position of the peak

hp is smaller than the previously identified hc and it shows

a trend of approaching hc with the increase of N . These re-

sults are consistent with the phenomenological theory71 estab-

lished based on the real space renormalization group studies,

which indicate that we are observing intrinsic properties of the

MBL phase and the related phase transition for system sizes

we study. We comment that for the given range of system

sizes we can access, one can not make a definite conclusion

if there is an intermediate regime where the variance of the

entropy may diverge in the thermodynamic limit.

B. Possible existence of mobility edge

We have shown that the disorder can drive a phase transi-

tion, where all states near the center of energy spectrum are

localized. In fact, all other states with different energy density

are also localized, thus we enter the full MBL phase tuned by

h (see Fig. 4(c) as an example). To address the issue if the

mobility edge naturally exists at smaller h < hc side in such

a system separating low energy MBL states from higher en-

ergy delocalized ergodic states, we obtain up to 360 lowest

eigenstates using Lanczos ED. We follow the entropy of each

energy eigenstate Si in the lower energy density regime and

average that over 1000 disorder configurations.

As shown in Fig. 4(a-b) for h = 2 and 4, we iden-

tify that the disorder configuration averaged entropy Si for

the i − th energy eigenstate is a smooth increasing func-

tion of eigen energy Ei or its average energy density εi =<
(Ei − E0)/(Emax − E0) >. The entropy per site Si/N
for different system sizes N = 6 × 2, 8 × 2 and 10 × 2
crosses around a critical energy density εc, which separates

higher energy states with volume-law entropy (ergodic delo-

calized states) from lower energy localized states with Si/N
approaching zero violating the volume law. Here all the data

we show have even Nx = 6, 8 and 10 with reduced finite

size effect. The crossing point determines the mobility edge.

With increasing h, the entropy of the low-lying eigenstate is

reduced and the mobility edge is being pushed to the higher

energy density from εc ∼ 0.075 at h = 2 to εc ∼ 0.1 at h = 4.

As shown in Fig. 4(c), we further move to the stronger disor-

der case, at h = 10, we see that S/N at different energy den-

sity (here we averaged over both disorder configurations and

energy eigenstates for each energy density ε) is always a de-

creasing function with increasing N demonstrating all states

are localized.

IV. SUMMARY AND DISCUSSION

We have identified the disorder driven dynamic phase tran-

sition from ergodic delocalized phase to an MBL non-ergodic

phase for two-leg ladder Heisenberg spin-1/2 systems with

random field disorder. The characteristic distributions of the

entanglement entropy for both the delocalized phase and the

MBL phase agree with the theoretical description for the

MBL71. Furthermore, we show that for weaker h, energy

eigenstates with higher energy density are delocalized, while

states at lower density are localized, which defines a mo-

bility edge separating these two dynamically distinct quan-

tum states in agreement with earlier results for 1D spin chain

systems26,46. On the quantitative side, we find that the Heisen-

berg ladder requires a much higher critical disorder strength

hc ∼ 8.5 ± 0.5 compared to the 1D spin chain model (hc ∼
3.5)46 to enter the full MBL phase. It is crucial to study multi-

leg ladders for such systems to determine if the MBL phase

has very strong critical disorder strength hc or even divergent

hc in the 2D limit, which we leave for a future study.
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