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The transition from weakly damped coherent motion to localization in the context of the spin-
boson model has been the subject of numerous studies with distinct behavior depending on the form
of the phonon-bath spectral density, J (ω) ∝ ωs. Sub-Ohmic (s < 1) and Ohmic (s = 1) spectral
densities show a clear localization transition at zero temperature and zero bias, while for super-
Ohmic (s > 1) spectral densities this transition disappears. In this work, we consider the influence
of the phonon-bath spectral density on the nonequilibrium dynamics of a quantum dot with electron-
phonon interactions described by the extended Holstein model. Using the reduced density matrix
formalism combined with the multi-layer multiconfiguration time-dependent Hartree approach, we
investigate the dynamic response, the time scales for relaxation, as well as the existence of multiple
long-lived solutions as the system-bath coupling changes from the sub- to the super-Ohmic cases.
Bistability is shown to diminish for increasing powers of s similar to the spin-boson case. However,
the physical mechanism and the dependence on the model parameters such as the typical bath
frequency ωc and the polaron shift λ are rather distinct.

Introduction

Quantum dissipation is an omnipresent phenomenon
in diverse physical systems, ranging from quantum in-
formation1 and quantum optics,2 to charge transfer and
impurity relaxation,3,4 superconducting junctions,5 and
more, spanning diverse energy, length and time scales.
Describing the effects of the environment on the dynamic
response of a sub-system requires both the development
of theoretical and computational tools as well as the
development of simplified models necessary to account
for the rich system-bath dynamics and thermodynamic
phase behavior. The minimal model required to capture
the essential physics of quantum dissipation involves a
two-level system coupled to a bosonic bath. Perhaps
the most studied version is the well-known spin-boson
model,6 where it is assumed that the two-level system is
linearly coupled to a harmonic bath. The effects of the
environment are characterized by the properties of the
bath spectral density, assumed to have a power-law de-
pendence at low frequencies, ωs (s ∈ R+), with a cutoff
at higher frquencies determined by a characteristic fre-
quency, ωc. The value of “s” classifies the nature of the
dissipative environment, often referred to as sub-Ohmic
for 0 < s < 1, Ohmic for s = 1 and super-Ohmic for
s > 1.

The dynamics, equilibrium and phase behavior of the
two-level system is governed, amongst other factors, by
the value of “s”. A notable transition from coherent to
incoherent dynamics in the spin-boson model is observed
as the Kondo parameter, η (dimensionless strength of the
system-bath coupling) is increased or when the bath spec-
tral density changes from super-Ohmic to sub-Ohmic.4,7,8

This is followed by a localization transition at high values
of η in the limit ωc → ∞ and low temperature, T → 0,
for the sub-Ohmic and Ohmic cases. Such a transition
disappears for4,6,9–12 s > 1. This rich behavior has been
investigated by a variety of theoretical approaches in-
cluding analytical13–16 and approximate numerical tech-
niques (for an overview, see Refs. 4,6) as well as numer-
ically exact methods such as numerical renormalization
group (NRG) techniques,11,17–19 the multi-configuration‘
time-dependent Hartree (MCTDH) approach and its
multilayer (ML) extension, ML-MCTDH,20–22 and path-
integral methods.4,23–26

The dynamics and steady-state properties of dissipa-
tive quantum systems driven away from equilibrium have
been the center of more recent studies, e.g. for driven
spin-boson-type systems,27 or in the context of inelas-
tic tunneling in quantum point contacts and molecular
junctions.28–37 The canonical model in the latter field
is given by the extended Holstein model,38 in which a
bridge level (occupied or empty, hence two levels) is cou-
pled to a bosonic bath, describing the phonons, and in
addition to two fermionic reservoirs representing the left
and right leads. The latter are held at a different chem-
ical potentials and thus provide the source to drive the
system away from equilibrium. Most studies focused on
steady-state properties utilizing a variety of techniques
to describe, e.g., Franck-Condon blockade,39–43 nega-
tive differential resistance,44–48 or the existence of multi-
ple long-lived solutions, i.e. bistability.49–57 In addition,
novel numerically exact techniques uncovered interest-
ing transient behavior.56,58–61 A promising approach in
this regard is the combination of the reduced density ma-
trix approach62,63 and the multilayer multiconfiguration
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time-dependent Hartree method in second quantized rep-
resentation (ML-MCTDH-SQR),59 used to explore the
timescales and the dynamic “phase diagram” associated
with the bistability.57,59,64,65 The most striking result re-
ported by Wilner et al.64 for the extended Holstein model
with an Ohmic spectral density is that the bistability per-
sists on timescales exceeding the phonon-assisted tunnel-
ing time along the adiabatic potential.

At first glance, the localization transition in the spin-
boson model and the bistability in the nonequilibrium
extended Holstein model may result from similar physics.
However, these phenomena are quite different in nature
and origin. First, localization in the spin-boson model is
a quantum phase transition strictly at T = 0, while bista-
bility is a transient phenomenon persisting over a range
of source-drain bias voltages. Second, the former van-
ishes in the adiabatic limit of a slow bath (ωc → 0) while
the latter thrives in this limit. Finally, in the Ohmic case,
localization due to a degenerate ground state and the cor-
responding dependence of the steady state on the initial
state occurs only for the symmetric spin-boson model,
while bistability in the extended Holstein model spans a
wide range of asymmetries

In this work, we explore the dependence of bistability
on the nature of the phonon spectral density using the
combined ML-MCTDH-SQR and reduced density matrix
approach. We cover both the the sub-Ohmic to super-
Ohmic limits. While localization and bistability show
opposite behavior with respect to ωc, we find similarties
with respect to the boson spectral density. Specifically,
as s is increased above 1 the bistability diminishes. This
transition, however, is not as sharp as the localization
transition.

Model Hamiltonian and Spectral Densities

To describe the effect of different forms of dissipation
on nonequilibrium transport in a quantum system with
electron-phonon interaction, we consider a generic model
Hamiltonian describing, e.g., a quantum dot or a molec-
ular junction:

H = HS +HB + VSB . (1)

Here, HS = εdd
†d is the system Hamiltonian represent-

ing the electronic degrees of freedom of the quantum dot
with creation/annihilation fermionic operators d†/d and
energy εd. For simplicity, we assume that the quantum
dot is represented by a single level. The bath Hamilto-
nian, HB = H`+Hph, is given as a sum of electron (lead)
and phonon baths where

H` =
∑
k∈L,R

εka
†
kak (2)

represents the noninteracting leads Hamiltonian with
fermionic creation/annihilation operators a†k/ak, and
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Figure 1: The phonon spectral density, J (ω) = λπωs
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for various values of s for ωc = 100cm−1and λ = 1000cm−1.

Hph =
∑
j

~ωj
(
b†jbj +

1

2

)
(3)

represents the phonon bath with creation/annihilation
bosonic operators b†j/bj for phonon mode α with energy
~ωj . The coupling between the system and the baths is
given by

VSB =
∑
k∈L,R

(
tkda

†
k + t∗kakd

†
)

+ d†d
∑
j

Mj

(
b†j + bj

)
(4)

where tk is the hopping term between the system and
the leads and Mαis the strength of the electron-phonon
couplings to mode α. The former is determined from the
relation

ΓL,R(ε) = 2π
∑
k∈L,R

|tk|2δ(ε− εk), (5)

with ΓL,R (ε) = a2

b2

√
4b2 − (ε− µL,R)2 used to mimic a

tight-binding chain and µL,R is the chemical potential
of the left/right lead, respectively. We adopt the same
parameters for ΓL,R (ε) used in our recent studies,57,64
namely, a = 0.2eV and b = 1eV. For this choice, Γ =
0.16eV is the maximum value of ΓR (ε) + ΓL (ε). The
electron-phonon couplings, Mα, are determined from the
relation:

J (ω) = π
∑
j

M2
j δ (~ω − ~ωj) (6)

where we follow the notation of Caldeira and Leggett66
for the phonon spectral density:

J (ω) =
π~
2
η
(
ωs/ωs−1

c

)
e−

ω
ωc . (7)

In the above equation, the dimensionless Kondo param-
eter, η = 2λ

~ωcΓ(s) , determines the overall strength of
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the electron-phonon couplings, ωc is the characteristic
phonon bath frequency and Γ (s) is the Euler Gamma
function. For future reference, we introduce an addi-
tional parameter λ =

∑
j

M2
j

~ωj = 1
π

´
dω
ω J(ω), which is

known as the reorganization energy (or polaron shift).
Fig. 1 shows the results for J (ω) for different values of s.

The model introduced above and variants thereof have
been widely used to study nonequilibrium charge trans-
port in nanostructures, such as, for example, semicon-
ductor quantum dots,67 carbon nanotubes68 or molecu-
lar junctions.50,69–73 In the latter case, the phonons may
include, in addition to the phonons of the contacts, the
vibrational degrees of freedom of the molecule. In all
previous studies, however, the spectral density was lim-
ited to the Ohmic case, for which s = 1. The sub-Ohmic
(s < 1) and super-Ohmic (s > 1) limits which play an
important role in the related spin-boson model,4 have not
been studied in transport junctions.

Reduced Density Matrix

The dynamics generated by the above Hamiltonian are
rich and rather complicated to solve. Numerically exact
techniques include real time path integrations43,58,61,74–79
and ML-MCTDH approach.20–22 Both are limited to rel-
atively short times and cannot describe the dynamics on
all relevant timescales. Recently, we have proposed to
combine a numerically exact impurity solver with a re-
duced density matrix formalism.57,62–64,80 Application to
the above model for the Ohmic spectral density uncov-
ered a fascinating behavior with rich dynamics on mul-
tiple timescales and bistability persisting on timescale
longer than the phonon–assisted tunneling times.57,64,65
Here, we adopt this approach to study the influence of
different forms of the phonon spectral density on the dy-
namic response and on the bistability. For completeness,
we briefly review the formalism.

The basic quantity of interest is the reduced density
matrix, σ (t), which is derived from the full density ma-
trix, ρ (t), by the application of the projection operator
P = ρBTrB . Here, the index B refers to the bath de-
grees of freedom or the “irrelevant” part of the full Hamil-
tonian. σ (t) = TrBρ (t) obeys a generalized quantum
master equation, given by:81

i~
∂

∂t
σ (t) = LSσ (t)+ϑ (t)− i

~

ˆ t

0

dτκ (τ)σ (t− τ) . (8)

where LS = [HS , · · · ] is the system’s Liouvillian,

ϑ (t) = TrB

{
LV e−

i
~QLtQρ (0)

}
(9)

depends on the choice of initial conditions and vanishes
for an uncorrelated initial state (which is the case consid-
ered below), i.e., when ρ(0) = σ(0) ⊗ ρB(0), where σ(0)
and ρB(0) are the system and bath initial density matri-
ces, respectively, and Lv = [VSB , · · · ]. We consider two

initial conditions for σ (0), an occupied and unoccupied
dot. We assume a non-correlated initial state forρB(0)

ρB (0) = ρph (0)⊗ ρL` (0)⊗ ρR` (0), (10)

where (β = 1
kBT

is the inverse temperature)

ρ
L/R
` (0) = exp

−β
 ∑
k∈L/R

(
εk − µL/R

)
a†kak

 , (11)

is the initial density matrix for the leads, and

ρph (0) = exp

[
−β

{∑
α

~ωj
(
b†jbj +

1

2

)

+
∑
j

δjMj

(
b†j + bj

)
 (12)

represents the initial density matrix of the phonon bath.
We also consider two different initial conditions for the
phonons, one where δj = 0 in Eq. (12) corresponding to
phonons initially equilibrated with an unoccupied dot,
and another where δj = 1 corresponding to phonons equi-
librated to an occupied dot. More details can be found
in Ref. 57.

The calculations of the memory kernel in Eq. (8), κ (t),
is the tricky part. Formally it is given by

κ (t) = TrB

{
LV e−

i
~QLtQLρB

}
(13)

where Q = 1− P , P = ρB(0)TrB{· · · } and L = [H, · · · ].
A more suitable form for the memory is given in terms
of a Volterra equation of the second type, removing the
complexity of the projected dynamics of Eq. (13):

κ (t) = i~Φ̇ (t)− Φ (t)LS +
i

~

ˆ t

0

dτΦ (t− τ)κ (τ) (14)

with Φ(t) = TrB(LV e−
i
~LtρB). For the present model,

the coherence do not couple to the populations.57 Thus,
only the Φnn,mm elements are required to obtain the pop-
ulations. It can be shown57 that only the dot-lead inter-
actions in LV contributes to these elements:

Φnn,mm(t) =
2

~
TrB

{
ρB 〈m|

∑
k

tkd(t)a†k(t) |m〉

}
..

(15)
Here, |m〉 denotes the electronic state of the quantum
dot, where m can take the values 1 or 0, corresponding
to an occupied or an unoccupied dot, respectively. Pre-
viously, we have shown that Φnn,mm(t) can be expressed
in terms of the sum of the left (ILm(t)) and right (IRm(t))
currents:

eΦnn,mm(t) = ILm(t) + IRm(t), (16)
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Figure 2: Transient dynamics of the average quantum dot population for the Ohmic (left set of panels, s = 1) and sub-Ohmic
case (right set of panels, s = 1/2). The results are shown for all 4 initial conditions: Black and red curves correspond to
unoccupied / occupied dot at phonon initial condition δj = 0, whereas blue and green curves correspond to unoccupied /
occupied atδj = 1, respectively. In all results the cutoff time used to generated the memory kernel is tc = 100fs.

where

IL,Rm (t) = −2e

~
=
∑
k∈L,R

tk〈m|d(t)a†k(t)|m〉, (17)

is the left/right current for an initial occupied (m = 1)
or empty (m = 0) dot, and e is the electron charge.

While the calculation of the memory kernel requires
a solution of the time-dependent left and right currents,
it typically decays on timescales much faster than the
density matrix itself,57,62 and thus is amenable to a nu-
merically exact impurity solvers. For this purpose we
adopt the ML-MCTDH approach20–22 and calculate the
memory up to a cutoff time tc, where tc is large enough
such that the results for the reduced density matrix do
not change for large cutoff times. When suitable, i.e.,
for small electron-phonon couplings,64 we often use the
nonequilibrium Green’s function formalism within the
self-consistent Born approximation to generate the mem-
ory kernel for t < tc.

Sub-Ohmic and Ohmic cases

In Fig. 2 we show the populations dynamics for the
Ohmic (s = 1) and sub-Ohmic

(
s = 1

2

)
cases for vari-

ous values of the reorganization parameter λ and the
phonon frequency ωc. Throughout this work we fix the
electronic parameters: Dot energy εd = 0.25eV, applied
bias-voltage µL = −µR = 0.05eV and zero temperature
(kBT = 0). These parameters were chosen to ensure
the existence of a bistability for the Ohmic case.64 The
results shown for the Ohmic case (left set of panels in
Fig. 2) summarize our previous findings.57,64 In short,
the decay of the population is characterized by three
distinct timescales. At short to intermediate times, the
population dynamics are governed by the system-lead hy-
bridization ~/Γ(as clearly seen for δj = 0, λ = 1000cm−1)

or by ω−1
c (as clearly seen for δj = 1, λ = 1000cm−1).

In addition to the short and intermediate timescales as-
sociated with the separate electronic and phononic de-
grees of freedom, the electron-phonon coupling intro-
duces longer timescales related to the tunneling between
the two charge states, as clearly evident for increasing
values of λ. On timescale longer than this tunneling time,
the population is characterized by two distinct, long-
lived, solutions for large values of λ. This “bistability”
vanishes as the system become less adiabatic (increasing
ωc) or for small polaron shifts (small λ). Readers inter-
ested in a comprehensive discussion of the Ohmic case
are encouraged to consult Ref. 64.

The situation is similar for the sub-Ohmic case (right
set of panels in Fig. 2). All three timescales are clearly
observed even for s = 1

2 . For λ = 1000cm−1 < εd, the
more stable solution is associated with the non-shifted
configuration (δj = 0) and the system relaxes to a single
long-lived state regardless of the choice of initial condi-
tion (δj = 0 or 1). The dynamics at short and intermedi-
ate times are governed by ~/Γ for the non-shifted phonon
bath (δj = 0), since the dot energy εd = 0.25eV is outside
the conduction window (∆µ = 0.1eV) and thus the sys-
tem remains in the uncharged state. This is not the case
for the shifted bath initial preparation (δj = 1). Since
the effective dot energy (ε̃d = εd − 2λ, Ref. 64) is within
the conduction window, we observe a rapid uncharging
decay associated with ~/Γ followed by a slower relaxation
to the stable uncharged configuration along the general-
ized bath mode, characterized by 1/ωc timescale.

As λ increases above εd, the long-time behavior of the
population depends on the choice of the initial phonon
preparation, leading to a bistability (two distinct long
lived solutions). The bistability is rather sensitive to
the characteristic phonon frequency, and can lead to
two steady states solutions in the adiabatic limit, as
ωc → 0.54 As ωc increases the bistability gradually dis-
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Figure 3: Transient dynamics of the average quantum dot population for the super-Ohmic case (s = 2 and s = 3 for the
left and right set of panels, respectively). The results are shown for all 4 initial conditions: Black and red curves correspond
to unoccupied / occupied dot at phonon initial condition δj = 0, whereas blue and green curves correspond to unoccupied /
occupied atδj = 1, respectively. In all results the cutoff time used to generated the memory kernel is tc = 100fs. Converging
the results ωc = 500cm−1, λ = 2000cm−1for s = 2 and ωc = 100cm−1, λ = 2000cm−1for s = 3 is difficult, and thus we only
show the direct ML-MCTDH-SQR to t = tc.

appears. Comparing the sub-Ohmic case to the Ohmic
case, the bistability persists over a wider range of frequen-
cies and polaron shifts for s < 1. This can be explained
qualitatively by looking at the spectral density function
shown in Fig. 1. In the sub-Ohmic case, the bath spec-
trum is shifted to the lower frequency end as compared
with the Ohmic case that has the same characteristic
frequency ωc. Thus, a comparison of the dynamics gen-
erated for the Ohmic case at a particular values of ωc
should be done with the dynamics generated for the sub-
Ohmic case (s = 1/2) for a higher ωc.

To summarize the sub-Ohmic case, we find that the be-
havior is similar to the Ohmic case. The major difference
is observed for the long time relaxation. The sub-Ohmic
case shows a pronounced bistability at larger values of
ωc and a wider range of polaron shifts compared to the
Ohmic case, resulting from the increase in the density of
low frequency modes as s is decreased below 1.

Super-Ohmic case

The trends observed going from the sub-Ohmic case to
the Ohmic case continue smoothly as s is increased above
1. In Fig. 3 we plots the transient population dynamics
for the super-Ohmic case (s = 2 and s = 3) for the same
set of frequencies and polaron shifts shown in Fig. 2. In
two cases, we are unable to converge the results based
on the memory formalism with the given input and thus,
show the direct calculations based on the ML-MCTDH-
SQR approach generated for t < tc = 100fs. Similar to
sub-Ohmic case, for λ = 1000cm−1 the population dy-
namics at short and intermediate times is governed by
~/Γ for the non-shifted phonon bath (δj = 0) and by
the typical phonon frequency for the shifted bath initial

preparation (δj = 1). The major effect associated with
changing s is the change in the characteristic phonon fre-
quency, given by sωc. As s increases above 1, the char-
acteristic frequency increases leading to a rapid decay of
the population at intermediate times, evident in Figs. 2
and 3. Concerning the long time behavior, we find that
the tunneling dynamics are washed out as s increases
above 1 and the bistability is limited to a narrower range
of polaron shifts, which eventually disappears for s ≥ 3
for the range of frequencies studied.

Comparing the behavior of the bistability to the local-
ization transition in the spin-boson model, it is clear that
the origin of the two phenomena is quite different. While
in the spin-boson model localization is a quantum phase
transition, observed strictly at zero temperature and zero
bias, bistability is a dynamical phenomenon observed in
the time-domain. Furthermore, while localization van-
ishes for s > 1, the bistability transitions smoothly across
the Ohmic case. Moreover, the two phenomena differ
and show opposing behavior with respect to the depen-
dence on ωc and to a large extent with respect to the
polaron shift λ. For the latter, the bistability is limited
to a certain window of λ, a window which smoothly nar-
rows down as s increases. Localization in the spin-boson
model persists above a certain value of λ.

A notable feature of the super-Ohmic case is the pro-
nounced oscillations in the population compared to the
over-damped Ohmic and sub-Ohmic behavior, as shown
in the left panels of Fig. 4. This is similar to the coher-
ent dynamics observed for the super-Ohmic case in the
spin-boson model. The period of oscillations increases
as the characteristic frequency of the boson bath de-
creases, which makes the convergence of the memory for-
malism difficult for ωc values between 100 and 500 cm−1

due to the relatively long transient dynamics. As ωc in-
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Figure 4: Left: Dot population in the super-Ohmic case for εd = 0.25eV, λ = 2000cm−1 and ωc = 500cm−1. The results are
shown for all 4 initial conditions: Black and red curves correspond to unoccupied / occupied dot at phonon initial condition
δj = 0, whereas blue and green curves correspond to unoccupied / occupied atδj = 1, respectively. Right: ={α (t)} for different
value of s for ωc = 100cm−1 (upper panel) and ωc = 500cm−1(lower panel).

creases, the coherence is eventually quenched because of
the more efficient energy exchange between the electron
and phonon degrees of freedom, as shown in Fig. 5.
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Figure 5: Coherent to incoherent transition in the super-
Ohmic case s = 2. Shown are results of the dot population for
different characteristic frequencies ωc of the phonon bath as
indicated in the plot and for four different initial condition as
indicated by the different colors. The color code is the same
as in Fig. 4.

To understand this behavior, we propose to examine
the phonon bath autocorrelation function, given by (at
T = 0):

α (t) =
1

~π

ˆ ∞
0

dω J (ω) exp (−iωt) . (18)

Using the spectral density of Eq. (6), we obtain an exact

solution to α (t) of the form:

α (t) =
ηω2

c

2

Γ (1 + s)

(1 + t2ω2
c )

s+1
2

× exp [−i (1 + s) arctan (ωct)] . (19)

In the right panels in Fig. 4 we plot the imaginary part of
α (t) for two values of the frequency and for different val-
ues of s. α (t) shows a transition from a smooth function
of time at small values of s < 1 to an oscillatory function
at larger values of s > 1. The origin of this oscillatory
behavior is in the term exp [i (1 + s) arctan (ωct)] and is
correlated with the under-damped dynamics of the pop-
ulation shown in the left panels of Fig. 4.

A more quantitative picture of the oscillatory behav-
ior emerges by considering the dynamics of the reac-

tion mode 〈Q (t)〉 =
∑
αMα〈b†j(t)+bj(t)〉√∑

α 2M2
α

.65 Despite the fact

that the dynamics of the phonons have been traced out
by considering the reduced density matrix of the system
alone, 〈Q (t)〉 for the non-shifted case (δj = 0) can be
inferred using its equation of motion, resulting in65

〈Q (t)〉 = Q1(t) +Q2(t) (20)

with

Q1(t) = n∞

√
2

α(0)
=
ˆ t

0

α (τ)dτ (21)

Q2(t) =

√
2

α(0)
=
ˆ t

0

δn (τ)α (t− τ) dτ , (22)

where n∞ is the steady state dot population and δn (t) =〈
d† (t) d (t)

〉
− n∞. A similar expression not given here

can be derived for the shifted case (δj = 1) (see ap-
pendix). The first term, Q1, on the right hand side of
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Eq. (20) describes the relaxation of the reaction mode
due to the coupling to the phonon bath in the absence
of coupling to the leads. It can be calculated explicitly
using Eq. (19), resulting in

Q1(t) = n∞

√
2λ

s~ωc

(
cos(s arctan (ωct))

(1 + t2ω2
c )

s
2

− 1

)
,(23)

where the relations 2α(0) = ηω2
cΓ(1 + s),

´∞
0
α(τ)dτ =

−iλ/~ and η = 2λ/(~ωcΓ(s)) were used. The second
term, Q2(t), includes the influence of the coupling to the
leads on the dynamics of the reaction mode. The long-
time limit of the reaction mode is determined by the first
term in Eq. (20), i.e.

lim
t→∞
〈Q(t)〉 = lim

t→∞
Q1(t) = −n∞

√
2λ

~sωc
(24)

In Fig. 6 we plot the dynamics of the reaction mode
for the same parameters used to generate the data in left
set of panels Fig. 4 for both the sub-Ohmic and super-
Ohmic cases. Note that in both figures, we are unable
to converge the results for s = 2 beyond the cutoff time
tc = 100fs (see the discussion above). For s ≤ 1, the
reaction coordinate 〈Q (t)〉 decays monotonically to its
steady state value if it is initially in equilibrium with the
electronic state of the dot (full black and green lines).
The timescale governing this decay can either be purely
phononic, arising from the term Q1(t) with an algebraic
relaxation characteristics given by ∼ (1 + t2ω2

c )−
s
2 , or

associated with the relaxation of the electronic popula-
tion δn (t) arising from the term Q2(t). For s = 1

2 the
decay of 〈Q (t)〉 is significantly slower than that of δn (t)
and thus is determined by the slower phononic dynamics,
while for s = 1 there is no clear time scale separation. In
case of a preparation, where the phonon degrees of free-
dom are initially not in equilibrium with the electronic
state of the dot (full red and blue lines), a more complex
transient dynamics is seen, which involves electronic and
phononic contributions and time scales.

In both cases (s = 1
2 and 1), the dot population as-

sumes for longer times two distinct values depending on
the initial conditions for the phonon bath, i.e. exhibits
bistability, as clearly evident in Fig. 4. The bistability
in the dot populations leads to two solutions for 〈Q (t)〉.
In the long-time limit, the difference between the solu-
tions for 〈Q (t)〉, obtained for shifted and unshifted initial
preparation, is related to the corresponding difference of
the dot population ∆nd by65,82

∆Q = −λ
~

√
2

α (0)
∆nd = −

√
2λ

s~ωc
∆nd. (25)

This relation between ∆nd and ∆Q is only valid in the
steady state and can therefore be used as a consistency
check if the steady state has been reached. For the results
in Fig. 6 it is fulfilled.
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Figure 6: The reaction coordinate 〈Q (t)〉 for several values of
s and for εd = 0.25eV, λ = 2000cm−1 and ωc = 500cm−1 and
temperature T = 0. Black - unoccupied nd (0) = 0 and δj = 0;
Red - occupied nd (0) = 1 and δj = 0; Blue - unoccupied
nd (0) = 0 and δj = 1; Green - occupied nd (0) = 1 and
δj = 1. In addition, the dashed lines depict Q1(t), the part
of 〈Q (t)〉 which describes the relaxation of the reaction mode
due to the coupling to the phonon bath in the absence of
coupling to the leads (see Eq. (21)).

As s is increased above 1 the picture changes qualita-
tively. First, the bistability gradually disappears as dis-
cussed in details above. This implies that 〈Q (t→∞)〉
assumes a unique value regardless of the initial prepara-
tion of the phonons. Second, as clearly evident in Fig. 6,
〈Q (t)〉 shows a pronounced oscillatory behavior corre-
lated with the oscillations observed in the dot population
shown in Fig. 4. Most interestingly, for the unshifted ini-
tial phonon preparation (δj = 0), the oscillation in 〈Q (t)〉
lead to transient values for the reaction coordinate that
are associated with the shifted position, and vice versa.
This “exchange” of positions is also reflected, to a smaller
extent, in the dot population shown in the correspond-
ing panels of Fig. 4. For larger values of s (s > 1), the
bare phonon relaxation time scale ∼ (1 + t2ω2

c )−
s
2 is sig-

nificantly faster than the electronic dynamics δn (t), and
thus the latter dominates the dynamics of the reaction
mode 〈Q(t)〉 for longer times.

Conclusions

In this work we have studied the role of the spectral
density of the phonon bath on the relaxation dynam-
ics and bistability in the nonequilibrium extended Hol-
stein model. To this end, sub-Ohmic, Ohmic and super-
Ohmic spectral densities were considered. The results
show a physically rich behavior, including a transition
from incoherent to oscillatory dynamics and a disappear-
ance of bistability signatures upon increase of the power
s of the spectral density. Some features observed for the
sub- and super-Ohmic cases can be rationalized qualita-
tively by rescaling the characteristic phonon frequency,



8

ωc → sωc. For example, the bistability which is exem-
plified in adiabatic limit ωc → 0, persists over a larger
range of frequencies for sub-Ohmic spectral density while
the opposite is true for the super-Ohmic case. However,
the appearance of a slow algebraic decay for 〈Q (t)〉 in
the sub-Ohmic case as well as the oscillatory behavior of
〈Q (t)〉 in the super-Ohmic case cannot be explained by
simple scaling arguments, but require a more elaborate
analysis in terms of the bath correlation function, α (t)
and are distinct from the Ohmic limit.
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Appendix A: Reaction Coordinate Formal Solution

In this appendix we describe the formal solution of the
reaction coordinate Q (t) for both initial conditions (for
simplicity we set ~ = 1). For the phonon Hamiltonian

Hph =
∑
j

ωj

(
b†jbj +

1

2

)
+ d†d

∑
j

Mj

(
b†j + bj

)
, (A1)

the equation of motion for bj (t) reads

ḃj (t) = −iωjbj − iMjd
†d (A2)

with the formal solution

bj (t) = bj (0) e−iωjt − iMj

ˆ t

0

nd (τ) e−iωj(t−τ)dτ. (A3)

We will define the dimensionless average position of the

phonon mode j with 〈xj (t)〉 =
〈b†j(t)+bj(t)〉√

2
and the cor-

responding reaction coordinate 〈Q (t)〉 =
∑
jMj〈xj〉√∑

jM
2
j

such

that:

〈Q (t)〉 =
<
{∑

jMj 〈bj (t)〉
}

√
2
∑
jM

2
j

. (A4)

Using Eq. (A3) we find

〈Q (t)〉 =

√
2√∑
jM

2
j

∑
j

Mj cosωjt 〈bj (0)〉

−
√

2√∑
jM

2
j

ˆ t

0

〈nd (t)〉
∑
j

M2
j sinωj (t− τ)dτ.

(A5)

The equation above can be re-written in terms of the
bath autocorrelation function given in Eq. (18) using the
relations:∑

j

M2
j e
−iωjt =

1

π

ˆ ∞
0

π
∑
α

M2
j δ (ω − ωj) e−iωtdω

=
1

π

ˆ ∞
0

J (ω) e−iωtdω

= α (t)

and ∑
j

M2
j

ωj
e−iωjt = −i

ˆ t

0

dτα (τ) + λ, (A6)

to reduce the formal solution of 〈Q (t)〉 into

Q (t) =

√
2

α (0)
=
ˆ t

0

δn (τ)α (t− τ) dτ

+

√
2

α (0)
n∞=

´ t
0
α (τ)dτ (A7)

The equation above corresponds to the non-shifted
bath initial condition i.e. 〈bj (0)〉 = 0, while for the
shifted-bath

(
〈bj (0)〉 = −Mj

ωj

)
, the solution reads:

〈Q (t)〉 = −

√
2

α (0)
λ+

√
2

α (0)
<
{
i

ˆ t

0

dτα (τ)

}

+

√
2

α (0)
=
ˆ t

0

δn (τ)α (t− τ) dτ

+

√
2

α (0)
n∞=

´ t
0
α (τ)dτ . (A8)

In the above δn (t) = 〈nd (t)〉 − n∞ with n∞ =
limt→∞ 〈nd (t)〉 and <{...} (={...}) are the real and imag-
inary parts respectively.
One can look at the steady state limit using the fact that
limt→∞

√
2

α(0)=
´ t

0
δn (τ)α (t− τ) dτ → 0 since δn(τ)

and α (τ) approach zero for τ →∞ and
ˆ ∞

0

α (τ) dτ = −iλ (A9)
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to obtain

∆Q = −
√

2

sλωc
λ∆n (A10)

= −
√

2λ

sωc
∆n (A11)

where ∆Q and ∆nd are the steady state difference be-
tween the shifted and the non-shifted phonon bath for
the reaction coordinate and the dot population respec-
tively.
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