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We calculate angle-dependent magnetoresistance oscillations (AMRO) for interlayer transport of
cuprate superconductors in the presence of (π, π) order. The order reconstructs the Fermi surface,
creating magnetic breakdown junctions; we show how such magnetic breakdown effects can be incor-
porated into calculations of interlayer conductivity for this system. We successfully fit experimental
data from an overdoped cuprate using our model, showing that behavior previously attributed to
anisotropic scattering in this material may in fact be due to (π, π) ordering. This work paves the way
for the use of AMRO as a tool to distinguish ordered states that have different ordering wavevectors.
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I. INTRODUCTION

Understanding the nature of broken symmetry phases
in the thermodynamic phase diagram of the cuprates
is a key step toward understanding the origin of high-
temperature superconductivity. For example, the dis-
covery of the pseudogap1 has fueled the search for many
kinds of order2–7, including nematic phases that could
strongly enhance Tc

8. Yet of the broken symmetries
connected to unconventional superconductivity, antifer-
romagnetism remains one of the most important, appear-
ing in cuprate, iron-pnictide, organic, and heavy fermion
materials9–11.

Evidence of Fermi surface reconstruction arising from
broken symmetry order has come from quantum oscilla-
tion measurements in both hole-doped12–14 and electron-
doped15 cuprates at low temperatures and high magnetic
fields, but the nature of the broken symmetry remains a
matter of considerable debate. Antiferromagnetic (π, π)
reconstruction has been proposed for both the hole- and
electron-doped materials15,16, but recent evidence for a
(possibly field-induced) charge density wave17–20 has sug-
gested more complex orders are driving the reconstruc-
tion.

The ability to experimentally differentiate between
these different ordered states is crucial. In this work,
we suggest that interlayer angle-dependent magnetoresis-
tance oscillations (AMRO) can be used to distinguish be-
tween long-range ordered states in the cuprates that have
different ordering wavevectors. Angle-dependent magne-
toresistance is a sensitive probe of the Fermi surface of a
material21–25 and can therefore be used to investigate the
geometry of a reconstructed Fermi surface. The measure-
ment is also sensitive to the energy scale of any (transla-
tional) symmetry-breaking order26. This energy scale is
related to a “magnetic breakdown field,” as we will de-
scribe below. Importantly, these effects on AMRO can
be observed even in materials that do not show quantum
oscillations. Thus, the measurement is useful in systems
in which sample disorder is high, or in which the order

has a small correlation length5,6.

AMRO data from Tl2Ba2CuO6+δ provided the ear-
liest transport evidence for the existence of a three-
dimensional Fermi surface in an overdoped cuprate21.
The temperature evolution of the AMRO is consistent
with a superposition of isotropic and anisotropic scatter-
ing rates about the Fermi surface27, and it was deter-
mined that these do not have the same temperature de-
pendence: the isotropic scattering rate is quadratic with
temperature (as expected of an ordinary Fermi liquid)
while the anisotropic scattering rate is linear (connect-
ing it to the non-Fermi liquid physics of the cuprate
phase diagram). Additionally, the anisotropic scatter-
ing is strongest in the anti-nodal region of the Fermi sur-
face. Therefore, it has been suggested that the anomalous
scattering temperature dependence may be related to
(π, π) fluctuations27–29, possibly originating from antifer-
romagnetism. A similar anomalous scattering has been
observed in overdoped La2−xSrxCuO4 through ARPES
measurements, and has been posited to arise from anti-
ferromagnetic fluctuations in that material30. We show
here that the introduction of (π, π) order on the Fermi
surface of Tl2Ba2CuO6+δ will indeed affect the AMRO
of this system in a similar way to the introduction of
anisotropic scattering.

We demonstrate this connection by simulating the
AMRO of a model cuprate material in the presence of
antiferromagnetic order. The interpretation of AMRO
measurements requires efficient and versatile calculations
of the magnetotransport of a given Fermi surface so that
models can be compared to experimental results. These
calculations are more challenging in the presence of static
order that reconstructs the Fermi surface. We have devel-
oped a general method to perform such calculations for
quasi-two-dimensional (Q2D) materials, based on previ-
ous work in organic metals31. It is both easy to imple-
ment and computationally inexpensive. In Section II we
use this method to calculate the interlayer magnetore-
sistance of a tetragonal Q2D material in the presence of
(π, π) order and including the effects of magnetic break-
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down. In Section III we apply this model to the known
Fermi surface of Tl2Ba2CuO6+δ

21 and show that the tem-
perature dependence of the AMRO can be captured by
this magnetic breakdown model. In Section IV we discuss
the physical consequences of this model and its potential
range of applicability for distinguishing between differ-
ent kinds of broken symmetry order in the cuprates. Our
general method is laid out in detail in Appendix A.

II. AMRO IN THE PRESENCE OF (π, π) ORDER

As a first application of our method, we wish to un-
derstand how the AMRO of the cuprates is affected by
antiferromagnetism. We therefore consider the case of
a Q2D tetragonal material under static (π, π) antiferro-
magnetic order (though the model below can be applied
to any (π, π) order). As shown in Figure 1(a), the original
Brillouin zone of such a material will have a square cross-
section with primitive reciprocal lattice vectors along kx
and ky; we define all azimuthal angles in this paper with
respect to kx. In the presence of (π, π) antiferromagnetic
order, the Brillouin zone is halved in cross-section, re-
sulting in a reconstruction of the Fermi surface as shown
in Figure 1(b,c). This new reconstructed Brillouin zone
will have primitive reciprocal lattice vectors along k′x and
k′y, which are rotated by 45 °with respect to kx and ky.

Quasiparticles traversing the Fermi surface will Bragg
diffract at the reconstructed Brillouin zone boundaries, so
they will travel along three distinct Fermi surface pock-
ets as shown in Figure 1(d). However, in a large mag-
netic field, the quasiparticle path in real space may be
curved sufficiently to avoid Bragg diffraction. This is
known as magnetic breakdown (MB), and can be thought
of as a tunneling in k-space from one pocket to the
next26. The probability to tunnel in this way is given
by p = e−B0/B , where B0 is the breakdown field and is
a material-dependent constant proportional to the gap
in k-space between Fermi surface sections32. At every
instance the quasiparticle path reaches a Brillouin zone
boundary, the quasiparticle may either Bragg diffract or
undergo MB; thus, such points in the quasiparticle path
are known as MB junctions. As can be seen in Fig. 1(d),
the system in question has 8 MB junctions.

We must take the effect of these MB junctions into
account when calculating conductivity. The conductivity
of a Q2D material in a magnetic field can be calculated
using the Shockley tube integral form of the Boltzmann
transport equation33,

σαβ =
e2

4π3~2

m∗

ωc

∫
dkB

∫ 2π

0

vα(ϕ0, kB)dϕ0×∫ ∞
ϕ0

vβ(ϕ, kB)e−(ϕ−ϕ0)/ωcτdϕ

(1)

where ϕ0 is the initial azimuthal position of the quasipar-
ticle and ϕ is its position after some time t has passed34.

kx

ky

kx’ky’ kx’ky’

kx’ky’

FIG. 1. (Color online) Fermi surface reconstruction of a Q2D
material under (π,π) antiferromagnetic order, as viewed along
kz. (a) The Fermi surface (FS) and first Brillouin zone (BZ)
of a Q2D tetragonal material; (b) the reconstructed BZ and
(c) reconstructed FS of the material following the onset of
(π, π) antiferromagnetic order; (d) the repeated-zone view of
the reconstructed FS, illustrating the small cross-sections of
FS that have replaced the unreconstructed cylindrical FS. The
grey line illustrates Bragg diffraction between two magnetic
breakdown junctions at the BZ boundary. The angle ξ is also
defined here; it will be used in our conductivity calculations.

The effective mass of the quasiparticle is represented by
m∗ and the cyclotron frequency is ωc = eB/m∗. The
velocities in Eq. 1 are Fermi velocities.

The vector kB points parallel to the magnetic field and
defines the orbital path of a quasiparticle. We integrate
across all values of its magnitude. For a given magnitude,
the tip of the vector will touch a single quasiparticle orbit
which can be defined by k0

z , the kz-position of the orbital
plane at the center of the Fermi surface (see Figure 2).
The magnetic field’s direction is defined by a polar an-
gle (θ) with respect to kz and an azimuthal angle (φ)
with respect to kx. We can write |kB | = k0

zcos(θ) and
therefore convert our integral over kB to one over k0

z .
Since AMRO is a probe of interlayer conductivity, we

want to calculate σzz. This means we need an expression
for vz, which we can obtain from a symmetry-constrained
model of the Fermi surface. The following equation de-
scribes a Q2D Fermi surface of a layered tetragonal ma-
terial with simple cosine warping along kz

21,35:

EF (kz, ϕ) =
~2k
‖2
F (ϕ)

2m∗
− 2t⊥a

π
cos

(
kzc

2

)
F (ϕ). (2)
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FIG. 2. When a magnetic field is applied to a Q2D ma-
terial, quasiparticles will trace out orbits on the cylindrical
Fermi surface that are perpendicular to the applied field. On
the lowest orbit in this figure, we define the parameters k0z
and kB . On the upper two orbits, we illustrate the fact that
a quasiparticle undergoing Bragg diffraction moves to a dif-
ferent cross-section of the Fermi surface. The dashed lines
represent the Brillouin zone boundaries for the reconstructed
Fermi surface. Note that the azimuthal angle, φ, is defined
with respect to kx of the unreconstructed system.

In the above, t⊥ is the interlayer hopping, while k
‖
F (ϕ)

and F (ϕ) parameterize the Fermi surface in the az-
imuthal cylindrical coordinate. The in-plane and out-
of-plane lattice parameters are denoted by a and c, re-

spectively. Using vz = 1
~
dE(k)
dkz

, we find the interlayer
velocity to be

vz(k, ϕ) =
t⊥ac

π~
sin

(
kzc

2

)
F (ϕ). (3)

.
When a quasiparticle Bragg diffracts at the Brillouin

zone boundary it will have a momentum change given
by a reciprocal lattice vector, so its momentum in the
z-direction will not change. The quasiparticle will jump
to a different “slice” of the Fermi surface31, changing its
value of k0

z but preserving kz (see Figure 2). The amount
by which k0

z changes after Bragg diffraction depends on
which MB junctions are involved; for each pair of MB
junctions, the value of ∆kz can be calculated using purely
geometric means (see Appendix C). Therefore, we can
see that for a given quasiparticle

kz(ϕ) = k0
z − k

‖
F (ϕ) tan(θ) cos(ϕ− φ) +

8∑
j=1

nj(ϕ)∆k(j)
z ,

(4)

where ∆k
(j)
z is the amount by which k0

z changes each
time the quasiparticle Bragg diffracts from the jth MB
junction, and nj is the number of times Bragg diffraction
occurs from that junction31. Note that we have neglected
the influence of the interlayer warping on particle motion;
we assume the interlayer warping is much weaker than
the in-plane warping, so this is a reasonable omission
except for θ ≈ 90° . Setting nj(ϕ0) = 0 we find

σzz =
m∗ cos(θ)

ωc

∫ 2π/c

−2π/c

dk0
z

∫ 2π

0

dϕ0 F (ϕ0) sin

[
ckz(ϕ0)

2

]
∫ ∞
ϕ0

dϕ F (ϕ) sin

[
ckz(ϕ)

2

]
e−(ϕ−ϕ0)/ωcτ

(5)

up to a constant of proportionality.

Performing the integration over k0
z , we arrive at

σzz =
2π

c
× m∗ cos(θ)

ωc

∫ 2π

0

dϕ0 F (ϕ0)

∫ ∞
ϕ0

dϕ F (ϕ)×

cos

−G(ϕ) +
c

2

8∑
j=1

nj(ϕ)∆k(j)
z +G(ϕ0)

 e−(ϕ−ϕ0)/ωcτ

(6)

where we define G(ϕ) ≡ c
2 · k

‖
F (ϕ) tan(θ) cos(ϕ− φ).

We neglect the constant prefactor and use
cos(x) = Re[eix] to write

σzz =
m∗ cos(θ)

ωc
Re

[∫ 2π

0

dϕ0 F (ϕ0)

∫ ∞
ϕ0

dϕ F (ϕ)×

ei[G(ϕ)−G(ϕ0)]e−(ϕ−ϕ0)/ωcτe
−ic
2

8∑
j=1

nj(ϕ)∆k(j)z

 (7)

Note that the value of the integrand changes when-
ever the quasiparticle undergoes Bragg diffraction, due

to the term
∑
nj(ϕ)∆k

(j)
z . In order to evaluate this in-

tegral, we must be able to account for all possible tra-
jectories of each quasiparticle. Falicov and Sievert devel-
oped a method to handle such integrals when calculating
in-plane conductivity36, and recently Nowojewski et al.
adapted their method to be used for AMRO31.

Following the methods of Ref. 31, we will separately
consider the motion of quasiparticles starting in the 8
different segments of the Fermi surface, then sum their
contributions to the conductivity. To do so, we rewrite
the above integral in a vectorized form:

σzz =
m∗ cos(θ)

ωc
·Re

[
λϕ0
· (λinit + Γ(I − Γ)−1λϕ)

]
(8)

In this equation, the dot product with λϕ0
sums up

all the possible initial positions of the quasiparticle, λinit
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describes the initial motion of the quasiparticle up to
an MB junction, and λϕ describes the contribution to
conductivity when the quasiparticle is between MB junc-
tions. For our system, each vector has 8 elements; the
jth element of each vector is defined as follows:

λϕ0 [j] ≡ e−Mj/ωcτ

∫ Mj+1

Mj

dϕ0F (ϕ0)eϕ0/ωcτe−iG(ϕ0)

λϕ[j] ≡ eMj/ωcτ

∫ Mj+1

Mj

dϕF (ϕ)e−ϕ/ωcτeiG(ϕ)

λinit[j] ≡ eMj/ωcτ

∫ Mj+1

ϕ0

dϕF (ϕ)e−ϕ/ωcτeiG(ϕ)

(9)

where

M ≡ π

4
− ξ+

[0, 2ξ,
π

2
,
π

2
+ 2ξ, π, π + 2ξ,

3π

2
,

3π

2
+ 2ξ, 2π]

(10)

is a vector giving the azimuthal position of each MB junc-
tion and the angle ξ is defined in Figure 1(d).

The matrix Γ accounts for the connections between
orbit segments, as well as the exponential damping of
the integrand upon traversing a segment of Fermi surface.
For our system, it is an 8× 8 matrix:

Γ ≡



0 ap 0 0 aqe−
i
2 ∆k(2)z 0 0 0

0 0 bp 0 0 0 0 bqe−
i
2 ∆k(3)z

0 0 0 ap 0 0 aqe−
i
2 ∆k(4)z 0

0 bqe−
i
2 ∆k(5)z 0 0 bp 0 0 0

aqe−
i
2 ∆k(6)z 0 0 0 0 ap 0 0

0 0 0 bqe−
i
2 ∆k(7)z 0 0 bp 0

0 0 aqe−
i
2 ∆k(8)z 0 0 0 0 ap

bp 0 0 0 0 bqe−
i
2 ∆k(1)z 0 0



where q = 1 − p and we have defined a ≡ e−2ξ/ωcτ and
b ≡ e−(π/2−2ξ)/ωcτ . See Appendix A for an explanation
of the elements of Γ.

As a simplification, we have assumed that the gaps
that open in the Fermi surface upon reconstruction are
of a negligible length in k-space: we take the MB junction
that ends one section of the Fermi surface to be in the
same position as the MB junction that begins the next
section.

With σzz in this vectorized form, we can quickly cal-
culate numerical values for the conductivity with varying
θ and φ.

III. APPLICATION TO A CUPRATE
SUPERCONDUCTOR

We are now in a position to apply this model
to a real system. We focus on Tl2Ba2CuO6+δ,
since this is the cuprate that has been studied
the most with AMRO21,27,35,37. As described by
Hussey et al.21 the Fermi surface of Tl2Ba2CuO6+δ

can be parameterized by k
‖
F (ϕ) ≡ k00 + k40 cos(4ϕ) and

F (ϕ) ≡ k21 sin(2ϕ) + k61 sin(6ϕ) + k101 sin(10ϕ). The
coefficients kmn label an expansion of the Fermi surface
in cylindrical harmonics appropriate for the space group
symmetry of this material35.

The AMRO of an unreconstructed Fermi surface can
be produced by setting B0 = 0, as shown in Figure
3 (a-d) for two convenient values of ωcτ . Note that
ωcτ = 0.5 reproduces the experimental AMRO observed
by Hussey et al. at 4.2 K21. The AMRO for a system
with (π, π) antiferromagnetic order is shown in Figure 3
(e-h). This shows many qualitative differences with the
unreconstructed state. The peak at θ = 0 is strongly sup-
pressed in the reconstructed Fermi surface. In addition,
there are more Yamaji angles (peaks in the AMRO) for
low polar angles θ in the unreconstructed state than the
reconstructed state.

The evolution of the AMRO as we go from B0/B ≈ 0 to
B0/B = 10 for ωcτ = 0.5 bears a striking resemblance to
the evolution of the AMRO in Tl2Ba2CuO6+δ with in-
creasing temperature, most notably the disappearance of
the hump at θ = 027,38. This seems surprising given that
Tl2Ba2CuO6+δ is not known to exhibit any static anti-
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FIG. 3. (Color online) Calculated dimensionless resistivity of Tl2Ba2CuO6+δ as a function of the orientation of applied magnetic
field for different values of B0/B and ωcτ . The resistivity in plots (a,b) and (e,f) is scaled up by a factor of 5 relative to the
remaining plots, for visual clarity. (a,c,e,g) Interlayer resistivity as a function of both θ and φ. (b,d,f,h) Interlayer resistivity
as a function of θ for select values of φ; these azimuthal angles were chosen to facilitate comparison to Ref. 21.

ferromagnetic order, though it has been shown to have
strong antiferromagnetic fluctuations39.

We explore the possibility that our AMRO calcula-
tions can capture some of the physics of Tl2Ba2CuO6+δ.
Using the form of σzz above, we have produced simu-
lations of out-of-plane resistivity as a function of angle
using existing data for a sample with Tc = 15 K reported
in Ref. 37. The low-temperature (4.2 K) AMRO of
Tl2Ba2CuO6+δ is well-fit by a simple model with no an-
tiferromagnetic order (B0 = 0), and using this data the

functions k
‖
F (ϕ) and F (ϕ) that describe the Fermi surface

can be fully determined in good agreement with previous
work21,27,35,37. See Appendix D for more information on
our determination of these parameters. We used geomet-

ric methods to solve for ξ and ∆k
(j)
z in this system, as

explained in Appendices B and C respectively. To study
the temperature-dependent AMRO above 4.2 K we al-
lowed only two free parameters: ωcτ and B0. Note that
in contrast to Ref. 37, ωcτ is fixed to be isotropic with
azimuthal angle ϕ. We ran simulations across a large
range of parameter space and used a least-squares fitting
approach to determine the values of ωcτ and B0 at each
temperature. Our best fit to the data is shown in Fig-
ure 4, showing excellent quantitative agreement with the
AMRO of Tl2Ba2CuO6+δ. The temperature dependence
of ωcτ and B0 can be extracted from these simulations,
and these are shown in Figure 5.

As can be seen in Figure 3, more features are appar-
ent in the AMRO when ωcτ is higher, making it eas-
ier to distinguish the effects of changing B0. If ωcτ is

decreased (by lowering magnetic fields, raising tempera-
tures, or lowering sample quality), each quasiparticle will
traverse less of the Fermi surface before it scatters. As
illustrated in Figure 6 of Ref. 40, this causes the ampli-
tude of AMRO to be reduced, which makes an accurate
determination of B0 more difficult. Thus, the error of
our fitting parameters is greater at higher temperatures.
Indeed, Ref. 37 includes AMRO data taken at 90 K and
110 K, but we were not able to accurately determine B0

at those elevated temperatures.

While Ref. 37 reproduced the observed AMRO using
an anisotropic scattering rate, we find good quantita-
tive agreement with the data using a magnetic break-
down model with an isotropic scattering rate. Bragg
scattering at a MB junction mimics the effect of an
anisotropic scattering rate on an unreconstructed Fermi
surface. However, importantly, the magnetic breakdown
model connects specific parts of the Fermi surface in
a single (Bragg) scattering event, while the anisotropic
scattering rate is a broad modulation of the quasiparti-
cle lifetime about the Fermi surface. The similarity of
the two models in reproducing the AMRO suggests that
the apparent anisotropic scattering rate is a symptom of
antiferromagnetism, perhaps involving short-range fluc-
tuations. This could explain the different temperature
dependence of the isotropic and anisotropic components
of the scattering rate observed in Ref. 27.
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FIG. 4. (Color online) Temperature dependence of the in-
terlayer AMRO of overdoped Tl2Ba2CuO6+δ (Tc = 15 K)
at a fixed field of 45 T and a fixed azimuthal direction of
φ = 7°. The solid lines are c-axis magnetoresistivity data,
taken from French et al.37. These data have been normalized
to the zero-field resistivity of the sample at each temperature.
The dashed lines are simulations of AMRO for Tl2Ba2CuO6+δ

under antiferromagnetic order, calculated as described in the
text. When producing these simulations, all the parameters
related to Fermi surface geometry were fixed and the only
parameters allowed to vary with temperature were ωcτ and
B0.

FIG. 5. (Color online) Temperature dependence of a) 1/ωcτ
and b) B0 extracted from fits to data. Error bars are stan-
dard errors extracted from the covariance matrix of the least-
squares fitting at each temperature (see Appendix D).

IV. DISCUSSION

The behavior of ωcτ in Figure 5(a) indicates a nat-
ural (approximately linear) increase in the scattering
rate with temperature. The evolution of B0 may reflect
deeper physics. As shown in Figure 5(b), B0 increases
quickly with temperature, peaking around 45 K. The pa-
rameter B0 is a measure of the probability of Bragg scat-
tering. For a static reconstructed Fermi surface, this is
related to the separation between reconstructed sections,
which is in turn proportional to the bandgap26. There-

fore, under static reconstruction we would expect B0 to
be largest at 0 K and decrease weakly with increasing
temperature26,41. In the presence of antiferromagnetic
fluctuations, similar scattering events might still occur
at points where the reconstructed Brillouin zone inter-
sects the Fermi surface. In this case, B0 will play two
roles: in addition to parameterizing the separation be-
tween sections of Fermi surface, it also reflects the prob-
ability of Bragg scattering within the time/length-scale of
the fluctuations42. Note that in the overdoped cuprates,
there is a known crossover in the transport from Fermi
liquid- to non Fermi liquid-like behavior with increasing
temperature that is thought to be associated with critical
fluctuations43. In this picture, the increase of B0 with
temperature (Figure 5(b)) can be interpreted as an in-
crease in antiferromagnetic fluctuations. As the tempera-
ture rises and antiferromagnetic fluctuations grow, quasi-
particles have a non-zero chance of undergoing Bragg
diffraction when they reach MB junctions, so B0 attains a
non-zero value. At still higher temperatures, the antifer-
romagnetic correlation time is so short that the effect of
Bragg scattering decreases, resulting in a decrease in B0.
The evolution of B0 looks strikingly similar to the evolu-
tion of the imaginary part of the dynamic susceptibility
Imχ (which is a measure of the magnetic scattering) seen
in a number of neutron experiments in cuprate supercon-
ductors; consider, for example, Figure 10 of Ref. 44. We
therefore suggest that the temperature dependence of B0

in Figure 5(b) reflects the effect of antiferromagnetic fluc-
tuations on the magnetotransport.

For the above to be plausible, the antiferromagnetic
fluctuations of the system should be on a long enough
timescale to affect the quasiparticles’ motion about the
Fermi surface: the timescale of an antiferromagnetic
fluctuation should be longer than the time it takes for
a quasiparticle to traverse a section of Fermi surface
from one MB junction to the next. The antiferromag-
netic fluctuations in La2−xSrxCuO4 near optimal doping
have a frequency that is roughly linearly proportional to
temperature45. Taking this as a guide, we estimate that
the timescale of an antiferromagnetic fluctuation will be
of the order τAF ∼ ~

kBT
. Meanwhile, the time for a quasi-

particle to cross the smallest section of Fermi surface be-

tween two MB junctions is given by τQP ∼ 1
ωc
· π/2−2ξ

2π .
Therefore, our condition τAF > τQP is equivalent to

~ωc >
π/2−2ξ

2π · kBT. (11)

For this system the requirement is approximately

ωc
T
> 3.6× 109s−1K−1. (12)

Using m∗ ≈ 5me
46, we find ωc ≈ 1.6 × 1012s−1 at 45

T. Therefore, antiferromagnetic fluctuations could be ex-
pected to affect quasiparticle motion up to T ≈ 400 K,
much higher than the temperature regime studied in this
paper.

The magnetic breakdown picture of the effect of an-
tiferromagnetic fluctuations on AMRO could be sub-
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stantially improved by including a more realistic model
of the MB junctions in a fluctuating system that in-
cludes, for example, a distribution of ordering wavevec-
tors about (π, π)16. Nevertheless, this simple model cap-
tures many of the important features observed in the
temperature-dependent AMRO without the need for a
multi-component scattering with a different nodal and
anti-nodal temperature dependence27,35,37. This model
may also prove useful for understanding further transport
properties of Tl2Ba2CuO6+δ (see Appendix E). More-
over, our results suggest there is a potential link between
B0 and the dynamic susceptibility Imχ. If this connec-
tion can find a sound theoretical basis, it may open the
way for the use of AMRO as an experimental probe of
magnetic scattering.

V. CONCLUSION

We have developed a simple and computationally in-
expensive numerical method to calculate AMRO in lay-
ered two-dimensional materials with (π, π) antiferromag-
netic order. This model can be applied to both hole-
and electron-doped cuprates with an appropriately ad-
justed Fermi surface parameterization for direct com-
parison with experimental data. In addition, our nu-
merical method can easily be applied to states other
than (π, π) ordering, such as the charge-ordered states
recently proposed in underdoped YBa2Cu3O6+δ

6,17,18,20

and HgBa2CuO6+δ
47. We have shown that an an-

tiferromagnetic Fermi surface reconstruction with a
temperature-dependent magnetic breakdown field can fit
the AMRO of Tl2Ba2CuO6+δ, an overdoped compound
with no static order. The agreement between our fits and
the AMRO data suggests that the features attributed to
scattering anisotropy in these systems27,35,37 may in fact
be due to fluctuations of a (π, π) ordering such as anti-
ferromagnetism, and indeed that the MB field, B0, can
potentially be used as an experimental measure of such
fluctuations. This would make AMRO a good comple-
ment to scattering probes of fluctuations, such as neu-
tron scattering and resonant inelastic X-ray scattering.
We propose that future AMRO experiments at higher
magnetic fields and in materials where Imχ has been de-
termined independently by neutron scattering would pro-
vide an instructive comparison to test the validity of this
connection.
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Appendix A: General method for calculating
conductivity with magnetic breakdown

In this Appendix we describe a step-by-step method
to calculate σzz in a Q2D material with magnetic break-
down effects.

1. Consider the full, warped-cylindrical Fermi surface
that would exist were the Fermi surface not recon-
structed. Using existing data or theories, determine
a likely form of this Fermi surface as a function of
kz and ϕ. This may be exactly fixed or it may
contain free parameters to be fitted.

2. Use the Fermi surface to determine vα(k, ϕ) and
vβ(k, ϕ) for the element σαβ in question. Note that
vx and vy are not simply proportional to kx and ky
for a noncircular Fermi surface; see the section on
in-plane transport below.

3. Insert these velocities into the Boltzmann transport
equation as given in Equation 1 of the main text.
Wherever kz appears in the integrand, replace it
with the following function of ϕ:

kz(ϕ) = k0
z − k

‖
F (ϕ) tan(θ) cos(ϕ− φ) +

∑
j

nj(ϕ)∆k(j)
z

(A1)

4. Replace the integral over kB with an integral over
k0
z multiplied by cos(θ), and perform the integra-

tion over k0
z . At this point, it should be possible

to write the Boltzmann transport equation in the
form

σαβ = C1

∫ 2π

0

dϕ0 f1(ϕ0)

∫ ∞
ϕ0

dϕ f2(ϕ)e
C2

∑
j
nj(ϕ)∆k(j)z

(A2)
where f1 and f2 are functions, and C1 and C2 are
constants. Note that C2 will be zero if β = x or y.

5. Determine geometrically where the Fermi surface
will intersect the (reconstructed) Brillouin zone.
These points are the magnetic breakdown junc-
tions. Write a vector, M , giving the azimuthal
position of each junction and ending at the loca-
tion of the first junction plus 2π. Be sure that the
definition of ϕ = 0 for this vector is consistent with
the definition of ϕ = 0 for the Fermi surface warp-
ing. The length of M will be n+ 1, where n is the
number of MB junctions around the Fermi surface.



8

6. Define three vectors of length n as follows:

λϕ0 [j] ≡ e−Mj/ωcτ

∫ Mj+1

Mj

dϕ0 f1(ϕ0)

λϕ[j] ≡ eMj/ωcτ

∫ Mj+1

Mj

dϕ f2(ϕ)

λinit[j] ≡ eMj/ωcτ

∫ Mj+1

ϕ0

dϕ f2(ϕ)

(A3)

7. Define the n × n matrix Γ. Each row (column)
of Γ corresponds to a specific section of the Fermi
surface between two MB junctions. The first row of
Γ corresponds to the section between the first and
second MB junctions, as defined in the vector M ;
the second row corresponds to the section between
the second and third MB junctions; and so on. The
elements in each row are as follows:

Γij =



0 if section i has no connection to section j

aip if section i is connected to section j through magnetic breakdown
(i.e., the quasiparticle on section i goes to section j by following the
full cylindrical Fermi surface)

ai(1− p)eC2∆k(i+1)→j
z if section i is connected to section j through Bragg diffraction

(i.e., the quasiparticle on section i goes to section j by following the
reconstructed Fermi surface)

(A4)

where p = e−B0/Bcos(θ) is the magnetic breakdown
probability, and ai ≡ e−(Mi+1−Mi)/ωcτ . The term
ai accounts for the damping of our integrand as the
quasiparticle traverses the ith section of the Fermi

surface. Note the term ∆k
(i+1)→j
z : after traversing

the ith section of the Fermi surface, the quasiparti-
cle would Bragg diffract from the (i+1)th magnetic

breakdown junction. The terms ∆k
(i+1)→j
z can be

calculated as described in Appendix C below.

8. Using the objects defined above, calculate the con-
ductivity for a given direction of the applied field:

σαβ(θ, φ) = C1 ·Re
[
λϕ0
· (λinit + Γ(I − Γ)−1λϕ)

]
(A5)

Note that the dot product λϕ0
·λinit yields a double

integral over ϕ0 and ϕ and must be evaluated as
such.

Appendix B: Calculating ξ

The angle ξ is defined as shown in Figure 6. If the
Fermi surface were completely cylindrical, it would obey

cos(ξ) =
π

aAFkF

where aAF is the in-plane lattice parameter of the an-
tiferromagnetically ordered system and kF is the Fermi
momentum. We may neglect the interlayer warping of
the Fermi surface, which is relatively weak, but not the
in-plane warping. Therefore, we have the relation

cos(ξ) =
π

aAF (k00 + k40 cos(4ξ))

kx’ky’

FIG. 6. (Color online) The angle ξ is defined with respect
to the reconstructed Fermi surface of Tl2Ba2CuO6+δ. The
Fermi surface is shown in the repeated zone scheme, with the
reconstructed Brillouin zone overlaid.

which can be solved self-consistently for ξ. We know
that aAF =

√
2a. We use a = 0.3866 nm, as given

by Analytis et al.35. We use k00 = 7.30 nm−1 and
k40 = −0.234 nm−1. These are the values found by
French et al. from fitting their 4.2 K AMRO data37

and they are consistent with the results of our fits (see
above). Using these values, we find ξ ≈ 40.18°. Due to
uncertainty in the Fermi surface fits, we cannot calcu-
late ξ with accuracy beyond two significant digits. We
therefore round to ξ = 40° for use in our fits to high-
temperature data.
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Appendix C: Calculating ∆k
(j)
z

As stated in the main text, we can define a vector giv-
ing the azimuthal position of each magnetic breakdown
(MB) junction as follows:

M ≡ π

4
−ξ+[0, 2ξ,

π

2
,
π

2
+2ξ, π, π+2ξ,

3π

2
,

3π

2
+2ξ, 2π]

(C1)
The position of these MB junctions on the (unrecon-
structed) Fermi surface is shown in Figure 7.

= 0

kx’ky’

1
8

6 7

4
5

23

FIG. 7. (Color online) Position of the 8 magnetic breakdown
junctions on the Fermi surface of Tl2Ba2CuO6+δ under (π, π)
order. The reciprocal space axes shown correspond to the
reconstructed Brillouin zone.

To find the values of ∆k
(j)
z , we must know where a

quasiparticle goes when it experiences Bragg diffraction
at a given MB junction. To determine this, we need
only see which MB junctions are connected by reciprocal
lattice vectors of the reconstructed Brillouin zone. They
are the following: 1↔ 6, 2↔ 5, 3↔ 8, 4↔ 7.

An easy way to understand these pairings is to examine
the small Fermi surface orbits that the quasiparticle will
follows if it Bragg diffracts at every junction (see Figure
8).
As stated in the main text, a quasiparticle undergoing

Bragg diffraction in this system will have k
(i)
z = k

(f)
z .

We neglect the weak interlayer warping of the system;
then for a quasiparticle on a particular slice of the Fermi
surface, we can write

kz(ϕ) = k0
z − k

‖
F (ϕ) tan(θ) cos(ϕ− φ). (C2)

This leads to the condition

k0(i)
z − k‖F (ϕi) tan(θ) cos(ϕi − φ) =

k0(f)
z − k‖F (ϕf ) tan(θ) cos(ϕf − φ)

(C3)

and therefore

∆k(i→f)
z = k0(f)

z − k0(i)
z =

tan(θ)[k
‖
F (ϕf ) cos(ϕf−φ)− k‖F (ϕi) cos(ϕi − φ)].

(C4)

Since ϕi and ϕf are given by the vector M , we now have

everything we need to solve for ∆k
(i→f)
z for each possible

Bragg diffraction. For example, if a quasiparticle is going
from MB junction 1 to MB junction 6 we have ϕi = π

4 −ξ
and ϕf = π

4 − ξ + π + 2ξ = 5π
4 + ξ. We can use these to

solve for ∆k
(1→6)
z , which we denote as ∆k

(1)
z for the sake

of brevity.

Appendix D: Parameter fitting and error bars

We would expect the parameters kmn to be constant
with temperature, as they describe the Fermi surface ge-
ometry. Therefore, we can fit these parameters from our
4.2 K data since we do not expect reconstruction and
magnetic breakdown to occur at this temperature. From
band structure calculations48 and from previous AMRO
studies21, we expect this material to have no c-axis dis-
persion along the zone diagonals as well as along the lines
kx = π and ky = π. In order for this to be realized, it
must be the case that 1− k61/k21 + k101/k21 = 049.

We simulated conductivity for a wide swath of parame-
ter space and used a least-squares fitting to data to arrive
at the following: k00 = 7.34 nm−1, k40 = −0.25 nm−1,
k61/k21 = 0.69 (and therefore k101/k21 = −0.31)50

Simultaneously with fitting the Fermi surface geome-
try, we used the 4.2 K data to fit for the misalignment
of the crystal with respect to the magnetic field; see
Analytis et al. for details on the significance and cal-
culation of this misalignment35. We obtained the best
fits to data from Φasym = −0.6°, Θx

asym = −2.5°, and
Θy
asym = −2.8°.
Once we have fit these parameters at 4.2 K, the only

parameters free to fit for the data as a function of tem-
perature are B0 and 1/ωcτ. For each temperature we sim-
ulated conductivity across a broad range of B0 and 1/ωcτ
and used a least-squares fitting to arrive at the following
values for the best fits to data:

T(K) B0(T ) 1/ωcτ

4.2 0† 2.50

14 2.5 2.65

32 6.8 3.06

40 8.1 3.28

50 8.6 3.52

70 7.2 4.26
†We assumed B0 = 0 at 4.2 K in order to perform our fits

for Fermi surface geometry and alignment.

The error bars shown on B0 and 1/ωcτ in the main
text are the standard error of those parameters. At each
temperature, the values of B0 and 1/ωcτ that give the
best fit to data are those for which the sum of squared
error (SSE) between data and simulation is minimized.
We can fit the SSE to a functional form in terms of B0

and 1/ωcτ about that minimum. We use this functional
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FIG. 8. (Color online) Three small Fermi surface pockets are formed when the Fermi surface of Tl2Ba2CuO6+δ is reconstructed
under (π, π) order.

form to approximate the Hessian matrix for these two
parameters, the inverse of which is the covariance matrix,
C. The standard error for each parameter is then simply
given by

√
Cii/(N−2), where N is the number of data-

points we used for the fitting at that temperature (and
2 is the number of parameters we fit). Which diagonal
element of C corresponds to each parameter depends on
how we construct the Hessian matrix.

Appendix E: In-plane transport simulations

In addition to calculating σzz, we can use the
same methods as detailed above to calculate the
in-plane components of the conductivity tensor51.
Neglecting the weak interlayer warping of our

system, we find vx(ϕ) = ~
m∗ k

‖
F (ϕ) cos(ϕ− γ) and

vy(ϕ) = ~
m∗ k

‖
F (ϕ) sin(ϕ− γ). Here γ is the angle be-

tween vF and a vector pointing radially outward towards
the Fermi surface, and it is given by

γ(ϕ) = tan−1

[
∂

∂ϕ
(log kF (ϕ))

]
(E1)

as described in Ref. 52. The procedure is then nearly
identical to that for σzz, though slightly simplified by the

fact that the ∆k
(j)
z terms are not involved in the in-plane

calculations. We can calculate in-plane conductivity ex-
actly, whereas we can only calculate σzz up to a constant
of proportionality since we do not know the value of t⊥.

Rather than calculating the in-plane transport terms
and fitting them to experimental data, we want to see
what predictions we can make for in-plane transport
based on our analysis of the interlayer transport. We
fit the points from Figure 5 in the main text to analyti-
cal functions: a second-order polynomial in temperature
for 1/ωcτ, and a function of the form c1

T e
−c2/T for B0, as

we expect that at higher temperatures B0 must decrease
due to weakening antiferromagnetic correlations.

Using these analytical functions of our temperature-
dependent parameters, we are able to calculate the in-
plane transport of Tl2Ba2CuO6+δ at any temperature–
though such calculations should be interpreted with care
because we are extrapolating to higher temperatures us-
ing information that comes from 50 K and below. We can
compare these calculations to data taken from compara-
ble samples by Mackenzie et al.53, as shown in Figure 9.
Note that the data presented in these figures come from
a sample with Tc of 15 K, the same critical temperature
as the sample whose AMRO data we have analyzed.

Our simulations of in-plane transport are qualitatively
similar to experimental data, though they do not agree
quantitatively, especially the Hall angle and Hall coeffi-
cient. It is important to note that in the magnetic break-
down model, where B0/B plays an important role, we do
not have Drude-like resistivity: ρxy is not directly pro-
portional to the magnetic field. Therefore, we would have
to use Hall data taken at 45 T to truly make a meaning-
ful comparison. We cannot simply lower the magnetic
field strength in our calcuations to match the field at
which data was taken, as we only have information on
B0 for a 45 T field. It has been proposed that antifer-
romagnetism in the cuprates is enhanced by an applied
magnetic field54,55 and therefore we cannot assume that
the value of B0 at lower fields matches that at 45 T.

We show these results not because they definitively
support or contradict the magnetic breakdown model,
but merely in the spirit of sharing the results of our ex-
plorations. Given that we do not know the dependence of
B0 on B, it seems unlikely that such in-plane calculations
can yield strong evidence for or against the suggested
model.
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FIG. 9. (Color online) Simulations of in-plane transport for Tl2Ba2CuO6+δ compared to experimental data taken from Ref. 53.
a) Calculated values for the in-plane resistivity and for the cotangent of the Hall angle in 45 T field plotted versus temperature
(inset: data at 7 T). b) Calculated values of the Hall coefficient as a function of temperature in 45 T field (inset: data at
unspecified field).
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30 J. Chang, M. Månsson, S. Pailhès, T. Claesson, O. J. Lip-
scombe, S. M. Hayden, L. Patthey, O. Tjernberg, and
J. Mesot, Nature Communications 4 (2013).

31 A. Nowojewski, P. Goddard, and S. J. Blundell, Physical
Review B 77, 012402 (2008).

32 Note that in a two-dimensional material, the quasiparticle
faces a larger k-space tunneling barrier when its orbit is
tilted; we therefore write p = e−B0/Bcos(θ) so that B0 itself
has no angular dependence.

33 J. M. Ziman, in Principles of the Theory of Solids (Cam-
bridge University Press, 1972) p. 301.

34 We have defined ϕ ≡ ϕ0 + ϕ′ to rewrite the bounds of
integration as given by Ziman. The slight difference be-
tween this form and that given by Ziman is then merely
the difference of whether one considers the quasiparticle to
be traveling clockwise or counterclockwise about the Fermi
surface.

35 J. G. Analytis, M. Abdel-Jawad, L. Balicas, M. M. J.
French, and N. E. Hussey, Physical Review B 76, 104523
(2007).

36 L. M. Falicov and P. R. Sievert, Physical Review 138, A88
(1965).

37 M. M. J. French, J. G. Analytis, A. Carrington, L. Bali-
cas, and N. E. Hussey, New Journal of Physics 11, 055057
(2009).

38 M. Abdel-Jawad, J. G. Analytis, L. Balicas, A. Carrington,
J. P. H. Charmant, M. M. J. French, and N. E. Hussey,
Physical Review Letters 99, 107002 (2007).

39 M. Le Tacon, M. Minola, D. C. Peets, M. Moretti Sala,
S. Blanco-Canosa, V. Hinkov, R. Liang, D. A. Bonn, W. N.
Hardy, C. T. Lin, T. Schmitt, L. Braicovich, G. Ghir-
inghelli, and B. Keimer, Physical Review B 88, 020501
(2013), arXiv:1303.3947.

40 P. D. Grigoriev, Physical Review B 81, 205122 (2010).
41 J. Fenton and A. J. Schofield, Physical Review Letters 95,

247201 (2005), arXiv:0507245 [cond-mat].
42 The general form of the breakdown probability would be
p = 1 + g(T )(e−B0/Bcos(θ) + 1), where g(T ) parameterizes
the temperature-dependent strength of fluctuations. How-
ever, adding extra parameters in this way does not add
any clarity to our interpretation of the AMRO data.

43 N. E. Hussey, R. A. Cooper, X. Xu, Y. Wang,



13

I. Mouzopoulou, B. Vignolle, and C. Proust, Philosophical
Transactions of the Royal Society of London A: Mathemat-
ical, Physical and Engineering Sciences 369, 1626 (2011).

44 J. Rossat-Mignod, L. P. Regnault, C. Vettier, P. Bourges,
P. Burlet, J. Bossy, J. Y. Henry, and G. Lapertot, Physica
B 180 & 181, 383 (1992).

45 Y. Zha, V. Barzykin, and D. Pines, Physical Review B
54, 7561 (1996), arXiv:9601016 [cond-mat].

46 A. F. Bangura, P. M. C. Rourke, T. M. Benseman, M. Ma-
tusiak, J. R. Cooper, N. E. Hussey, and A. Carrington,
Physical Review B 82, 140501 (2010).

47 W. Tabis, Y. Li, M. Le Tacon, L. Braicovich, A. Kreyssig,
M. Minola, G. Dellea, E. Weschke, M. J. Veit, M. Ra-
mazanoglu, A. I. Goldman, T. Schmitt, G. Ghiringhelli,
N. Barisic, M. K. Chan, C. J. Dorow, G. Yu, X. Zhao,
B. Keimer, and M. Greven, Nature Communications 5,
5875 (2014).

48 D. van der Marel, Physical Review B 60, R765 (1999).
49 Note that only the ratios k61/k21 and k101/k21 are relevant to

our calculations, not the values of these parameters; this is
because we are only calculating the interlayer conductivity
up to a constant of proportionality, and these parameters
do not affect the in-plane conductivity.

50 To be precise, we fit for the unitless parameters k00c and
k40c, then obtained values for k00 and k40 using c = 2.32
nm from Analytis et al.35.

51 A. Nowojewski and S. J. Blundell, Physical Review B 82,
075121 (2010).

52 N. E. Hussey, The European Physical Journal B 31, 495
(2003).

53 A. P. Mackenzie, S. R. Julian, D. C. Sinclair, and C. T.
Lin, Physical Review B 53, 5848 (1996).

54 H.-Y. Kee and D. Podolsky, EPL (Europhysics Letters) 86,
57005 (2009).

55 M. Franz, D. E. Sheehy, and Z. Tesanovic, Physical Review
Letters 88, 257005 (2002).


