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The radiation dynamics of optical emitters can be manipulated by properly designed material 

structures providing high local density of photonic states, a phenomenon often referred to as the 

Purcell effect. Plasmonic nanorod metamaterials with hyperbolic dispersion of electromagnetic 

modes are believed to deliver a significant Purcell enhancement with both a broadband and a non-

resonant nature. Here, we have investigated finite-size resonators formed by nanorod 

metamaterials and shown that the main mechanism of the Purcell effect in such resonators 

originates from the supported hyperbolic modes, which stem from the interacting cylindrical surface 

plasmon modes of the finite number of nanorods forming the resonator. The Purcell factors 

delivered by these resonator modes reach several hundreds, which is up to 5 times larger than those 

in the epsilon-near-zero regime. It is shown that while the Purcell factor delivered by the Fabry–

Pérot modes depends on the resonator size, the decay rate in the epsilon near-zero regime is almost 

insensitive to geometry. The presented analysis shows a possibility to engineer emission properties 

in structured metamaterials, taking into account their internal composition. 
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1. Introduction 

The local density of optical states (LDOS) related to various photonic modes can strongly affect 

quantum dynamics of light-matter interactions [1]. Free-space electromagnetic modes can be 

modified in the vicinity of material structures and, as a result, either a local enhancement or 

reduction of the interaction strength can be achieved. The rate of spontaneous emission in a weak 

light-matter coupling regime, calculated on the basis of the Fermi golden rule, is proportional to the 

LDOS and its change relative to free space is referred to as a Purcell factor [2]. Furthermore, the 

formalism of the Purcell effect can be generalized to higher-order effects, such as spontaneous two-

photon emission [3,4]. The Purcell enhancement in dielectric cavities is typically related to the ratio 

of the quality factor of the resonance to the volume occupied by the resonant mode. Various types 

of photonic cavities can deliver quality (Q) factors as high as 1010 and satisfy the conditions to reach 

the strong coupling regime [5] where the Purcell factor description of decay dynamics breaks down 

[6]. Noble metal (plasmonic) nanostructures provide relatively low quality factors but yield sub-

wavelength optical confinement [7] and, as a result, also efficiently influence spontaneous emission 

[8,9]. This nanoplasmonic approach is extremely beneficial for certain quantum optical applications, 

where improved and designed scattering cross-sections are required to develop functionalities at 

the nanoscale and single-photon levels [10]. The Purcell enhancement in plasmonic nanostructures 

depends significantly on the relative position of the emitters with respect to a metal nanostructure, 

posing serious challenges and limitations for large scale practical implementations [11]. 

Furthermore, the enhancement, based on local plasmonic resonances approach still have a limited 

bandwidth, even though it is much broader than for high-Q optical cavities. 

A qualitatively different approach to decay rate engineering  relies on designing the 

hyperbolic dispersion of modes supported by anisotropic metamaterials, which ensures high 

nonresonant Purcell factors in a broad wavelength range [12]. These metamaterials with extreme 

anisotropy of dielectric permittivity, also known as hyperbolic metamaterials, have recently 
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attracted significant attention due to their unusual electromagnetic properties. Homogenised 

hyperbolic metamaterials were theoretically shown to provide infinitely large LDOS and, as a result, 

are expected to deliver extremely high Purcell enhancements [13]. This diverging LDOS originates 

from the hyperbolic dispersion of modes in uniaxial crystals, having opposite sign of the permittivity 

components in the ordinary and extraordinary directions, perpendicular and parallel to the optical 

axis, respectively. The fundamental limitations for this type of enhancement result from a particular 

metamaterial realisation as composites of finite-length scale components, commonly referred to as 

“meta-atoms”[14], as well as the metamaterials’ nonlocal response [15,16]. The most widely used 

realizations of hyperbolic metamaterials are based on layered metal–dielectric structures [17] or 

vertically aligned nanorod arrays [18]. Hyperbolic metamaterials also served as building blocks for 

optical components with enhanced capabilities, such as hyperbolic cavities [19] and waveguides 

[20], as well as for delivering nonreciprocal effects [21], for Hamiltonian optics-based cavities [22], 

and many others.    

In this work, we analyse emission properties of a radiating dipole embedded inside or in a 

close proximity of a finite-size three-dimensional resonator formed by a nanorod-based hyperbolic 

metamaterial. Taking into account the details of the hyperbolic metamaterial realization as a finite 

number of plasmonic nanorods, we show that the Purcell enhancement originates from Fabry–Pérot 

modes of the resonator formed by a hyperbolic metamaterial. The role of the modes of the 

metamaterial resonators on the Purcell factor was investigated for different resonator sizes, and the 

importance of the emitter’s position within the resonator has been considered. We also 

demonstrate the fast convergence of the Purcell enhancement with the increase of the number of 

nanorods in the array, with a 16x16 nanorod array having a properties of the infinite metamaterial 

slab (infinite number of finite length rods). This enables comparison of the Purcell enhancement 

provided by both finite-sized and infinite structures and separating the impact of the modal 

structure of finite-size resonators. 
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2. Effective medium theory and numerical modeling 

We consider a metamaterial consisting of a square array of plasmonic (Au) nanorods (Fig. 1). This 

basic configuration enables addressing all the relevant effects, with substrate material and 

embedding dielectric material straightforwardly included in numerical modeling. In the first 

approximation, neglecting nonlocal effects [23], the optical response of such a structure can be 

obtained from a homogenization procedure of the nanorod composite [24], representing it as an 

effective uniaxial medium with permittivity tensor ( ), , ,xx xx zzdiagε ε ε ε=  where  and  

are the permittivities for the light polarization perpendicular to and along the nanorod axes, 

respectively (Fig, 1(a, b)). In the frequency range where  and  have opposite signs (Fig. 1(c)), 

extraordinary electromagnetic modes, propagating in such an anisotropic medium, have hyperbolic 

dispersion. For the considered system, this crossing from conventional elliptic to hyperbolic 

dispersion regime occurs at around 520 nm wavelength where the real part of the effective 

permittivity  becomes vanishingly small (Fig. 1(c)). The frequency range around 0 is 

called the epsilon near-zero (ENZ) regime. This ability to support a quasi-static behavior of 

electromagnetic waves (freeze phase) has various intriguing consequences on waves propagation in 

bended structures [25] and in tailoring radiation properties [26]. It should be noted, that ENZ regime 

is usually connected with the strong spatial dispersion effects, since vanishing leading term in the 

permittivity coefficient makes the next term of significant  importance [27].  

The nonlocal (spatial dispersion) behavior of the nanorod metamaterials cannot be 

described in the conventional effective medium theory and has impact on both reflection and 

transmission of the metamaterial as well as emission and nonlinear effects [23].  Electromagnetic 

nonlocalities could be classified as structural, material and collective [28]. While constitutive 

material components of the considered metamaterial may, in principle exhibit collective 

hydrodynamic-type nonlocalities [29], their contribution is small for the geometrical sizes considered 

here. Structural nonlocality due to the retardation effects in the unit cell is much stronger in the case 
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of nanorods metamaterial, requiring modifications in the homogenization approach and the use of 

modified effective medium models [30].  Numerical modelling which considers internal, microscopic 

structure of metamaterial composites, takes the structural nonlocality in the consideration 

automatically without the need of any additional considerations. 

The numerical simulations have been performed using the time domain solver of the CST 

Microwave Studio 2014 package [31]. We used perfect matched layers (PML) boundary and 

additional space was added between the structure and the PMLs in order to prevent evanescent 

waves from interacting with the boundaries. Optical constants for gold were taken from Ref. [32]. 

The subwavelength dipolar emitter was modeled here as a perfect electric conductor (PEC) nanorod 

of length 28 nm and radius 1 nm (Fig, 1(b)). The Purcell factor was calculated through an input 

impedance of a point dipole source. As was previously shown [33, 34], this method is completely 

equivalent to the Green’s function approach, which is widely used in photonics [35].The overall 

number of mesh cells was around 3x106 with mesh density locally adjusted in order to accurately 

represent the source. In order to reach reliable results and to prevent the oscillation of the output 

time signal after the excitation has been turned off, the duration of the simulation is usually 

increased above the interval needed to transmit the excitation pulse.  

The numerical analysis based on the Green function approach enables evaluation of both 

the decay rates which are proportional to the imaginary part of the Green function and the energy 

shift which is proportional to its real part [36]. Similar approach taking into account nonlocal 

response, Lamb shift and linewidth modifications were recently used for layered hyperbolic 

metamaterials [37]. The analysis, reported here, concentrates on Purcell factor evaluation. Since the 

rate enhancement has not shown extremely high values, wavelength shift was neglected for 

emitters.  

3. Results 
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3.1. Hyperbolic metamaterial resonators. 

 We begin with analytical description of the modal structure of finite-size resonators made of 

homogenized hyperbolic metamaterial based on the nanorod assembly. The Purcell factor is 

proportional to the imaginary part of the Green’s function in a medium [1]:  
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where (n,l,m) are integers denoting the eigenmode number of the resonator made of the 

metamaterial, and {TE, TM}σ =  is the mode’s polarization, where TE corresponds to the modes 

with the electric field lying in the xy plane and TM corresponds to the modes with the magnetic field 

in the xy plane. The imaginary part of electromagnetic Green’s functions describes the LDOS and 

does not diverge due to losses in the system if the emitter is placed in lossless dielectric between the 

nanorods. On the other hand, material losses in the nanorods themselves and radiation from the 

resonator into the far-field remove divergence of Eq. 1.1 in the vicinity of the poles. 

The rigorous eigenmode analysis of the anisotropic and lossy rectangular resonator requires 

sophisticated numerical techniques. However, approximate expressions for the eigen frequencies 

and field distributions in the resonator can be derived within an approximate analytical formalism 

[38]. Within this formalism, perfect electric conductor (PEC) boundary conditions are imposed at the 
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If the radiating dipole is situated on the (0,0,z) axis, only the modes with symmetric Ex and Ey field 

distributions with respect to inversions ,x x y y→ − → − can be excited by the dipole and will 

contribute to the Purcell effect.  

In order to obtain mode structure in the remaining z-direction, a slab waveguide is then 

considered which may support TM and TE guided modes confined in z-direction. The propagation 

constant of these modes k⊥ ,(m,l )  satisfies the condition 

    
  
k⊥ ,(m,l ) = kx , m( )

2 + ky , l( )
2 .         (1.3) 

This k⊥ ,(m,l )  propagation constant can be evaluated by finding the modes of a hyperbolic-

metamaterial-slab waveguide in the effective medium approximation [39]. As has been shown in the 

analysis of the metamaterial waveguides [39], and can also be seen from the numerical modeling 

below, this approximation holds for lower-order highly confined modes of sufficiently large 

resonators.  

First, we will consider quasi-TE modes of the resonator. By substituting Eq. (1.2) into the 

dispersion equation Eq. (1.3) for a slab waveguide which is symmetric with the respect to the

z z→ −  inversion, we find two classes of modes with the tangential electric field either symmetric (

0,2,4,...n = ) or antisymmetric ( 1,3,5...n = ) along the z axis, respectively (the index here 

corresponds to the number of zero crossings for a leading field component: electric field for TE and 

magnetic field for TM modes): 
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If the dipole is placed at 0z = , the antisymmetric modes will have the node of the electric field at 

the dipole position and thus cannot be excited and will not contribute to the Purcell effect (Eq. 1). 

When the dipole is shifted from the 0z = , both symmetric and antisymmetric modes will contribute 

to the Purcell factor.  Similarly, using the waveguide dispersion for TM polarized modes, we obtaine  
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In this case, however, the modes are symmetric ( 0,2,4,...n = ) or antisymmetric ( 1,3,5...n = ) with 

respect to the tangential component of the magnetic field, with the electric field having opposite 

symmetry. 

In order to distinguish the mode contributions to the Purcell effect, the spectrum of the 

eigenmodes will be first analyzed assuming vanishing Ohmic losses in the metamaterial. In this 

approximation, following Eq. (1.4), the TE mode eigenfrequencies are limited by 

 
, , ,TE2 2 2 2( ) ( ) ( ) ( )m l n

xx
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satisfying the requirement that the left hand side of Eqs. (1.2, 1.4) should be real-valued. Therefore, 

for any finite frequency range, only a finite number of pairs (m,l) exists that satisfy Eq.(1.6). For each 

(m,l) pair, a finite set of mode numbers n can be found from the solution of Eq.(1.3). Thus, in a finite 

frequency range, only a finite number of eigenmodes (m,l,n) of the metamaterial resonator exists.  

Specifically, for the metamaterial resonator of the square cross-section with Lx=Ly = 900 nm 

and Lz= 350 nm and the effective permittivity as in Fig. 1 (c), the following eigenmodes can be 

excited in the spectral range from 500 to 1500 nm: TE110  at λ=1450 nm, TE130  and TE310  at λ= 780 

nm, and TE330 at λ= 570 nm. It should be noted that while the predicted higher-order modes were 
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observed in the rigorous numerical simulations of the nanorod composite, the fundamental mode in 

the vicinity of 1450 nm has not been observed and occurs at wavelengths larger than 1500 nm (Fig. 

2). This is a known discrepancy [40] related to the fact that the simplified analysis used above works 

worse for the fundamental modes with lower confinement within a resonator, and thus the actual 

frequency of the TE111  mode frequency can deviate substantially from the value predicted by the 

simplified analytical formalism. 

Contrary to TE modes, the eigenfrequencies of TM modes decrease with the increase of m 

and l as can be seen from Eq. (1.5). This property of the hyperbolic resonators has been observed 

both theoretically and experimentally [19], and can be understood from the requirement for the TM 

eigenfrequencies analogous to Eq. (1.6): 
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Since zzε  is negative in the hyperbolic regime, the right-hand-side inequality holds for any frequency 

and m,l. Thus, there exist modes with arbitrary large m,l that satisfy the left-hand-side inequality. 

The number of the supported modes is however limited due to the metamaterial realization as a 

periodic nanorod array. Contrary to the case of the uniform hyperbolic metamaterial, the x and y 

wavevectors should be within the first Brillouin zone of the array, kx,y<π/a, where a is the period of 

the array. Thus, for TM modes, m and l eigenvalues can be 1, 3, 5, and 7 in the case of the 16x16 

nanorod array with the parameters as in Fig. 1. For simplicity, in these analytical calculations we do 

not consider possible coupling between TE and TM modes due to three-dimensional geometrical 

confinement (the numerical modelling include all the effects).  

For each value of m and l there is a number of eigenmodes corresponding to different n. This 

number is finite and increases with m,l. Despite a large number of the TM polarized eigenmodes 

supported by the resonator, many of them have a minor contribution to the overall Purcell factor, 
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since those modes are either characterized by small Q-factors, due to the large damping inside the 

resonator when the losses in metal are considered, or by a small value of x-component of the 

electric field at the dipole’s position, due to the different symmetry properties of the eigenmodes. 

Namely, some of the eigenmodes would have minimum of the x component of the electric field at 

the dipole position and some would have maxima [41]. Moreover, in the vicinity of the ENZ 

frequency, the modes with large values of n are excited. However, these modes have large losses 

and, thus, give little contribution to the overall Purcell effect. It should be noted, however, that 

calculations of the Purcell enhancement for emitters placed in the contact with lossy media, face 

several challenges as the Green’s functions diverge [30]. This problem is usually addressed by 

introducing a depolarization volume (a small lossless cavity) around the emitter [30]. The numerical 

modeling below does not, however, face the above issues, as the emitter is placed in the lossless 

space between actual rods, forming the metamaterial.  

The dependences of the resonant wavelength on the resonator height Lz for three modes 

TE130, TM151, and TM551 are shown in Figure (3a). The higher-order mode TM551 is lower in frequency 

than the lower order mode TM151 as is expected for the hyperbolic resonators. This can be intuitively 

understood considering PEC boundary conditions on the interface perpendicular to the z axis. In this 

case, kz is simplified to 2 2 2/ /z z xx zzk nL c kπ ε ω ε⊥= = −  , where n is an integer. It can be seen 

that for fixed n, the eigenfrequency decreases with increasing k⊥ .  The dependence of the resonant 

wavelength on the resonator width Lx at the fixed resonator length Lz =350 nm is shown in Figure 

(3b). As we can see, the resonant wavelengths of the TM modes decrease with the increase of the 

resonator lateral size. This behavior is evident from Eq. (1.3), since it can be seen that for the fixed 

value of TM
zk  the resonant frequency should increase with increasing Lx. In contrast, the wavelengths 

of the TE modes increase with the increase of the resonator width Lx similar to the case of a 

conventional anisotropic dielectric resonator. 
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3.2. Purcell enhancement due to the hyperbolic resonator modes  

The analytical analysis performed above does not account for either the microscopic 

structure of the metamaterial or the radiation from the resonator. We now compare the effective 

medium analytical description to the results of the numerical modeling in the case of an x-polarized 

dipole placed in the centre of the 16x16 array of Au nanorods (period 60 nm and radius 15 nm) which corresponds to the resonator dimensions 900 nm and 350 nm. We 

have considered real losses in gold for comparison to the analytical model as well as artificial low 

losses (artificially reduced in 10 times) in order to articulate the mode position (Fig. 2). The analytical 

model provides a clear correspondence to the numerical results and the individual eigenmodes can 

be identified. The highest Purcell factor corresponds to the excitation of the TM551 eigenmode in the 

vicinity of 1000 nm.  The Purcell factor near the ENZ frequency range does not have extremely large 

values, as would be expected in the case of an infinitely large metamaterial [30].  

 

3.3. Saturation of the Purcell enhancement in finite size arrays 

The Purcell factor for the electric dipole placed in the centre of the metamaterial resonator was 

numerically calculated for different sizes of the resonator (Fig. 4). Both parallel and perpendicular to 

the nanorods orientations of the emitting dipole were analysed in square and rectangular resonators 

with up to 18 rods in one direction. The obtained dependence of the Purcell factor shows a fast 

convergence with an increasing number of rods in the array. In fact, in the arrays larger than 16x16 

rods (900x900 nm), the Purcell factor approaches the values for the infinite (in x and y directions) 

planar metamaterial slab, so that the Purcell factor for 16x16 and 18x18 arrays is essentially the 

same without the signatures of the resonant modes of the resonator due to the reduced quality 

factor of the modes (Fig. 4(a)). This quality factor reduction in larger systems is the result of 

increased material losses due to the mode spread over larger number of rods. Rectangular nanorod 
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arrays show similarly fast convergence, enabling to state that the behavior of 16x16 nanorod 

structures is extremely close to that of the infinite metamaterial (Fig. 4(a)). In particular, the x-

oriented dipole source which is located in the central part of the array can excite only even modes 

(Fig. 4(a)). It can be seen that for the 2x2 array the highest Purcell factor (around 500) is reached at 

950 nm wavelength (due to the small number of the rods forming the resonator, the identification of 

the mode structure of the resonator is not possible in the effective medium formalism as in Section 

3.1). The highest Purcell factor obtained for the smallest array can be attributed to a small modal 

volume. For larger arrays this mode exhibits a slight shift to longer wavelengths as expected from Eq. 

(1.4), and the Purcell factor decreases up to the value of 200. The Purcell factor for a z-oriented 

dipole is very low but also follows the mode structure of the resonator with the increase of number 

of rods (Fig. 4(b)). The rectangular nanorod arrays provide a Purcell factor of around 200 already for 

2 rows of nanorods (Fig. 4(c)). The contribution of different transverse modes of the rectangular 

array in the Purcell factor is more pronounced for the arrays with smaller number of rows and 

becomes indistinguishable for the arrays with 6 or more rows of rods (Fig. 4 (c), green curve). For all 

considered sizes of the resonators, a Purcell factor of less than 100 is observed in the ENZ regime, at 

around 520 nm wavelength (Fig. 1(c)). As one can see from the consideration of rectangular 

metamaterial resonators, the optical response of the finite-size resonators converges fast to the 

response of the infinitely extended metamaterial slabs.  

3.4. Purcell enhancement dependence on the rods length  

We will now investigate the impact of the resonator height (rod length) on the Purcell factor (Fig. 5). 

In this section, the resonators made of an array of 16x16 rods were considered. For all nanorod 

heights, there is a relatively small peak in the vicinity of the ENZ frequency related to the high modal 

density of bulk plasmon-polariton modes at this frequency [39,42]. The highest observed Purcell 

factor strongly depends on the rod length. Its maximum shifts to longer wavelengths with the 

increase in rod height, in accordance with the frequency shift of the resonator mode (Eq. 1.4). This 
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(TM551) mode has a characteristic field distribution inside the resonator (Fig. 5(b)) with three 

pronounced maxima of the electric field (2 maxima of the magnetic field with one zero-crossing), 

typical of the 2nd  Fabry-Perot TM mode along the rods. Away from the modes of the resonator, the 

electric field has a characteristic cross-shaped form (Fig. 5 (c)) typical for a radiating dipole field 

distribution in a hyperbolic dispersion regime [12]. 

3.5. Purcell enhancement in small hyperbolic resonators. 

If, starting from a single nanorod, the number of rods in the resonator is gradually increased, a 

nontrivial behaviour of the Purcell factor is observed (Fig. 6). The highest Purcell factor is obtained 

neither with a single rod nor in the limit of an infinite number of rods. The optimal structure 

provides a resonant mode with a high LDOS which enhances the decay rate. It can be seen that the 

dipole positioned near the centre of a single nanorod excites the second-order mode n=2 with three 

maxima of the electric field (Fig. 6(b)) at the wavelength of around 855 nm and the fourth mode n=4 

with five field maxima (Fig. 6(c)) at the wavelength of around 610 nm. Adding more nanorods to the 

resonator, and, thus, changing its size and the modal structure, leads to the shift of the resonant 

frequencies in the red spectral range, in accordance with Eq. 1.4. In particular, for the geometry with 

four nanorods, the second mode is excited at a wavelength of ca. 940 nm (Fig. 6(d)) and the fourth 

at a wavelength of ca. 640 nm (Fig. 6(e)). As mentioned above, the dipole located near the middle 

section of the nanorod layer can only couple to even modes. 

3.6. Purcell enhancement dependence on the dipole position. 

In order to understand the average Purcell factor for an ensemble of randomly distributed 

emitters, the position-dependent Purcell factor has been investigated. When the position of the 

emitter is changed along the nanorod length from just outside the metamaterial towards the centre 

of the metamaterial layer, the Purcell factor has four maxima, which correspond to the four lowest 

modes of the resonator (Fig. 7). The odd modes were not excited by the dipole situated at the 
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central point of the array due to symmetry-induced selection rules. It can be seen from the LDOS 

spectrum (Fig. 7(a)) that the efficiency of the excitation of the resonator modes depends on the local 

field strength of a particular mode at the position of the radiating dipole. It can be seen that at 

different dipole position, preferential excitation of the modes TM130 (2 electric field maxima, one 

magnetic field maximum, no magnetic field zero-crossing), TM551 (3 electric field maxima, 2 magnetic 

field maxima, 1 magnetic field zero-crossing), and TM552 (4 electric field maxima, 3 magnetic field 

maxima, 2 magnetic field zero-crossing) occurs at the wavelengths of 1363 nm, 1000 nm and 750 

nm, respectively.  For the shorter wavelength of 600 nm, the electric field is shaped as an inverted 

“V” (Fig. 7(e)), typical to the nonresonant hyperbolic regime. The Purcell factor drops off very quickly 

with increasing the distance between the dipole and the metamaterial surface: dipoles situated 

more than 20 nm away from the interface do not exhibit any significant Purcell enhancement (Fig. 

7). 

 

4. Conclusion 

A comprehensive numerical and analytical analysis of the Purcell enhancement in finite-size nanorod 

metamaterial resonators was performed. Using a nanorod metamaterial with hyperbolic dispersion 

of electromagnetic modes, the resonators with a complex hierarchy of modes can be realized. We 

have shown that the modes of the hyperbolic resonator are responsible for the enhancement of 

spontaneous emission rates of emitters placed inside the resonator. Thus, a controllable Purcell 

enhancement can be achieved in the desired wavelength range by choosing appropriate resonator 

sizes. Detailed analysis of various types of geometrical arrangements of the metamaterial and 

emitter were carried out. The results suggest that finite-size metamaterial resonators with properly 

designed modes outperform infinite metamaterials in terms of radiation efficiency enhancement. It 

was shown that the influence of only 16x16 nanorod array on the dipole emission properties 

converges to that of an infinite metamaterial. Our work can provide guidelines for modeling and 
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optimization of experimental samples. As for an outlook for possible future applications, it is worth 

mentioning nanostructured light-emitting devices with high-speed switching rates, cavities for 

surface plasmon amplification by stimulated emission of radiation (SPASERs), and sensing 

applications. 
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Figure Captions 

Figure 1. (Colour online) (a) Schematic view of the hyperbolic metamaterial resonator with the 

transverse dimensions Lx and Ly. (b) Schematics of the numerical setup. An emitting dipole is 

inserted in the centre of the resonator. (c) The effective permittivity of the metamaterial calculated 

for an infinite array of nanorods with zL = 350 nm, 60 nma = , 15 nmr =  (Au permittivity was 

taken from [32]). 

Figure 2. (Colour online) The comparison of the numerical (red and blue lines) and analytical (green 

and black lines) of the Purcell factor in the case of real losses (solid lines) and reduce losses Im(ε)/10 
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(dashed lines). The metamaterial parameters are as in Fig. 1. The resonator size is 16x16 nanorods 

with  Lx = Ly = 900 nm. 

Figure 3. (Colour online) Dependence of the resonant wavelength of the eigenmodes on (a) zL for 

the fixed Lx = Ly = 900 nm and (b) Lx for fixed Lz   = 350 nm. Error bars indicate the width of the 

resonance.  

Figure 4. (Colour online) The Purcell factor dependence on the number of nanorods in square (a,b) 

and rectangular (c) lattices for an emitting dipole perpendicular (a,c) and parallel (b) to the 

nanorods. The dipole is located in the centre of the array.  

Figure 5. (Colour online) (a) The Purcell factor dependence on the height of the hyperbolic 

metamaterial resonator (16x16 nanorod array, Lx = Ly = 900 nm). (b,c) The electric field ( xE ) 

distributions excited by the dipole positioned at the centre of the resonator with zL = 350 nm, at the 

wavelength of (b) 1000 nm and (c) 600 nm (nonresonant wavelength). 

Figure 6. (Colour online) (a) Comparison of the Purcell factor for different numbers of plasmonic rods 

forming a resonator. Electric fields ( xE ) of the dipole near a single nanorod (b,c) and near four 

nanorod array (d,e) at the wavelengths of 856 nm (b), 611 nm (c), 937 nm (d) and 637 nm (e).  

Figure 7. (Colour online) (a) The Purcell factor dependence on an emitter position inside the 

metamaterial resonator with zL = 350 nm and Lx = Ly = 900 nm. The coordinate z=0 corresponds to 

the edge of the hyperbolic medium. (b-e) The electric field ( xE ) distributions excited by the dipole 

positioned at the 0z =  for the wavelengths of (b) 1363 nm (TM130 mode, 1st Fabry-Perot resonance 

n=0, with 2 electric field maxima, one magnetic field maximum, no magnetic field zero-crossing), (c) 

1000 nm (TM551 mode, 2nd Fabry-Perot resonance n=1 with 3 electric field maxima, 2 magnetic field 

maxima, 1 magnetic field zero-crossing), (d) 750 nm (TM552 mode, 3rd Fabry-Perot resonance n=2 
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with 4 electric field maxima, 3 magnetic field maxima, 2 magnetic field zero-crossing), and (e) 600 

nm (nonresonant wavelength). All other parameters as in Fig. 3. 
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