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Formed through a closed domain magnetic heterostructure on the surface of a 3D topological
insulator, a quantum dot permits a class of quantized interfacial states of a topological origin. We
find that these states exhibit a remarkable, reverse Stark effect in response to an applied electric
field. In particular, those topological states whose energies are within the gap exhibit peculiar
electrical alignments that are opposite to those associated with the conventional quantum-confined
Stark effect, in that the positive (negative) energy states tend to align with (against) the direc-
tion of the field. The phenomenon has unusual implications for the associated optical transitions.
Furthermore, the exotic topological states exhibit polarized spin textures that can be effectively
controlled electrically or optically, opening avenue for potential applications in Dirac material based
spintronics.

PACS numbers: 73.21.La, 73.20.At, 71.70.Ej, 71.15.Rf

I. INTRODUCTION

In systems exhibiting the conventional quantum-
confined Stark effect (QCSE), e.g., a semiconducting
quantum well, an external electrical field shifts the elec-
tronic states in the conduction band to lower energies and
the hole states in the valence band to higher energies1.
As a result, the energy differences between the electronic
and hole states are narrowed, reducing the frequencies
of the permitted photon absorption or emission. In this
paper, we report the intriguing phenomenon of reverse
Stark effect: in topological Dirac materials an applied
electrical field tends to widen the energy differences and
consequently increase the light absorption or emission
frequencies.
Uncovering, understanding, and exploiting exotic

quantum phases are frontier problems in physics2. Re-
cent years have witnessed a great deal of effort in phase
phenomena of certain topological origin3,4. For example,
2D gapless topological phases were predicted and real-
ized at the interface between bulk Bi2Se3 crystal and the
vacuum5, where a change in the Z2 invariant from the
former to the latter occurs. Inducing an energy gap by
breaking the time-reversal symmetry in the vicinity of
a magnetic material can lead to exotic phases of broken
symmetry with dramatic physical consequences4,6 such
as zero-field half-integer quantum Hall effect3, topolog-
ical magnetoelectric effect7, and magnetic monopole8.
Topological effects in gapped Dirac materials are thus
quite intriguing, where topologically protected chiral in-
terfacial states carrying dissipationless currents can arise,
which share the same mechanism as that for the Jackiw-
Rebbi modes9. More recently, it was demonstrated that
tuning the topological behaviors through an electric field
can lead to quantum spin Hall effect, bringing field-effect
topological transistors closer to reality10.
We investigate the response of the topological states in

a confined geometry, e.g., a quantum dot formed on the
surface of a 3D topological insulator via a closed mag-
netic domain heterostructure, to an applied electric field.
The system can be described by the Dirac equation sub-
ject to proper mass confinement. With an inverted mass
profile, a branch of quantized topological edge states can
emerge11. We find that, when an external electric field
is applied, the under-gap topological states exhibit quite
unusual alignments: the positive (negative) energy elec-
tronic states follow (align against) the direction of the
field. As a result, a reverse QCSE occurs in that the
frequencies of the permitted light absorption or emission
increase. Remarkably, these states possess spin textures
of ring-like in-plane polarization, which can be effectively
controlled electrically or optically. We provide an anal-
ysis based on solutions of the Dirac equation to explain
these counterintuitive phenomena. The findings can have
potential applications in Dirac material based optoelec-
tronics and spintronics.
This paper is organized as follows. In Sec. II, we for-

mulate the theoretical model and demonstrate the emer-
gence of quantized topological edge states. In Sec. III, we
investigate the response of the topological edge states to
an external electric field, and present the phenomena of
reverse electric alignments, electrically controllable spin,
and optical transitions. To elaborate on the practical
significance of these phenomena, in Sec. IV, we discuss
feasible experimental schemes and potential applications.

II. HAMILTONIAN AND QUANTIZED

TOPOLOGICAL STATES

Consider a dot geometry formed on the surface of a
3D TI through a nanoscale magnetic heterostructure, as
schematically shown in Fig. 1(a). For low energies, the
system is described by the following 2D Dirac Hamilto-
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FIG. 1. (Color online). (a) Schematic illustration of a quan-
tum dot formed on the surface of a 3D topological insulator
through a closed magnetic domain heterostructure of ferro-
magnetic insulators (e.g., EuS). (b) Schematic energy diagram
of the dot system with mass confinement for zero applied field
(R: dot radius; M1 andM2: dimensionless masses of the inner
and outer regions, respectively). (c) Energy spectra of the dot
structure in (b) as a function of M1 for fixed M2 = 10, where
the blue curves denote the normal states and the black dash
lines specify the insulating gap boundaries defined by M1.
The emergent edge states through a topological mechanism
are divided into the under-gap and over-gap ones, denoted by
the red and green curves, respectively. (d) Sectional view of
the density distributions of the lowest positive energy states
for M1 = ∓2 as indicated by the red and blue dots in (c). The
red and blue curves are for the topological and normal states,
respectively. Arrows denote the local spin orientation in the
Sx − Sz plane. The dashed/dot-dashed lines correspond to
the case of hard-wall confinement, i.e., M2 → +∞.

nian4,12:

Ĥ = vF σ̂· p̂− eϕ+M(r)σ̂z , (1)

where vF is the Fermi velocity, σ̂ is the vector of Pauli
matrices, p = (px, py, 0), r = (x, y, 0), the potential ϕ
comes from the applied electric field E = −∇ϕ, and
−e < 0 is the charge of an electron. The position depen-
dent “mass” term M is responsible for the confinement
through a time-reversal symmetry breaking mechanism.
For simplicity, we assume that the confined region is cir-
cularly symmetric with potential jumps at the boundary:

M(r) = M1Θ(R− r) +M2Θ(r −R),

where R is the dot radius, as shown in Fig. 1(b), the
corresponding energy diagram for the confinement. A
constant electric field is applied in the x direction: E =
E0ex. In the polar coordinates, the Hamiltonian can be
written as Ĥ = Ĥ0 + Ĥ1, where

Ĥ0 =

(

M L̂−

L̂+ −M

)

, Ĥ1 = eE0r cos θ, (2)

and

L̂± = −i~vF e±iθ

(

∂r ± i
∂θ
r

)

.

For zero field (E0 = 0), the z component of the total

angular momentum, Ĵz = −i~∂θ + (~/2)σ̂z, commutes

with Ĥ . As a result, the eigenstates take on the following
general form13:

〈r|ν〉 = ψν(r, θ) =
1√
Nν

exp(ilθ)

(

fl(κνr)
iξνfl+1(κνr)e

iθ

)

,

(3)
where

ξν = ~vFκν/(ǫν +M),

κν =
√

ǫ2ν −M2/~vF ,

and the radial distribution function is fl(κνr) = Jl(κνr)

for r < R, and fl = CH(1)
l otherwise (Jl and H

(1)
l are

respectively the Bessel and the Hankel functions of the
first kind). Introducing the compact index ν = [τ, ln], we
can use the integers l and n to specify the orbital angu-
lar momentum and the discrete bound states due to the
radial confinement, respectively, and τ = ±1 to denote
the sign of the bound states energies. The eigenvalues
ǫν = εν~vF /R can be determined by imposing the con-
tinuity of the wavefunction ψν(r, θ) at r = R, and the
associated unknown coefficients can be calculated using

C = Jl(
√

ǫ2ν −M2
1R/~vF )/H

(1)
l (

√

ǫ2ν −M2
2R/~vF ),

Nν = 2π

∫ ∞

0

r
[

|fl(κνr)|2 + |ξνfl+1(κνr)|2
]

dr = R2A2
ν .

Figure 1(c) shows, for the zero field case, the depen-
dence of the eigenenergies on the inner region mass (in
units of energy) M1 = M1~vF /R for one fixed value of
the outer region mass M2 = 10~vF /R. As M1 changes
from positive to negative (in the sense that a sign change
in the mass occurs between the inner and outer domains,
i.e., M1M2 < 0), a class of new electronic states arise,
which are localized at the dot edge. The mechanism be-
hind the formation of these edge states is the Jackiw-
Rebbi modes, which are protected by topological changes
due to a sign change in the band masses between the two
sides of a boundary. The edge states are quantized ver-
sion of the modes (henceforth the term quantized Jackiw-

Rebbi states). For the configuration shown in Fig. 1(a),
it is thus possible to engineer quantum (electronic) states
topologically by tuning the sign of M1 for a fixed M2

value, as demonstrated in Fig. 1(c). It is remarkable that
the emergent topological states have special spin polar-
ization and carry a dissipationless current. Along with
the definition of the spin operator Ŝ = ~/2(σ̂y,−σ̂x, σ̂z),
we show in Fig. 1(d) the density distribution and the
spin textures of a representative topological state [one
marked by the red dot in Fig. 1(c)]. For comparison,
we also display a normal state marked by the blue dot
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in Fig. 1(c), which is localized within the inner dot do-
main and exhibits conventional spin polarization due to
the given inner region mass. Our goal is to study and
understand the response of these quantized topological
states to an external electric field.

III. RESULTS

Say the external electric field is along the x direction.
Due to lack of a circular symmetry in Ĥ, the eigenstates
and eigenenergies can be calculated numerically through
an expansion of the state vector: |τ, n〉 =

∑

ν cν |ν〉, in
terms of the eigenstates |ν〉 of the circularly symmetric
case (E0 = 0), where cν ’s are the expanding coefficients.
Note that the particle-hole symmetry (i.e., symmetry be-
tween the positive and negative energies) is preserved
even in the presence of an external electric field14. This
can be seen by transforming Ĥ in the Hamiltonian with
ϕ = −E0x to Ĥ ′ = UĤU † = −Ĥ through the unitary
transformation Û = σ̂xRx, with Rx denoting the reflec-
tion operation with respect to x = 0, provided that the
confinement potential M(r) is an even function of x. For
the disk geometry considered, the resulting bounded en-
ergies occur in symmetric pairs with respect to the zero
energy line. For simplicity, we adopt the hard-wall con-
finement to explicitly generate a set of complete orthog-
onal basis {ǫν, |ν〉} and then determine the bound states
{En, |τ, n〉} for a given electric field E0 through numer-
ical diagonalization of the matrix Hamiltonian [Hµν ] of
elements

Hµν = δµνǫν + 〈µ|Ĥ1|ν〉.

For convenience, we use the dimensionless parameter
λ = E0R|e|/(~vF/R) to characterize the applied elec-
tric field strength and set M2 to be +∞. The mass
potential inside is set as M1 = ±2~vF/R, which charac-
terizes the normal and topological quantum dot systems,
respectively. We use a basis of size about 800 to calculate
approximately 50 pairs of bound states with a maximum
convergence accuracy of 10−6 for any λ within the range
of [−5, 5].

A. Reverse electric alignments

The bound-state energies as a function of the dimen-
sionless electric field strength λ are shown in Figs. 2(a)
and 2(b) for the normal (M1 = 2~vF /R) and the topo-
logical (M1 = −2~vF /R) cases, respectively. As ex-
pected, for both cases, the spectra exhibit the particle-
hole symmetry. In addition, there is a Stark shift be-
tween levels that have approximate equal energies (quasi-
degeneracy), and a stronger field generates a larger shift.
A striking phenomenon is that, as λ is increased, the
dependence of the under-gap topological bound-state en-
ergies on λ (the red curves) exhibits a pattern that is
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FIG. 2. (Color online) (a,b) Dependence of the bound state
energies on the applied electric field strength λ for M1 = ±2,
respectively. (c-e) Sectional view of the evolution of the nor-
mal electronic states [triangles and circles in (a)] for λ =
−2.5, 0, 2.5, respectively. (f-h) Similar to (c-e) but for the
topological electronic states indicated in (b) and their adja-
cent over-gap topological bound states [green (gray) dashed
lines]. In (c-h), all the probability density distributions of the
indicated electronic states are displaced with solid horizontal
lines defining 〈n, τ |τ, n〉 = 0 for each curve, while those of the
negative energy electronic states are rescaled by −1.

squarely opposite to those for the normal bound states
[blue curves, Figs. 2(a) and 2(b)] and for the over-gap
topological bound states [green curves, Fig. 2(b)]. We
note that the under-gap topological states are in fact
the QAHE (quantized anomalous Hall effect) states with
the absolute values of energies less than |M1| that de-
fines a basic insulating gap for the inner region of the
dot. In spite of the fact that these states originate from
the same topological mechanism as and share similar
edge-localized density distributions with other topolog-
ical bound states, the effects of an applied electric field
can be quite different. This can be further seen from
Figs. 2(c-h), where the responses of the corresponding
electronic states to the external electric field are shown.
For the normal bound states [thick solid lines, Figs. 2(c-
e)] and over-gap topological bound states [dashed green
lines, Figs. 2(f-h)], we observe the usual alignment be-
havior: the positive energy electronic states move against
the direction of the applied field while the negative en-
ergy states move towards the direction of the field. The
under-gap topological bound states [thick solid black
lines, Figs. 2(f-h)], however, follow the opposite pattern,
which is consistent with the behavior observed from the
energy spectrum.
To understand the abnormal electric response behav-

ior exhibited by the under-gap topological bound states,
we develop a perturbation analysis by treating λ as a
small parameter. From the standard time-independent
nondegenerate perturbation theory15, we can calculate
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the perturbed energy for a given unperturbed bound
state |ν〉 up to second order in λ through the expansion

Eν = E
(0)
µ +λE

(1)
ν +λ2E

(2)
ν . We obtain the corresponding

corrections (expressed in dimensionless form):

E(0)
ν = 〈ν|Ĥ0|ν〉 = εν , λE

(1)
ν = Hνν

1 ,

and

λE(2)
ν =

∑

µ6=ν

|Hµν
1 |2

εν − εµ
, (4)

where the matrix element Hµν
1 is given by

Hµν
1 ≡ λ〈µ|ρ cos θ|ν〉 = λπ [δl,l′−1 + δl,l′+1]A

−1
µ A−1

ν ×
∫ 1

0

ρ2
[

J∗
l′(kµρ)Jl(kνρ) + ξ∗µξνJ

∗
l′+1(kµρ)Jl+1(kνρ)

]

dρ,

and ρ ≡ r/R, kν ≡ Rκν . We see that Hνν
1 = 0 and

hence the first order energy correction E
(1)
ν vanishes. To

analyze the second order effect and relate it to the nu-
merical results, we focus on the lowest (highest) posi-
tive (negative) unperturbed electronic state, i.e., |1, 01〉
(| − 1,−11〉). From

E(2)
ν =

∑

µ6=ν

|〈µ|ρ cos θ|ν〉|2
εν − εµ

,

we can conclude that the leading term is restricted
to two nearest-neighbor states in the energy domain
with the angular momentum difference ±1 relative to
the given state |ν〉, e.g., for |ν〉 = |1, 01〉, |µ〉 ∈
{| − 1,−11〉, |1,±11〉|ε−1,−11 < 0 < εν < ε1,±11}. As a
result, we can calculate the second order correction to
the lowest positive bound-state energy using the approx-
imation

E(2)
ν = π

[ |Iµ1ν |2
εν − εµ1

− |Iµ2ν |2
εµ2

− εν

]

, (5)

where

Iµ1ν =
1

Aµ1
Aν

∫ 1

0

ρ2F1(ρ)dρ,

Iµ2ν =
1

Aµ2
Aν

∫ 1

0

ρ2F2(ρ)dρ,

F1(x) ≡ J∗
−1(kµ1

x)J0(kνx) + ξ∗µ1
ξνJ

∗
0 (kµ1

x)J1(kνx),

F2(x) ≡ J∗
±1(kµ2

x)J0(kνx) + ξ∗µ2
ξνJ

∗
±1+1(kµ2

x)J1(kνx),

the sub-indices µ1 = [−1,−11], ν = [1, 01] and µ2 =
[1,±11] denote the relevant states, and the corresponding
energies satisfy the relation εµ1

= −εν < 0 < εν < εµ2
.

Specifically, for the normal case (M1 = 2~vF /R), we
have µ2 = [1, 11], M1 < εν = −εµ1

. εµ2
and, hence,

(εµ2
− εν) ≪ (εν − εµ1

) = 2εν,

ξ∗µ1
ξν = −1

ξ∗µ2
ξν ≪ 1.

Using these relations, we obtain

|Iµ2ν | ∼ 2|Iµ1ν |.

It is thus straightforward to conclude E
(2)
ν < 0 and, con-

sequently, a decreasing energy-field strength relation. For
the topological case of M1 = −2~vF /R, we see that the
states |µ1〉 and |ν〉 are the highest negative and the lowest
positive under-gap topological states, respectively, while
the state |µ2〉 = |1,−11〉 is an adjacent positive over-gap
normal state. Finally, we have

(εµ2
− εν) > (εν − εµ1

),

|Iµ2ν | ∼ |Iµ1ν |/3,

leading to E
(2)
ν > 0 and hence a reverse dependence of

the energies on the strength of the applied field.

B. Optical transition and spin control

The phenomenon of reverse electric field alignments
for the under-gap topological bound states and our per-
turbation analysis suggest the occurrence of abnormal
QCSE in our mass confined Dirac system, with poten-
tial applications in Dirac material-based optoelectronic
and spintronic devices. As a concrete demonstration, we
calculate the electric field dependent optical absorption
intensity α between the highest negative |g〉 and the low-
est positive |f〉 energy states, which is determined by
dipole matrix element dgf as

α ∝ |v · dgf |2 , (6)

where

dgf =
ie~vF
Ef − Eg

〈g|σ̂|f〉,

and v = (ex + ey)/
√
2, the polarization vector of the

incident light16,17.
Figure 3 shows the calculated absorption spectra for

the normal (blue dots) and topological (red dots) cases,
where the sizes of the dots are scaled by the values of
the corresponding optical absorption intensity. We see
that, in contrast to the normal case where increasing the
electric field strength reduces the transition energies and
hence the optical absorption frequencies as with conven-
tional QCSE18, the under-gap topological states generate
a small electric field modulated optical absorption rate
but, within a certain range of the field strength, lead to
an opposite dependence of the transition energy on the
field strength.
A remarkable phenomenon is that the spin texture

of the topological states [c.f., Fig. 1(d)] renders possi-
ble control of spin (and hence the associated magnetic
properties) through modulation of the electrical field. To
demonstrate this, we calculate the expectation values of
the in-plane spin for the topological states,

〈Sx,y〉 = ±~/2〈j|σ̂y,x|j〉
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FIG. 3. (Color online) Dipole-induced optical transition rate
between states |g〉 and |f〉 as a function of the applied electric
field strength λ and the transition energy ∆E ≡ Ef − Eg =
δ~vF /R, where the blue and red dots are for the normal
(M1 = 2~vF /R) and topological (M1 = −2~vF /R) cases,
respectively, with the dot size being proportional to the opti-
cal absorption intensity α.

for j = g, f . Figure 4(a) shows the dependence of 〈Sx,y〉
on the electric field strength λ, where the dashed and
solid lines are for the states |g〉 and |f〉, respectively, and
the results for the normal states are included in the in-
set. Compared with the normal states, the topological
states have the intriguing feature that the applied in-
plane polarized electric field can modulate the in-plane
spins effectively, which is highly desired in spintronics ap-
plications. This feature can be further seen in Figs. 4(b)
and 4(c), where the evolutions of the spin texture of the
state |f〉 (i.e., the lowest positive energy state) under the
applied field in both cases are shown, with the middle and
bottom panels corresponding to the topological and nor-
mal cases, respectively. The robust optical transition be-
tween the under-gap topological states |g〉 and |f〉 shown
in Fig. 3 indicates that, for a given applied electrical field,
it is also possible to control the spin polarizations opti-
cally. In fact, Fig. 4(b) shows unequivocally the reverse
alignment behavior of the under-gap topological states as
analyzed.
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FIG. 4. (Color online) (a) Expectation values of the in-plane
spin projection 〈Sx,y〉 of the electronic states |g〉 and |f〉 as a
function of λ, where the solid-red and dashed-pink lines are
〈Sx〉 and the gray lines represent 〈Sy〉. The inset denotes the
normal case, where the solid-blue and dashed-cyan lines are
for 〈Sx〉 and the gray lines correspond to 〈Sy〉. In both cases,
the solid lines are for the lowest positive energy electronic
state |f〉, whereas the dashed lines correspond to the highest
negative energy electronic state |g〉. (b,c) Density distribu-
tions and spin textures of the state |f〉 for different values
of λ: −4.5,−2.5, 2.5, 4.5, from left to right as marked by the
solid triangles for the topological case in (b) and by the open
triangles for the normal case in the inset of (b), respectively.
In both (b) and (c), the color code represents the local prob-
ability density, and the gray arrows denote the local in-plane
spin orientations.

IV. EXPERIMENTAL SCHEMES AND

POTENTIAL APPLICATIONS

In order to validate and characterize the phenomena
uncovered, we articulate a feasible experimental scheme
to realize the proposed setup, as shown schematically in
Fig. 1(a). From the existing experimental works6,19–23,
we have that the non-uniform mass confinement can
be implemented via a closed magnetic heterostructure
of ferromagnetic insulators such as EuS, GdN, YIG or
Y3Fe5O12, and Cr2Ge2Te6, with different magnetizations
of each side deposited on the surface of a 3D topological
insulator. Depending on the local exchange coupling of
the topological insulator and ferromagnetic insulator as
well as the interface quality between them, the magnitude
of the induced mass potential can be several to hundred
meV19,21,23. Interestingly, the sign of the induced mass
is tunable by changing the direction of the magnetization
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in the ferromagnetic insulator caper layer, which can be
achieved by means of the anisotropic feature of the ma-
terials6,22. The gate electrode can be attached to the
topological insulator through which an external electric
field can be applied24.
To discuss the experimental scheme, it is convenient

to use the actual physical units of the related dimen-
sionless quantities with specific material parameters. We
obtain ~vF ∼ 400meV · nm for typical TI materials5,
say Bi2Se3 or PbxSn1−xTe. To compare with existing
results on the conventional InAs/GaAs self-assembled18

and HgTe quantum dots25, we consider a similar dot size,
e.g., R = 10 nm, where the relevant bound state ener-
gies lay within the range of [−120, 120] meV for the mass
potential magnitude |M1| ∼ 80 meV. The applied elec-
tric field is E0 ∼ 40λ kV/cm, i.e., ranging from −200
kV/cm to 200 kV/cm for λ ∈ [−5, 5]. Correspondingly,
we obtain the transition energy ∆E ∼ 40δ meV with the
associated wavelength ∼ hc/(40δ) = 30.996/δ µm. For
clarity, we also include these quantities with the related
physical units in Figs. 3 and 4(a). We see that the elec-
tric field dependent optical transitions for both the con-
ventional and topological cases occur at the mid-infrared
(mid-IR) regime in our system, which can be promising
for developing reversal QCSE mid-IR optical modulators.
Interestingly, for the topological states, the in-plane spin
texture can be effectively controlled when varying the ap-
plied electric field, thanks to the unusual ring-like spin
orientation of the associated topological modes. We re-
mark that the electric field strength analyzed here is ac-
tually on the same order of magnitude as that used for
the conventional quantum dot systems18. Since the bulk
band gap of typical materials such as Bi2Se3 of about
300 meV4,5 is indeed much larger than the energy scales
of our system, the phenomena uncovered in this paper

are potentially experimentally realizable.

V. CONCLUSION

To summarize, we uncover a striking reverse Stark ef-
fect in TI based quantum dot systems that permit a
class of quantized topological states. With an in-plane
electric field, the under-gap topological states exhibit
reverse electric alignments, leading to a reverse QCSE
phenomenon. We show that the counterintuitive phe-
nomenon can be fully explained by using a second-order
perturbation theory. The phenomenon is not only funda-
mental to relativistic quantum mechanics of Dirac mate-
rials, but also practically significant. For example, the re-
verse Stark effect leads to an inverted optical absorption
spectrum, and this anomalous feature can be exploited
to develop Dirac material-based optoelectronic devices,
e.g., reverse QCSE mid-IR optical modulators. In addi-
tion, due to their special spin textures, the in-plane spin
degree of freedom of the under-gap topological states can
be effectively controlled electrically or optically, opening
an avenue for spintronics applications. We further dis-
cuss feasible experimental validation schemes and poten-
tial applications. Interesting issues to be explored include
the effects of symmetry breaking and impurity scattering.
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