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In the strictly periodic setting, the electric polarization of inversion-symmetric solids with and
without time-reversal symmetry and the isotropic magneto-electric response function of time-reversal
symmetric insulators are known to be topological invariants displaying an exact Z2 quantization.
This quantization is stabilized by the symmetries. In the present work, we investigate the fate of such
symmetry-stabilized topological invariants in the presence of a disorder which breaks the symmetries
but restores them on average. Using a rigorous analysis, we conclude that the strict quantization still
holds in these conditions. Numerical calculations confirm this prediction.
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An important issue in the field of symmetry-protected
topological phases is the fate of the topological invari-
ants in the presence of bulk and surface disorder which
can break the symmetries [1]. For the time-reversal sym-
metric topological insulators, this issue is related to the
contamination of the samples with magnetic impurities
and it has been addressed experimentally and theoret-
ically in a number of works [2]. While this contami-
nation can be fully controlled in laboratory conditions,
this is not the case in the real world conditions. Still,
if the contamination is small, the magnetic impurities
are in a non-correlated disordered phase and, on av-
erage, the time-reversal symmetry is preserved. Then
a question which is is extremely relevant for the prac-
tical applications of these materials is if the topologi-
cal characteristics, such as the extended character of the
surface states and the quantization of the bulk topologi-
cal invariant, are preserved under such “average” time-
reversal symmetry conditions? The first characteristics
has been shown in Ref. [3] to hold if the disorder is not
too strong and here we show that the isotropic magneto-
electric response function [4] remains quantized in such
disordered regimes, provided a spectral gap is present.
The antiferromagnetic topological insulators introduced
in Ref. [5] is another class where the topology is sta-
bilized by an average time-reversal symmetry. In the
presence of disorder, this class of insulators were re-
cently shown [6] to posses distinct topological phases
surrounded by sharp phase boundary which can be de-
tected by transport measurements. Furthermore, the
weak topological insulators can be thought as protected
by the translational symmetry and disorder definitely
breaks this symmetry but the symmetry is restored on
average. Refs. [7, 8] gave evidence that, in certain con-
ditions, this is enough for the surface states of weak
topological insulators to avoid Anderson localization.

When some of the stabilizing symmetries are space
symmetries, such as for the crystalline topological in-
sulators [9, 10], the inversion-symmetric [11, 12], the
reflection-symmetric [13, 14] or the spin-orbit free topo-
logical insulators [15] in general, these issues are actually

of central importance because the space disorder of the
atoms is inevitable and impossible to control even in
the laboratory conditions. If, for example, one consid-
ers the random displacements of the atoms due to finite
temperature, there can be no expectations that the dis-
ordered potential respects the underlying symmetry of
the lattice but one can be sure that, on average, the sym-
metries are strictly preserved since the thermodynamic
state (including the nuclei) is symmetric. Such restora-
tion of the symmetries by averaging also occurs when
the disorder is induced by defects which do not destroy
the crystalline order completely. Ref. [1] introduced
a Z2 topological invariant, which in principle covers
all classes of symmetry-protected topological insulators
(and more) in such disordered conditions. This topolog-
ical invariant was put to work for a disordered model
with averaged reflection symmetry and a localization-
delocalization transition was observed numerically ex-
actly at the point where the invariant changed its value.
In the present work, we consider disordered insulators
with averaged inversion symmetry and show that the
classical electric polarization assumes strict quantized
values 0 or 1

2 , provided a spectral gap is present.
Now, the existing definitions of the symmetry-

stabilized topological invariants depend fundamentally
on the exactness of the symmetries, hence, at the first
sight, it seems impossible to define them for a concrete
disorder configuration which, just by itself, breaks the
symmetries. However, as noted in Ref. [1], when the
symmetries, which are preserved only average, are com-
bined with the translations then a certain self-averaging
property takes place, enabling one to define exact topo-
logical invariants for such realistic conditions. In the
present work, we provide a precise formulation of this
self-averaging property within the framework of homo-
geneous disordered systems [16, 17]. While at this mo-
ment we cannot make any statements about the bound-
ary states, our findings definitely contributes to the
growing body evidence that the symmetry-stabilized
topological insulators are more robust than previously
thought.
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The paper is organized as follows. In the first sec-
tion, we describe the homogeneous disordered systems
and we formulate a precise relation between the disor-
der and symmetry, called here the compatibility con-
dition, which ensures the restoration of the symmetry
on average. An explicit yet very generic model for
homogeneous disordered solids is presented, and the
inversion as well as the time-reversal symmetries are
shown to be compatible with the model. The second
section discusses the electric polarization of homoge-
neous disordered systems with inversion symmetry and
no time-reversal symmetry. The disorder is assumed
to be compatible with the symmetry. The polarization
is shown to be an intensive macroscopic function with
a self-averaging property (preventing fluctuations from
one disorder configuration to another), and which takes
only quantized values. The fourth section reports a nu-
merical analysis which confirms the theoretical predic-
tions. The fifth section applies the arguments to the
isotropic magneto-electric response function of TRS in-
sulators, leading to similar conclusions. Last section
summarizes our conclusions.

HOMOGENEOUS SOLIDS

Physically, a homogeneous system is defined as an ex-
tended system with translation invariance broken at the
microscopic scale but this symmetry-breaking is unde-
tectable at macroscopic scales. In other words, taking
micron-size samples from a large piece of a homoge-
neous material will lead to same intensive TD parame-
ters and coefficients (of course not exactly the same for
finite pieces, but the differences are well below the ex-
perimental resolution). Formulating this property in a
mathematically rigorous way was quite a challenge for
the mathematical physics community but these days the
concept of a homogeneous solid state system has a very
precise meaning and the mathematical framework built
around this concept is natural and fruitful for a large
class of aperiodic systems [16, 17]. According to the pre-
cise definition, an aperiodic tight-binding Hamiltonian
H over the lattice Zd is homogeneous if H together with
its lattice translates TaHT−1

a , for all a ∈ Zd, define a set
which has a compact closure in the strong topology of
bounded operators. Here and throughout, Ta will de-
note the lattice translation by a. What we are going to
present in the following applies strictly to the homoge-
neous system so defined, but for concreteness we will
carry the discussion in the context of disordered lattice
models, which are explicitly constructed in Example 1.

Henceforth, let us consider a generic finite-range dis-
ordered lattice model

Hω = H0 + Vω (1)

defined over the Hilbert space spanned by |n, α〉, where

n ∈ ZD represent the nodes of the lattice indexing the
unit cells and α = 1, ...,Q the orbitals associated with
a unit cell. The orbital index includes the spin de-
gree of freedom, but the latter will be separated out
when needed. The orbitals can and will be chosen
to be real, that is, invariant to complex conjugation:
K|n, α〉 = |n, α〉. The translational invariant piece H0
of the Hamiltonian is assumed to depend on a set of
N parameters ξ = (ξ1, . . . , ξN). When needed, we write
this dependence explicitly as H0(ξ) or Hω(ξ). We include
such dependence because both the electric polarization
and the magneto-electric response functions are defined
through deformations of the system from a reference
configuration. If the reader is more comfortable with an
explicit representation of this parameter space, he may
think of the vector ξ as the (always finite) collection of
hopping amplitudes.

The random potential Vω depends on the disorder
configuration ω, which is seen here as a point in a
disorder configuration space Ω, which is compact and
equipped with a probability measure dω. The system
is assumed to be homogeneous, which in this context is
assured by the covariant property

TaHωT−1
a = Htaω, ∀a ∈ Zd, (2)

where t represents a homeomorphic action of the group
of lattice translations on Ω. The action t is assumed
ergodic and probability preserving so that Birkhoff’s er-
godic theorem [18] applies, namely, the following iden-
tity holds with probability one in ω :

lim
V→∞

1
V

∑
a∈V

f (taω) =

∫
Ω

dω′ f (ω′). (3)

It is precisely this identity which ensures the non-
fluctuating character of the intensive thermodynamic
functions from one disorder configuration to another.

We now formulate a precise condition which automat-
ically leads to the restoration of the symmetry after the
disorder average is taken. Consider a generic symmetry
operation:

S|n, α〉 =
∑
n′,α′

Rnα;n′α′ |n′, α′〉, (4)

which can be linear or anti-linear. Recall that the orbitals
are real, hence the symmetry is fully determined by the
coefficients Rnα;n′α′ . The symmetry generates an action
on the parameter space:

SH0(ξ)S−1 = H0(Sξ), (5)

and on the disorder configuration space:

SVωS−1 = VSω, (6)

for which we use the same notationS. As a consequence,
we have the following covariant property:

SHω(ξ)S−1 = HSω(Sξ). (7)
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In fact, such covariant property is obeyed by any func-
tion of the Hamiltonian:

SΦ
(
Hω(ξ)

)
S
−1 = Φ

(
HSω(Sξ)

)
. (8)

Definition. We say that the symmetry is compatible with
the disorder if

d(Sω) = dω, (9)

that is, if the probability measure dω is invariant under
the action on Ω induced by the symmetry.

Perhaps the reader already noticed that we are merely
restating the condition formulated in Ref. [1] Section IIA,
in a more concise mathematical notation. This definition
is relevant when we consider the disorder average:

S

(∫
Ω

dω Φ
(
Hω(ξ)

))
S
−1 =

∫
Ω

dω Φ
(
HSω(Sξ)

)
, (10)

because a change of variable Sω→ ω leads to:

. . . =

∫
Ω

d(S−1ω) Φ
(
Hω(Sξ)

)
=

∫
Ω

dω Φ
(
Hω(Sξ)

)
. (11)

In other words

S

(∫
Ω

dω Φ
(
Hω(ξ)

))
S
−1 =

∫
Ω

dω Φ
(
Hω(Sξ)

)
. (12)

In particular, if ξ is a fixed point for the symmetry, Sξ =
ξ, or equivalently if SH0(ξ)S−1 = H0(ξ), then

S

(∫
Ω

dω Φ
(
Hω(ξ)

))
S
−1 =

∫
Ω

dω Φ
(
Hω(ξ)

)
, (13)

which shows that Eq. 9 implies the restoration of the
symmetry for the averaged quantities.

Example 1: Generic homogeneous disordered model.

Hω =
∑

n,α;m,β

(
tαβn−m(ξ) + Wω

αβ
n,m

)
|n, α〉〈m, β|, (14)

where ωαβn,m are independent random entries drawn uni-
formly from the interval [− 1

2 ,
1
2 ]. The collection of all

random variablesω = {ω
αβ
n,m} can be viewed as a point in

an infinite dimensional configuration space Ω, which is
just an infinite product of intervals [− 1

2 ,
1
2 ]. The result is

a compact and metrizable Tychonov space which can be
equipped with the product probability measure:

dω =
∏

n,α;m,β

dωαβn,m. (15)

There is a natural action of the lattice translations on Ω:

(taω)αβn,m = ω
αβ
n−a,m−a, a ∈ ZD, (16)

which leaves dω invariant and is known to act ergodi-
cally, hence Eq. 3 applies. It is straightforwad to check
that the Hamiltonian has indeed the covariant property:

TaHωT−1
a = Htaω. (17)

Example 2: Compatibility of the inversion symmetry
with the model 14. This symmetry maps the unit cell n
into −n and it can mix the orbitals in the process. How-
ever, we can always choose an orbital basis so that no
such mixing occurs, and since I2 = 1:

I|n, α〉 =
∑
α

σα| − n, α〉, (18)

where all σ’s are signs. The induced action on Ω is:

(Iω)αβnm = σασβω
αβ
−n,−m. (19)

Now,

dω =
∏

n,α;m,β

dωαβn,m =
∏
n,m;α

dωααn,m

∏
n,m;α<β

dωαβn,mdωβαn,m (20)

and now one can see explicitly that d(Iω) = dω.

Example 3: Compatibility of the time-reversal symmetry
with the model 14. The TRS is defined as the anti-linear
map

Θ|n, α, σ〉 = −σ|n, α,−σ〉, (21)

where the spin degree of freedom σ = ±1 (for spin
up/down) was separated out. Note that Θ2 = −1. The
induced action on Ω is:

(Θω)α,σ;β,σ′
nm = σσ′ω

α,−σ;β,−σ′
n,m . (22)

Then,

dω =
∏

n,α,σ;m,β,σ′
dωα,σ;β,σ′

n,m (23)

=
∏
n,m

dωα,1;β,1
n,m dωα,−1;β,−1

n,m dωα,−1;β,1
n,m dωα,1;β,−1

n,m

and now one can see explicitly that d(Θω) = dω.

ELECTRIC POLARIZATION OF INVERSION
SYMMETRIC INSULATORS

Generic definition

By definition [19, 20], the change in the electric polar-
ization, as a result of a macroscopic deformation Hω(ξt)
of the Hamiltonian, is:

∆Pω =

∫ T

0
jω(t) dt, (24)
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where jω(t) is the density of the charge-current. The
latter is microscopically defined as:

jω(t) = lim
V→∞

1
V

∑
n∈V

Q∑
α=1

〈n, α|ρω(t)Jω(t)|n, α〉, (25)

where ρω(t) is the time-evolved density matrix and

Jω(t) = ie[Hω(ξt),X] (26)

is the current operator. Here, X denotes the position op-
erator and, for convenience, the electron charge e will
be set to unity in the following. If the deformation
starts from the thermodynamic equilibrium state, then
the time-evolved density matrix is

ρω(t) = UtΦFD

(
Hω(ξ0)

)
U−1

t , (27)

with Ut being the unitary time evolution generated
by Hω(ξt) and ΦFD the Fermi-Dirac distribution. One
should not confuse ρω(t) and ΦFD

(
Hω(ξt)

)
, because the

time-evolved density matrix is no longer given by the
Gibbs state.

Self-averaging property

Now note that the fundamental formula in Eq. 24 in-
volves the density of the current rather than the current
itself, and this is why the trace per volume appears in
Eq. 25. This is consistent with the fact that polarization
is an intensive macroscopic function. From a technical
point of view, this is an important observation because
we can use Birkhoff’s ergodic theorem [18] to demon-
strate that ∆Pω is, with probability one, independent of
the disorder configuration ω. Indeed, note that the op-
erator inside the brackets of Eq. 25, called Fω in the lines
below, is covariant:

TaFωT−1
a = Ftaω. (28)

Then:

1
V

∑
n∈V

〈n|Fω|n〉 = 1
V

∑
n∈V

〈0|Ft−1
n ω
|0〉 =

∫
Ω

dω 〈0|Fω|0〉 (29)

in the limit V → ∞. The conclusion is that ∆Pω is self-
averaging and its macroscopic value comes as an average
over the disorder configuration space. As such, we can
drop the subscript ω in ∆Pω from now on.

Schulz-Baldes-Teufel formula

We consider now infinitely slow deformations of the
Hamiltonian, which are better visualized as paths γ in

the parameter space, parametrized as {ξs}s∈[0,1]. By em-
ploying the adiabatic theorem, Schulz-Baldes and Teufel
showed in Ref. [21] that in the extreme adiabatic limit
and when the temperature goes to zero:

∆P(γ) =

∫ 1

0
ds T

(
Pω(ξs)i

[
∂sPω(ξs), i[X,Pω(ξs)]

])
, (30)

where T denotes the trace per volume:

T (. . .) = lim
V→∞

1
V

∑
n∈V

Q∑
α=1

〈n, α| . . . |n, α〉, (31)

and

Pω(ξ) = χ[−∞,εF]

(
Hω(ξ)

)
(32)

is the Fermi projection onto the occupied states at coor-
dinate ξ. Above, it is assumed that the spectral gap of
Hω(ξs) remains open for all s ∈ [0, 1] and that the Fermi
level εF is inside this gap. We will keep the i =

√
−1

in front of the commutators in order to make them self-
adjoint. Now, using Birkhoff’s theorem as before, we can
write, equivalently:

∆P(γ) =

∫ 1

0
ds

∫
Ω

dω
Q∑
α=1

(33)〈
0, α

∣∣∣Pω(ξs)i
[
∂sPω(ξs), i[X,Pω(ξs)]

]∣∣∣0, α〉.
This is Schulz-Baldes-Teufel formula, which can be re-
garded as the disordered version of the King-Smith-
Vanderbilt formula for the static spontaneous orbital po-
larization [22].

Quantization

The proof of quantization proceeds in two steps. First,
based on Schulz-Baldes-Teufel formula Eq. 33, we can
demonstrate that the change in the electric polarization
along the inverted path Iγ (see Fig. 1) is:

∆P(Iγ) = −∆P(γ). (34)

This equality is remarkable because we are computing
the polarization of a system in an arbitrary disorder con-
figuration which breaks the inversion symmetry. For the
periodic case with strict inversion symmetry, this prop-
erty is well known [11, 12]. The keys to its proof are
the self-averaging property, the compatibility between
the inversion symmetry and disorder, and the behavior
of the position operator under inversion, IXI−1 = −X.
The proof proceeds as follows:

∆P(Iγ) =

∫ 1

0
ds

∫
Ω

dω
Q∑
α=1

(35)〈
0, α

∣∣∣Pω(Iξs)i
[
∂sPω(Iξs), i[X,Pω(Iξs)]

]∣∣∣0, α〉,
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and observe that

Pω(Iξs) = IPI−1ω(ξs)I−1. (36)

Then a change of variable ω → Iω and cancelations of
terms like II−1, lead us to:

∆P(Iγ) =

∫ 1

0
ds

∫
Ω

d(Iω)
Q∑
α=1

(37)〈
0, α

∣∣∣IPω(ξs)i
[
∂sPω(ξs), i[−X,Pω(ξs)]

]
I
−1

∣∣∣0, α〉.
The probability measure is invariant, d(Iω) = dω. Also,
the 0-site is left invariant by I and, since we are tracing
over the orbital degrees of freedom, the action of the re-
maining I operators have no effect and can be removed.
Then Eq. 34 follows.

!0 !1

"

-I"
FIG. 1. The direct path γ (upper semi-plane) and the inverted
path −Iγ (lower semi-plane) in the parameter space ξ. The
horizontal axis represents the manifold which left invariant by
the symmetry. The interesting cases occur when the spectral
gap closes along this manifold, which is schematically shown
by the gray region.

The second step of the proof consists of the following
argument. Assume that the initial and final Hamiltoni-
ans are inversion symmetric, that is, ξ0 and ξ1 are fixed
points of I, Iξ0 = ξ0 and Iξ1 = ξ1. Then any path γ
joining the two Hamiltonians can be closed into a loop
by augmenting −Iγ, where the minus sign imply that
the path is walked in reverse (see Fig. 1). Note that the
argument doesn’t work if the end points of γ are not
fixed points for I. Given Eq. 34, this has the following
effect:

∆P(γ) = 1/2
(
∆P(γ) + ∆P(−Iγ)

)
= 1/2∆P(γ − Iγ). (38)

But as already noted in [21, 23], the change in the polar-
ization along a closed loop leads to the non-commutative
1st Chern number defined in Ref. [24]. The conclusion
is:

∆P j(γ) = 1/2 C1[(γ − Iγ) × S j], j = 1, . . . ,D, (39)

where on the righthand side is the Chern number of the
Fermi projection over the manifold (γ − Iγ) times the
section of the non-commutative Brillouin torus along the
jth direction:

C1 =

∫
γ−Iγ

dξ T
(
Pω(ξ)i

[
∂ξPω(ξ), i[X j,Pω(ξ)]

])
. (40)

The usual constant in front is absent here because one
derivative is taken in the ‘k’-space and the other in the
real-space representations. As longs as Pω(ξ) is smooth
along the loop and its matrix elements 〈n|Pω(ξ)|m〉 decay
sufficiently fast, all these Chern numbers are integers for
dimension D = 1 or 2. In D = 3 these Chern numbers
are weak topological invariants and they remain integer
only if magnetic fields are not present. All these condi-
tions are met if the spectral gap at the Fermi level remains
open along the loop.

In conclusion, when insulators are deformed between
fixed points of the inversion symmetry operator, the
change in the electric polarization is quantized in units
of 1

2 , even thought the symmetry exists only for disorder
averages.

Numerical confirmation

We consider the 1-dimensional Rice-Mele model [25]:

Hω(ξ) = 1
2

∑
n∈Z

(
1 + (−1)nξ1

)(
|n〉〈n + 1| + |n + 1〉〈n|

)
(41)

+ 1
2

∑
n∈Z

(
(−1)nξ2 + Wωn

)
|n〉〈n|,

with onsite disorder. As detailed in [26], this model was
introduced originally by Rice and Mele to study solitons
in conducting polymers but it was subsequently used in
other contexts too. It is a particular form of the generic
model Eq. 14, hence everything we stated about Eq. 14
continue to hold here. In the absence of disorder, the
Rice-Mele model is gapped if half-filling is assumed, ex-
cept at ξ = 0, and it is inversion-symmetric whenever
ξ2 = 0. Also, it is well known [26] that adiabatic de-
formations around closed loops surrounding the origin
leads to a quantized polarization change ∆P = ±1 (or
C1 = ±1).

The model has two states per unit cell and it can be
brought to the form written in Eq. 14 by defining

|2n〉 = |n, 1〉, |2n + 1〉 = |n,−1〉, (42)

in which case the Hamiltonian takes the form:

Hω(ξ) = 1
2

∑
n∈Z

∑
α=±1

(
1 + αξ1

)
(43)

×

(∣∣∣n, α〉〈n + 1
2 (1 − α),−α

∣∣∣ +
∣∣∣n + 1

2 (1 − α),−α
〉〈

n, α
∣∣∣)

+ 1
2

∑
n∈Z

∑
α=±1

(
αξ2 + Wωn,α

)
|n, α〉〈n, α|.

If in the original rendering of Eq. 41 we choose the
inversion point to be between the 0-th and first site, then
the inversion operation takes form:

I|n, α〉 → | − n,−α〉. (44)
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FIG. 2. (Color online) Top row: The variation of the electric polarization when the Rice-Mele model is adiabatically deformed
along a semi-circle (black dots) and along a full circle (red dots) in the two-parameter space. In the latter case, the variation is
equal to a Chern number, hence the label. The calculations are performed in the presence of a disordered potential which breaks
the inversion-symmetry but restores it on the average. The disorder strength was increased from 0 to 7. Each dot corresponds
to one disorder configuration and 100 disorder configurations were considered for each disordered strength. The average and
statistical variance are not shown on purpose (see text). Bottom rows: The spectral gap of the Hamiltonian at half-filling. A
dot represents the spectral gap at one disorder configuration and one position along the adiabatic deformation path. The three
columns correspond to the different system sizes: L = 100 (a), 200 (b) and 400 (c).

It can be set in the diagonal form of Eq. 18 if we choose
to work with the states 1

√
2
(|n, 1〉 ± n,−1〉). However, we

will not do that here. A direct computation will show
that:

IHωI
−1 = HIω(Iξ), (45)

with

I(ξ1, ξ2) = (ξ1,−ξ2), (Iω)n,α = ω−n,−α. (46)

Let us stress again that the onsite disorder breaks the
inversion symmetry because we impose no correlation
between ωn,α and ω−n,−α. However, the probability mea-
sure

∏
n,α dωn,α is easily seen to be invariant under I.

We now choose the path γ to be the semi-circle:

γ = 0.1 × {cos s, sin s}s∈[0,π], (47)

which connects two fixed points of the inversion sym-
metry. By augmenting with−Iγwe obtain the full circle,
s ∈ [0, 2π]. The numerical calculations are performed at
finite size n ∈ {0, . . . ,L} and with periodic boundary con-
ditions. Formulas from Eqs. 30 and 40 are used for all the
results reported here. The commutator with the position
operator is implemented using the strategy developed
in Ref. [27]. The path integral is discretized using 100
points for γ and 200 points for γ−Iγ. The derivative ∂ξ
with respect to ξ along the path is computed using the
five-point stencil finite-difference approximation. The

disorder strength W was increased gradually and the
calculation was repeated 100 times with updated ran-
dom potential for each W.

The results are reported in Fig. 2, where each dot seen
in these plots represents a single disorder configuration.
In other words, no disorder average has been performed on
the data. In the first row we show the results for ∆P(γ)
and Chern number or ∆P(γ − Iγ). The first thing to
notice is the clustering of the data for ∆P(γ) around the
predicted quantized value of − 1

2 , at disorder strengths
lower than a critical value Wc. The fluctuations around
the quantized values can be attributed to the finite sys-
tem sizes because the fluctuations can be seen to dimin-
ish as the size of the system gets larger. This confirms our
theoretical prediction that ∆P(γ) is self-averaging hence
non-fluctuating in the thermodynamic limit, and that, at
least for small W’s, it takes quantized values in the unit
of 1

2 .

The Chern number shows a very good quantization,
with virtually no fluctuations from one disorder configu-
ration to another below the same Wc. The reason for this
difference is that the quantization of the Chern number
does not require the restoring of the symmetry. It only
requires that the exponential decay rate of the Fermi pro-
jection be large compared to 1/L. The Fermi projection
also needs to be smooth of ξ along the loop, but this is
automatically the case if the spectral gap remains open
(which is the case for small W’s). If, for example, we av-
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erage ∆P(γ) over just two disorder configurations which
are mirrored by inversion symmetry, then the quantiza-
tion of ∆P(γ) will be as good as that of the Chern num-
ber (this can be shown exactly). While this could be a
better numerical method to compute ∆P(γ), it is irrele-
vant for the present discussion because here we want to
demonstrate a principle, namely, that the quantization
of ∆P(γ) occurs even for a single disorder configuration
ω, provided the system size is large enough. So, what
is actually happening in this latter case? For this, let
us note that the formula for ∆P(γ) remains invariant if
the disorder is translated. Now, due to the ergodicity of
the translations, when we translate the disorder we start
exploring the disorder configuration space Ω, and if the
size of the system is large enough, at some point a trans-
lation will bring us close to a new disorder configuration
which looks in many respects like the inverted disorder
Iω. In other words, if the system size is large enough,
we don’t need to average over two mirrored disorder
configurations because this already happens due to the
ergodicity of the system.

The last issue we need to address is the value of the
critical Wc. We know already that Wc should be larger or
equal than the value of W where the spectral gap of Hω(ξ)
closes somewhere along the loop. Can Wc be strictly
larger than this value that we mentioned? To answer
this question, we plotted in the second row of Fig. 2 the
spectral gaps of Hω(ξ) at half-filling, as ξ was varied
along γ and the disorder configurations were updated.
These many data were then collapsed and shown for
increasing values of W. Whenever a dot in the second
row of Fig. 2 touches the horizontal axis, the spectral
gap of Hω(ξ) closed for some ξ along the loop and some
disorder configuration. Note that the fluctuations of the
gap due to disorder die out in the thermodynamic limit.
By comparing the first and second rows of Fig. 2, we can
conclude with confidence that the deviations from the
quantized values in the top row of Fig. 2 occur exactly
at the value of W where the spectral gap closes. The
answer to our question is no, and the reason is because
the Fermi projection fails to be smooth of ξ beyond that
point.

MAGNETO-ELECTRIC RESPONSE OF TRS
INSULATORS

Consider now an insulator Hω(ξ) in dimension D = 3.
In this section we investigate the isotropic part of the
magneto-electric response function:

α = 1
3

3∑
j=1

∂P j

∂B j
. (48)

If TRS is considered, then the partial derivatives with
respect to the magnetic field are taken at B = 0. Since

the arguments are repetitive, we will expedite the expo-
sition.

The main tool of our analysis is the formula derived
in Ref. [28] for the change ∆α during a deformation of
the system along a path γ = {ξs}s∈[0,1] in the parameter
space:

∆α(γ) = 1
2ε

i1...ı4

∫ 1

0
dsT

(
Pω(ξs)∂i1 Pω(ξs) . . . ∂i4 Pω(ξs)

)
where T denotes the trace per volume, ∂ j is a shorthand
for:

∂ jPω(ξs) = i[X j,Pω(ξs)], for j = 1, 2, 3, (49)

and ∂4Pω(ξs) = ∂sPω(ξs). Also, εi1...ı4 is the antisymmet-
ric tensor and summation over repeating indices is as-
sumed. Since the operator inside the trace per volume is
covariant, we can apply Birkhoff’s ergodic theorem [18]
to equivalently write

∆α(γ) = 1
2ε

i1...ı4

∫ 1

0
ds

∫
Ω

dω (50)∑
α

〈
0, α

∣∣∣Pω(ξs)∂i1 Pω(ξs) . . . ∂i4 Pω(ξs)
∣∣∣0, α〉.

This shows at once the self-averaging property of the
magneto-electric response function.

Next, we show that if the deformation occurs along
the TRS mirrored path Θγ, then:

∆α(Θγ) = −∆α(γ). (51)

This property is well known for periodic [4] and dis-
ordered [28] TRS insulators, but here we compute the
magneto-electric effect for a system in a disorder con-
figuration which breaks the TRS. The proof proceed the
same way as for polarization, using the self-averaging
property, the compatibility between TRS and disorder,
together with the behavior of the derivatives under TRS:
Θ∂ jΘ

−1 = −∂ j, for j = 1, 2, 3, and Θ∂sΘ
−1 = ∂s. The proof

goes as follows:

∆α(Θγ) = 1
2ε

i1...ı4

∫ 1

0
ds

∫
Ω

dω (52)∑
α

〈
0, α

∣∣∣Pω(Θξs)∂i1 Pω(Θξs) . . . ∂i4 Pω(Θξs)
∣∣∣0, α〉.

Recall that

Pω(Θξs) = ΘPΘ−1ω(ξs)Θ−1. (53)

Then, after a change of variable ω→ Θω:

. . . = − 1
2ε

i1...ı4

∫ 1

0
ds

∫
Ω

d(Θω)
∑
α

(54)〈
0, α

∣∣∣ΘPω(ξs)∂i1 Pω(ξs) . . . ∂i4 Pω(ξs)Θ−1
∣∣∣0, α〉,
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Then the statement follows from the explicit action of Θ
given in Eq. 21 and the compatibility between TRS and
disorder, d(Θω) = dω.

Lastly, given a path γ between two TRS fixed points,
ξ0 = Θξ0 and ξ1 = Θξ1, one can close this path into a loop
by augmenting with its TRS mirrored image −Θγ, taken
with opposite orientation. Note that this argument will
not work if the end-points of γ are not TRS fixed points.
Then:

∆α(γ) = 1/2
(
∆α(γ) + ∆α(−Θγ)

)
= 1/2∆α(γ −Θγ). (55)

For the periodic TRS case, it is well known [4] that
the variation of the magneto-electric response function
along a closed loop is equal to a second Chern number.
As demonstrated in Ref [28], this remains true in the dis-
ordered case, in which case the connection is with the
non-commutative second Chern number introduced in
Ref. [29]. More precisely:

∆α(γ −Θγ) = C2

[
(γ −Θγ) × T̃3

]
, (56)

where on the right we have the second Chern number
of the Fermi projection Pω(ξ) over the manifold (γ−Θγ)
times the 3-dimensional non-commutative torus:

C2 = εi1...ı4

∫
γ−Θγ

dξ T
(
Pω(ξ)∂i1 Pω(ξ) . . . ∂i4 Pω(ξ)

)
. (57)

This is a strong topological invariant which is known
[29] to take only integer values. Note that the constant
in front differs from the usual constant because some of
the derivatives are taken in k-space and some in real-
space.

In conclusion, when 3-dimensional insulators are de-
formed between fixed points of the time-reversal oper-
ation, the change in the isotropic magneto-electric re-
sponse function is quantized in units of 1

2 , even thought
TRS applies only for disorder averages. Recall that the
existence of a spectral is required by our argument. The
numerical simulations of ∆α performed for the work
Ref. [30] indicate that, as in the previous case, the quanti-
zation does not survive beyond the spectral gap closing.

CONCLUSIONS

The present work dealt exclusively with the bulk in-
variants, while the invariants formulated in Ref. [1] can
be regarded as boundary invariants since they are com-
puted from the boundary states. We can already foresee
a connection between these invariants, which we would
like to sketch briefly. The bulk-boundary principle de-
veloped in Ref [31] provides an equality between the
bulk first Chern number and a certain spectral flow of the
boundary states. The latter has a similar self-averaging

property as the first Chern number. When applied to
the variation of the electric polarization ∆P(γ − Iγ) of a
1-dimensional system with an edge, this bulk-boundary
principle seems to lead precisely to the counting of the
spectral features of the edge states performed in Ref. [1].
It will definitely be interesting to make this connection
more precise and see it in action for concrete models.

The principle described in the present work seems
to apply to any symmetry-stabilized topological invari-
ant which can be formulated in a real space representa-
tion. Unfortunately, there are important instances where
a real space representation is not yet available, such as
the Kane-Mele Z2 invariant [32] or the bulk topological
invariants for point-symmetry stabilized topological in-
sulators [33]. For this reason, we have nothing to say
about these invariants at this moment, but we hope our
findings will spur a renewed effort in this direction. Nev-
ertheless, the strategy does apply to the Loring-Hastings
invariants [34, 35], or to the spin-Chern numbers [36, 37].
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