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Strongly correlated systems with geometric frustrations can host the emergent phases of matter with uncon-
ventional properties. Here, we study the spin S = 1 Heisenberg model on the honeycomb lattice with the
antiferromagnetic first- (J1) and second-neighbor (J2) interactions (0.0 ≤ J2/J1 ≤ 0.5) by means of density
matrix renormalization group (DMRG). In the parameter regime J2/J1 . 0.27, the system sustains a Néel anti-
ferromagnetic phase. At the large J2 side J2/J1 & 0.32, a stripe antiferromagnetic phase is found. Between the
two magnetic ordered phases 0.27 . J2/J1 . 0.32, we find a non-magnetic intermediate region with a plaque-
tte valence-bond order. Although our calculations are limited within 6 unit-cell width on cylinder, we present
evidence that this plaquette state could be a strong candidate for this non-magnetic region in the thermodynamic
limit. We also briefly discuss the nature of the quantum phase transitions in the system. We gain further insight
of the non-magnetic phases in the spin-1 system by comparing its phase diagram with the spin-1/2 system.

I. INTRODUCTION

Since Anderson proposed the resonating valence bond the-
ory to explain the high-temperature superconductivity1, the
study of spin liquid (SL)2–11 in frustrated magnetic systems
have been attracting much attentions for almost 40 years12,13.
In recent years, this field has achieved exciting progresses
with identifying realistic examples of SL states. Among the
various SL candidates, the most promising candidate is the
spin-1/2 kagome Antiferromagnet. In experimental side, the
strong evidences supporting the gapless SL have been dis-
covered in the spin-1/2 kagome antiferromagnet materials
Herbertsmithite14–17 and Kapellasite18–21. In theoretical stud-
ies, the spin-1/2 kagome Heisenberg model has been found to
sustain a SL ground state although the nature of the SL is still
under debate between the gapped Z2 SL22–25 obtained from
density-matrix renormalization group (DMRG) and the gap-
less U(1) Dirac SL favored in the variational studies of the
Gutzwiller projected wavefunction26–28. Very recently, by in-
troducing the second and third neighbor interactions29–31 or
the chiral interactions32 in kagome systems, a gapped chi-
ral spin liquid which breaks time-reversal symmetry is un-
ambiguously established as the ν = 1/2 fractional quan-
tum Hall state through fully characterizing the topological
properties30–32 of the state.

Besides the kagome systems, the spin-1/2 J1-J2 Heisen-
berg models on the square and honeycomb lattices have also
being considered as the promising candidates of SL. In par-
ticular, the SL on square lattice is considered significant to
understand the high-temperature superconductivity in copper
oxide1. Recently, the long-debated non-magnetic regions in
these two models have been studied intensively as the possi-
ble realizations of gapped Z2 SL33–36 or gapless SL37,38. By
performing DMRG calculations on cylinder systems39–42, it
is found that the Z2 SL behaviors in the intermediate region
of the both models appear not stable on the wide systems. In-
stead, a plaquette valence-bond (PVB) state may dominate the
non-magnetic regions.

The frustrated spin-1 magnetic systems on the square and
honeycomb lattices are also particularly interesting as they
may be the parent magnetic systems for the iron-based su-
perconductivity. The square Heisenberg models with frustrat-

0.0 ~0.32

Neel AFM PVB ? Stripe AFM
J2/J10.26-0.28

FIG. 1: Quantum phase diagram of the spin-1 J1-J2 Heisenberg
model on the honeycomb lattice. With increasing J2 coupling, the
system has a Néel AFM phase for J2 < 0.26, a stripe AFM phase for
J2 & 0.32, and an intermediate non-magnetic phase with a plaque-
tte valence-bond order in our DMRG calculations. As the finite-size
effects on different cylinder geometries, the first transition point is
estimated at 0.26 ∼ 0.28.

ing further-neighbor couplings and quadratic interactions43–48

have been studied intensively using the mean-field analysis to
investigate the possible nematic order. By using DMRG cal-
culations on the spin-1 J1-J2 square Heisenberg model46, a
non-magnetic phase between the Néel and the stripe antifer-
romagnetic (AFM) phase is obtained. However, the nature of
this non-magnetic phase is far from clear although a nematic
paramagnetic state has been proposed based on the field-
theory description49. On the other hand, the frustrated spin-1
honeycomb Heisenberg models have not been studies system-
atically, which may be relevant to the spin model for the hon-
eycomb iron-based superconductivity material SrPtAs50–54.
For the spin-1/2 J1-J2 honeycomb model33,39–41,55–68, a Néel
AFM phase and a staggered dimer phase are found at J2 .
0.22 and J2 & 0.35, respectively. Between these two phases
for 0.25 . J2 . 0.35, a PVB phase is identified in DMRG
calculations39–41 as the PVB correlation length keeps growing
fast with system width on cylinder40,41. For spin S = 1 J1-J2
model, the studies are rare and it is unclear whether the quan-
tum phases such as the PVB and the staggered dimer phases
would persist with spin magnitude increasing from 1/2 to 1,
and what kinds of classical states might emerge in the honey-
comb system69.

In this article, we study the spin-1 Heisenberg model on
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FIG. 2: Cylinder geometries used in the DMRG calculations. (a) is
an AC4-6 cylinder and (b) is a ZC4-6 cylinder.

the honeycomb lattice with the frustrating J1-J2 AFM in-
teractions by using the DMRG with spin rotational SU(2)
symmetry70,71. The Hamiltonian of the model is given as

H = J1
∑
〈i,j〉

Si · Sj + J2
∑
〈〈i,j〉〉

Si · Sj , (1)

where J1 and J2 are the first- and second-neighbor AFM inter-
actions. We set J1 as the energy scale, and lattice spacing be-
tween the nearest-neighbor sites as the length scale. Through
our SU(2) DMRG calculations on cylinder systems, we es-
tablish a quantum phase diagram as shown in Fig. 1. By
studying the spin correlation function, we find a Néel AFM
phase for 0 ≤ J2 . 0.27. For 0.5 ≥ J2 & 0.32, we find the
magnetic ordered state rather than the staggered dimer state.
In this region, the obtained magnetic order state depends on
the cylinder geometry in our finite-size calculations. By com-
paring the ground-state bulk energy on different cylinder ge-
ometries, we find that the stripe AFM state always possesses
the lower energy and thus appears to be the ground state in
the thermodynamic limit. Between the two magnetic order
phases 0.27 . J2 . 0.32, the system has a narrow non-
magnetic region with the non-uniform bond energy on wide
cylinders. During the increase of the kept states from 2000
to 8000 SU(2) states, a PVB dimer order is found stabilized
on the studied cylinder systems, which suggests that the PVB
state is a strong candidate for this intermediate phase region.
Finally, we discuss the nature of the quantum phase transi-
tions in the system with the help of the bipartite entanglement
entropy.

In our DMRG calculations, we study the cylinder systems
with width up to 8 (6) unit cells in the magnetic ordered phases
(intermediate phase), by keeping up to 8000 SU(2) states to
ensure the convergence. The truncation error is controlled be-
low 10−6 for Ly = 4 (Ly is the number of unit cell in the y
direction) cylinder and below 10−5 for the other calculations.
The cylinder geometries are shown in Fig. 2. The first cylinder
ACm-n has the armchair open edges, where m is the number
of two-site unit cells along the y direction and n is the number
of columns along the x direction. The second cylinder has the
zigzag open edges and is denoted as ZCm-n cylinder.

(a) J2=0.0, AC4-24, spin correlations

(b) J2=0.0, ZC4-24, spin correlations

FIG. 3: Spin correlation functions in real space for J2 = 0.0 on
(a) AC4-24 cylinder and (b) ZC4-24 cylinder. The green site is the
reference site in the middle of cylinder, and the blue solid and red
shaded circles denote the positive and negative correlations, respec-
tively. The radius of circle is proportional to the magnitude of corre-
lations. Here, we only show the left half 2× 4× 12 sites.

II. NÉEL AFM PHASE

First of all, we study the Néel AFM phase in the small J2
side. Due to the limit of system width in the DMRG calcu-
lations for the spin-1 system, we do not have enough data of
magnetization on different system widths to estimate the re-
sult in thermodynamic limit through extrapolation. Instead,
on the finite-width cylinders, we calculate the spin correlation
functions along the cylinder axis direction (the x direction)
and study their decay behaviors with increasing J2.

In Fig. 3, we demonstrate the spin correlation functions in
real space for J2 = 0.0 on the AC4-24 and ZC4-24 cylin-
ders. Clearly, the spin correlations exhibit a Néel AFM pat-
tern with two magnetic sublattices. We follow the J2 depen-
dence of the spin correlation decaying to detect the vanishing
of Néel order. On the AC4-24 cylinder in Fig. 4(a), we find
that the spin correlation length keeps decreasing with grow-
ing J2, which reaches a minimum at J2 ' 0.25. Slightly
above J2 = 0.25 such as J2 = 0.27 as shown in Fig. 4(a), the
Néel AFM pattern of correlations is destructed, which signals
a phase transition with vanishing the Néel order. On the ZC4-
24 cylinder as shown in Fig. 4(b), we find that the spin cor-
relations decay much slower than those on the AC4-24 cylin-
der near the transition point, which indicates the finite-size
effects of the system when approching phase boundary. Be-
yond J2 ∼ 0.28, the spin correlations decay fast as shown in
Fig. 4(b) at J2 = 0.29. Based on the spin correlations on both
AC4 and ZC4 cylinders, we estimate the Néel order vanishing
at J2 ∼ 0.26− 0.28.

Based on the decay behaviors of spin correlations, we
plot the J2 dependence of the long-distance spin correlations
Sd ≡

√
|〈S0Sd〉| (d is the longest distance in Figs. 4(a)

and 4(b)) as shown in Figs. 4(c) and 4(d). We find that the
vanishing of Sd and the destruction of the Néel AFM patter
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FIG. 4: (a) and (b) are the log-linear plots of spin correlations on the
AC4-24 and ZC4-24 cylinders. (c) and (d) are the J2 dependence of
the long-distance spin correlations Sd ≡

√
|〈S0Sd〉| (d is the longest

distance in (a) and (b)). In the subfigure (a), the correlation data for
J2 < 0.27 are all positive. For J2 = 0.27, the Néel AFM pattern is
destructed, thus the correlations change sign in some places.

on both geometries are consistent with a phase transition at
J2 ' 0.26− 0.28. We have also checked the spin correlations
on AC6 and ZC6 cylinders. Although the long-range corre-
lations on these wider cylinders are not fully converged, their
behaviors are qualitatively consistent with those on the AC4
and ZC4 cylinders.

III. STRIPE AFM PHASE

In the spin-1/2 J1-J2 honeycomb Heisenberg model, the
system is in a staggered dimer phase with breaking lattice ro-
tational symmetry and short-range spin correlations for J2 &
0.35. Interestingly, in this spin-1 system we find magneti-
cally ordered states instead of the staggered dimer. As shown
in Fig. 5(a) for J2 = 0.4 on the AC6-18 cylinder, we find
a magnetic ordered state with the 8-site unit cell denoted by
the green dashed rectangle. This state is stable on all the AC
cylinders that we have studied (AC4, AC6, and AC8). How-
ever, on the ZC6-18 cylinder at J2 = 0.4, we find a stripe
AFM state as shown in Fig. 5(b). This stripe state is also sta-
ble on the different ZC cylinders (ZC4, ZC6, and ZC8). In
Figs. 6(a) and 6(b) of the log-linear plots of spin correlation
functions at the large J2 side, we find that the spin correlation
length diminishes with decreasing J2. On AC4 cylinder, the

(a) J2=0.4, AC6-18, left half lattice

J2=0.4, ZC6-18, left half lattice(b)

FIG. 5: Spin correlation function 〈~S0 · ~Sj〉 in real space for J2 = 0.4
on (a) AC6-18 cylinder and (b) ZC6-18 cylinder. The green site is
the reference spin ~S0 in the middle of lattice, and the blue solid and
red shaded circle denote the positive and negative spin correlations,
respectively. The area of the circle is proportional to the amplitude
of correlations. The dashed rectangles denote the unit cells.

spin correlations have a sharp increase for J2 & 0.35; and on
ZC4 cylinder, correlations grow rapidly for J2 & 0.32. For
J2 . 0.32, the spin correlations decay quite fast to vanish,
which is consistent with a non-magnetic phase region.

To identify which state is the exact ground state at large
J2 side, we compare the ground-state energy on both cylin-
der geometries as shown in Fig. 6(c) for J2 = 0.4. We ex-
tract the ground-state energy from the bulk bond energy on
long cylinder systems. Interestingly, we find that the energies
on ZC cylinder are always lower than those on AC cylinder.
As we expect, the two geometries should give the same en-
ergy in the thermodynamic limit. Thus, the different energy
in Fig. 6(c) indicates the strong finite-size effects on systems
we can study. Although we cannot definitely determine which
geometry gives the correct ground state in the thermodynamic
limit, based on our calculations we believe that the stripe state
on ZC cylinder would win because it always has the lower
energy for system sizes we studied.

As shown in Fig. 1 of the spin configuration in the stripe
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FIG. 7: The nearest-neighbor bond energy for J2 = 0.5 on the ZC4-
24 cylinder. Here, we only show the left half lattice. The positive
horizontal (labeled by blue) and the negative vertical (labeled by red)
bond energies are consistent with the spin configuration in the stripe
AFM state.

AFM phase, we expect that the nearest-neighbor bond energy
〈~Si · ~Sj〉 of the two parallel spins are positive and those be-
tween the anti-parallel spins are negative. This feature also
can be used to characterize the appearance of the stripe phase.
In Fig. 7, we demonstrate the bond energy for J2 = 0.5 on
ZC4-24 cylinder, which indeed has the bond energy pattern
expected for the stripe AFM phase. With decreasing J2, we
find that this bond energy pattern could persist to J2 = 0.32,
which is consistent with the phase transition point estimated

from spin correlation function.

IV. INTERMEDIATE PHASE REGION

Next, we investigate the intermediate region between the
two magnetic ordered phases. First of all, we calculate the
first-neighbor bond energy 〈Si·Sj〉 to study the possible lattice
symmetry breaking. To accommodate the possible valence-
bond solid states on cylinder system, we perform calcula-
tions on two cylinder geometries, the AC cylinder and the
trimmed ZC (tZC) cylinder with some trimmed sites on the
open boundaries (see the lattice in Fig. 8(b))40,41. On the AC4
and tZC4 cylinders, the bond energies are quite uniform in the
bulk of cylinder, which is consistent with the short order cor-
relation length on narrow system. Thus, to detect the possible
lattice symmetry breaking, we need go to the wider systems to
study the behavior of correlation length with growing cylinder
width40–42. As the DMRG convergence in the intermediate re-
gion is quite challenging on the wider systems, we can only
study the AC6 and tZC6 cylinders. During the DMRG calcu-
lations, we measure the bond energy by increasing the optimal
state number step by step. By keeping the states up to 8000
SU(2) states, we find a PVB dimer pattern stabilized as shown
in Fig. 8, which is robust in the whole lattice and thus has bro-
ken the lattice translation symmetry on the finite-size cylin-
ders. For the calculations on the AC6 and tZC6 cylinders by
keeping 8000 states, the truncation errors are about 1× 10−5.
Although we cannot obtain the more accurate results, based
on the clearer PVB pattern with growing kept state number,
we argue that the PVB order is stable on these geometries. In-
terestingly, the field-theory analyses have indicated that such
a PVB state could emerge proximate to the Néel AFM phase
on both the spin-1/2 and the spin-1 honeycomb Heisenberg
models72. We also study the bond energy for other J2 around
the intermediate region. For J2 = 0.31, the systems also ex-
hibit the PVB pattern. However, for J2 ≥ 0.32 the bond en-
ergy pattern appears like Fig. 7, in consistent with the stripe
state.

To further distinguish the three different phases, we cal-
culate the spin gap on long cylinder. As the broken SU(2)
symmetry and emerging Goldstone boson, the spin gap is ex-
pected to vanish in both the Néel AFM and the stripe AFM
phases. However, as the spin singlet bonds formed in the
valence-bond solid states, the spin gap should be non-zero
in a PVB state. To find the spin gap on cylinder, we follow
the standard method in DMRG calculations. We first sweep a
long cylinder to find the ground state with the energy E0 , and
then we sweep the bulk by targeting the total spin S = 1 sec-
tor to find the lowest-energy state with the energy E1. Then
the spin gap of the bulk ∆T is the difference between E0 and
E1, ∆T = E1 − E0. We calculate the long cylinder to make
sure the spin gap ∆T is converged and independent of cylin-
der length. We do not show the data on AC cylinders as their
ground state in the large J2 side has the higher energy on our
studied systems. As shown in Fig. 9(a), the spin gap ∆T is
vanishing-small for J2 . 0.25, which is consistent with the
Néel AFM order. At J2 ' 0.27, the spin gap increases dra-
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FIG. 8: The nearest-neighbor bond energy textures for J2 = 0.3 on (a) AC6-24 cylinder and (b) tZC6-18 cylinder, which are obtained by
keeping 8000 SU(2) states. The bond textures are obtained by subtracting the average bond energy. The blue and red bonds denote the positive
and negative bond textures, respectively. On both geometries, a PVB bond pattern is found. For AC6-24 in (a), only the left half lattice is
shown here.

matically and then decreases for J2 & 0.35. The enhanced
spin gap in the intermediate region could be served as an ev-
idence for the valence-bond solid states. In the stripe phase
J2 & 0.32, the spin gap is large on ZC4 cylinder, which is re-
lated to finite-size effects because it should be vanished in the
thermodynamic limit. This size effect can be understood from
the bond energy in Fig. 7, which has the AFM bonds along the
y axis. Thus, the spin triplet gap is strongly correlated with the
size scale in the y direction, which accounts for the large gap
on the narrow ZC4 cylinder. To show the size dependence of
spin gap on the cylinder width, we also calculate the spin gap
on the ZC6 cylinder deep inside the stripe phase. As expected,
the spin gap on ZC6 cylinder drops rapidly, consistent with the
vanished gap in the thermodynamic limit. We do not show the
spin gap on ZC6 cylinder for the intermediate region because
the DMRG calculations in the spin-1 sector are quite far from
convergence in this region.

Finally, we demonstrate the bulk ground-state energy for
J2 = 0.3 on different cylinders. We obtain the bulk energy
from calculating all the bond energy in the middle of cylinder.
As shown in Fig. 9(b), the ground-state energy at J2 = 0.3
smoothly increases with growing cylinder width, which be-
haves differently from the energy scaling in the stripe phase
demonstrated in Fig. 6(c), where the energies on the two ge-
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(b) J2 = 0.3(a)

FIG. 9: (a) J2 dependence of the spin gap on the ZC4 and ZC6 cylin-
der systems. (b) Cylinder width dependence of the bulk ground-state
energy on AC (AC4 and AC6) and ZC (ZC4 and ZC6) cylinders for
J2 = 0.3.

ometries scale separately. We also notice that the ground-state
energy per site at J2 = 0.3 changes slightly with growing sys-
tem width. The energy appears to approach e∞ ' −1.262,
which provides an upper bound for the ground state energy in
the thermodynamic limit.
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FIG. 10: (a) J2 dependence of the bipartite entanglement entropy on
the ZC4 cylinder. At J2 ' 0.28 and 0.32, the entropy has the sharp
jump and drop, which appear consistent with the quantum phase tran-
sitions. Entanglement spectra for (b) J2 = 0.0 on ZC6-18 cylinder,
(c) J2 = 0.4 on ZC6-18 cylinder, and (d) J2 = 0.3 on ZC4-24 cylin-
der. The blue numbers denote the number of the largest eigenvalues
in each S sector. The green dashed lines denote the tower of states
structure in the magnetic ordered states.

V. ENTANGLEMENT ENTROPY AND SPECTRUM

To further characterize the different phases and phase tran-
sitions, we study the bipartite entanglement entropy and en-
tanglement spectrum. In Fig. 10(a), we demonstrate the J2
dependence of entropy on the ZC4 cylinder. The entropy
shows a sharp jump at J2 ' 0.28 and a drop at J2 ' 0.32,
which have been shown to characterize various phase transi-
tions in one-dimensional systems73–76 and are consistent with
the identified transitions points. While the discontinuous jump
at J2 ' 0.28 suggests a first-order transition from the Néel
AFM to the non-magnetic phase, the smoother entropy de-
crease near J2 ' 0.32 might be consistent with a weak first-
order transition.

In Figs. 10(b-d), we demonstrate the bipartite entanglement
spectrum in each phase. For the ordered phases with con-
tinuous symmetry breaking, the lower part of the entangle-
ment spectrum is in correspondence with the “tower of states”
(TOS) spectrum77–79. In Figs. 10(b) and 10(c) of the spec-
tra in both the magnetic ordered states with breaking SU(2)
to U(1) symmetry, the spectra have a single dominant eigen-
value in each S sector, which are separated from the higher

levels by the entanglement gap and follow a linear behavior
with S(S + 1) (S is the quantum number of total spin). All
these features are consistent with the TOS structures of the
energy spectra in the corresponding magnetic ordered states
on the honeycomb lattice55. In the intermediate phase region,
the spectrum is totally different from the magnetic ordered
states, as shown in Fig. 10(d) for J2 = 0.3 on ZC4 cylinder80.
The low-lying degeneracy in the S = 1 sector changes from
1 to 2, and there is no clear entanglement gap between the
largest eigenvalues and the rest of spectrum. These features
distinguish the intermediate phase from the magnetic ordered
phases.

VI. SUMMARY

We have studied the quantum phase diagram of the spin-
1 J1-J2 Heisenberg model on the honeycomb lattice using
density-matrix renormalization group calculations on cylinder
system. We have established three different phases including
two magnetic ordered phases and a non-magnetic phase. For
J2 . 0.27, we find a Néel AFM phase. For J2 & 0.32, we
find two possible candidate magnetic ordered states depend-
ing on the different geometries. On AC cylinders, the system
is a magnetic order state with the 8-site unit cell, while on
ZC cylinders it is a stripe AFM state. By comparing the bulk
ground-state energy on the two geometries, we find that the
ZC cylinders always have the lower energy than the AC cylin-
ders, which strongly suggests the stripe AFM state as the true
ground state in the thermodynamic limit.

Between these two magnetically ordered phases with
0.27 . J2 . 0.32, we find a non-magnetic phase region.
On both AC6 and tZC6 cylinders, the systems have the
non-uniform bond energy. By increasing the kept states to
8000 SU(2) states (equivalent to about 24000 U(1) states),
we find a stable plaquette valence-bond order emerging in the
systems. The spin gap on finite-size cylinder also enhances
dramatically in this phase region. Our results indicate that
the plaquette state is a strong candidate for this non-magnetic
phase. Moreover, the sizable entropy change on the phase
boundaries indicates that the nature of the phase transitions
from the magnetic ordered phases to the non-magnetic phase
might be first order.
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