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Even if a noninteracting system has zero Berry curvature everywhere in the Brillouin zone, it is possible to in-
troduce interactions that stabilise a fractional Chern insulator. These interactions necessarily break time-reversal
symmetry (either spontaneously or explicitly) and have the effect of altering the underlying band structure. We
outline a number of ways in which this may be achieved, and show how similar interactions may also be used to
create a (time-reversal symmetric) fractional topological insulator. While our approach is rigorous in the limit of
long-range interactions, we show numerically that even for short-range interactions a fractional Chern insulator
can be stabilised in a band with zero Berry curvature.

There has been a great deal of recent interest in fractional
Chern insulators (FCIs), which are the lattice analogs of frac-
tional quantum Hall (FQH) states.1 In addition to providing
new experimental settings in which to explore topologically
ordered phases of matter, FCIs demonstrate lattice effects that
substantially change the underlying physics from the quantum
Hall picture.

The usual description of FCIs proceeds in the following
way: Imagine starting with a so-called “Chern band”—a band,
which when completely filled with noninteracting electrons
would have nonzero quantised Hall conductivity. One next
imagines partially filling the band and introducing an interac-
tion which creates a gapped, many-body ground state. If the
interaction is chosen correctly, the resulting state will have a
fractionally quantised Hall conductivity.

While this has proved to be a reasonable and successful ap-
proach to the problem, we believe it overemphasises the struc-
ture of the noninteracting band, which may be irrelevant if
the particles interact strongly. To make this point clear, we
will construct an example that starts with a noninteracting sys-
tem having zero Berry curvature everywhere in the Brillouin
zone. Then, by adding an appropriately chosen interaction
that breaks time reversal symmetry (either explicitly or spon-
taneously), we will find that the ground state is an FCI. We
will then show how similar interactions may be used to gener-
ate a time reversal-symmetric, fractional quantum spin Hall
insulator,2 which is an example of a fractional topological
insulator (FTI). We support our findings with numerical ev-
idence from exact diagonalisation studies. While our analytic
arguments rely on the use of very long-range interactions, we
find in our numerical work that even fairly short range interac-
tions can form fractional Chern insulators in bands with zero
Berry curvature.

I. FCI IN A BAND WITH NONZERO CHERN NUMBER

We will first outline the conventional method for obtaining
an FCI state from an underlying topological band structure.
In Sec. II we will then attempt to reproduce this state, starting
from a band with zero Berry curvature.

Although our construction is very general, let us restrict our
attention to the case of spinless particles on a honeycomb.

This is just a triangular lattice with two sites per unit cell,
which we will call A- and B-sites. We consider a kinetic en-
ergy,

K̃ =
∑
r,r′

t̃rr′ c
†
rcr′ , (1)

where r and r′ are summed over the sites of the lattice and
t̃rr′ describes the hopping amplitudes. In order to produce a
Chern band, the hoppings (which are short-range) couple the
sublattices, and phases are introduced which break time rever-
sal symmetry. Typically one tunes hoppings up to third nearest
neighbours in order to get a very flat (although not perfectly
flat) Chern band. If desired, one can use further neighbour
hoppings to make the bands extremely flat. For example, t̃rr′
may be chosen to describe the flattened Haldane honeycomb
model.3–5

If one introduces a suitable short-range interaction (such as
a nearest-neighbour repulsion), which we write as

Ṽ =
∑
rr′

vrr′ n̂rn̂r′ , (2)

with n̂r = c†rcr the particle number on site r, then the total
Hamiltonian

H̃ = K̃ + Ṽ (3)

will produce an FCI ground state at the appropriate particle
filling fraction. For example, FCI states analogous to Laugh-
lin states may be observed at ν = 1/3 for fermions and
ν = 1/2 for bosons. This conclusion has been established
numerically by a number of groups.5,6

II. FCI IN A BAND WITH ZERO BERRY CURVATURE

Now consider a different band structure, described by a ki-
netic energy K, which has zero Berry curvature throughout
the Brillouin zone. We claim that we can switch on an inter-
action, V , such that the ground state of this new model is also
an FCI and is adiabatically connected to the FCI described
in Sec. I. Our plan is to choose the interaction V such that
H = K + V mimics the Hamiltonian (3), which is known to
give an FCI.
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To be specific, let us write the noninteracting kinetic energy
as

K =
∑
r,r′

trr′ c
†
rcr′ (4)

where trr′ describes new hopping parameters. For simplicity
we will consider a hopping model which is diagonal in the
sublattices, i.e.

tr,r′ =


tArr′ if r, r′ ∈ A

tBrr′ if r, r′ ∈ B

0 otherwise

. (5)

We also break the symmetry between sublattices by giving
each one a different on-site energy, trr. In this way, we can
arrange such that the two bands do not overlap in energy, the
eigenstates are of the simple plane wave form eik·R, and each
band involves only one sublattice. Since the bands are com-
pletely decoupled, for any translationally invariant hopping
trr′ , the eigenfunctions have trivial structure and all bands
have zero Berry curvature (F ) throughout the Brillouin zone
(see Appendix A for the definition of this quantity).

Now, certain interactions, which are short-range with a de-
cay length ξ on the order of several lattice spacings, can be
treated accurately within mean field theory as long as ξ is
much larger than the interparticle spacing. Consider an op-
erator

N̂r =
1

n̄

∑
r′

f(r′ − r)n̂r′ (6)

where n̄ is the average density of electrons in the system. In
this expression, f is some function (like a Gaussian) that is
smooth and slowly decaying with length scale ξ, and has nor-
malisation ∑

r′

f(r′ − r) = 1. (7)

By short-range with decay length ξ, we mean that the function
f(r′ − r) satisfies

|f(r′ − r)| < Ce−|r
′−r|/ξ (8)

for all sufficiently large |r′ − r| and with finite constants C
and ξ.

In this way, the operator N̂r measures the density of elec-
trons in a region of length scale ξ and compares it to the av-
erage density, n̄. If the state being operated on has approxi-
mately uniform density, and if we take ξ to be large enough, it
must be the case that N̂r is extremely close to unity (since we
are comparing the average density in a very large region to the
real average density). We can then accurately approximate N̂r

by unity and do not need to treat it as an operator. As we take ξ
larger and larger, this approximation becomes more and more
accurate (assuming there is no phase separation). The fluctua-
tions of N̂r around this average may be treated perturbatively
(see Appendix B).

We may now consider the interaction term

U =
1

2

∑
rr′

Trr′ :
[
N̂rc

†
rcr′ + c†rcr′N̂r′

]
:, (9)

where Trr′ is an interaction strength (to be described below)
and the entire expression is normal ordered. This operator
is Hermitian and includes four-fermion interaction operators,
although it is not generally a density-density interaction. The
interaction is short-range in that it involves particles that are
separated by a maximum distance on the order of ξ. In the
mean field limit, N̂r becomes unity and we obtain

U →
∑
rr′

Trr′ c
†
rcr′ , (10)

which is simply a hopping term. Thus, let us choose

Trr′ = t̃rr′ − trr′ , (11)

where trr′ and t̃rr′ were defined in Eqs. (5) and (1) respec-
tively, so that

K + U → K̃ (12)

at the mean field level. In this way, our scheme uses an inter-
action to modify the “effective” band structure of the under-
lying (topologically trivial) model. Note that since t̃rr′ breaks
time reversal, so too does Trr′ .7

One might worry that this density-dependent interaction is
unstable to phase separation—and indeed, it is fairly simple
to write down an expression for Trr′ for which this occurs.
To make sure that this is always disfavoured, we can add a
diagonal term to the interaction strength, writing

Trr′ → Trr′ +Mδrr′ , (13)

where the second term may be absorbed into the amplitude
Trr′ . When added to Eq. (9), this diagonal term generates
a density-density interaction between a particle at r and its
surrounding neighbourhood, suppressing density fluctuations
on the scale of ξ. By adjusting the strength of M , we can
ensure that complete phase-separation is never favoured, but
that the small density fluctuations required for an FCI state are
allowed.

As mentioned previously, our mean field picture is exact in
the large ξ limit. Another concern is whether this mean field
state remains stable in the presence of fluctuations about this
limit. In Appendix B we discuss the perturbative corrections
due to the interaction term U , and justify the stability of the
FCI state. We then provide numerical evidence in support of
the FCI state in Sec. IV.

The interaction U changes the effective band structure of
the model, and so if we now use the total interaction

V = Ṽ + U, (14)

then the Hamiltonian H = K + V completely mimics the
above H̃ (Eq. (3)) and will have an FCI ground state. As re-
quired, the noninteracting band structure of K has zero Berry
curvature and the topological properties are induced purely by
the interaction term, V .
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The idea underpinning this approach is that hopping terms
are essentially a subset of all possible interaction terms. By
introducing an auxiliary operator—in this case a local density
operator—that acts as a number on the ground state, an inter-
action can be written down that modifies the effective single-
particle band structure. The trade-off for this is that the inter-
actions are no longer density-density, and have a range that is
finite but may cover several unit cell lengths.

In the expression above we have broken time-reversal sym-
metry by hand with our choice of interactionU . If preferred, it
is possible to generate an FCI state spontaneously with a time
reversal invariant interaction, as discussed in the next section.
This requires us to introduce a spin-1/2 degree of freedom, but
will also allow quantum spin Hall insulator (or FTI) states to
be realised.

III. TIME REVERSAL INVARIANT INTERACTIONS

A. Spin-dependent Band Models

One objection to the approach outlined above is that it
breaks time reversal symmetry explicitly through the interac-
tion U . In order to use a time reversal symmetric interaction,
we now promote the spinless fermions to spin-1/2 fermions.
These obey the usual interrelations under time reversal, which
can be written as

ΘcrσΘ−1 = iτyσσ′crσ′ , (15)

where τy is the Pauli y-matrix, σ and σ′ are spin labels and
Θ is the time reversal operator.8 We have also included a spin
index on the field operators crσ .

The underlying topologically trivial bands must now have a
spin dependence. For simplicity, we will treat spin as a good
quantum number and write the kinetic energy term as

K ′ =
∑
rr′σ

t′rr′σ c
†
rσcr′σ, (16)

although in general we could have included spin-flipping
terms. As before, we will assume that the different sublattices
have different on-site energies. Then, following the arguments
of Sec. II, each of the four bands will have exactly zero Berry
curvature.

For the hopping parameters of our target Chern band model,
we take t̃rr′ from Eq. (1) for one spin species but, crucially,
invert the Chern number for the other spin species by taking
the conjugate hopping. In other words, we take

t̃′rr′↑↑ = t̃rr′ (17)

t̃′rr′↓↓ =
[
t̃rr′
]∗

(18)

and set any spin-flipping terms to zero. This defines a new
topologically nontrivial kinetic energy, K̃ ′, which one can
easily show is symmetric under time reversal symmetry. This
kinetic energy therefore generates a low-energy band for each
spin species, and these have equal and opposite (nonzero)
Chern number when filled.

The framework outlined above leads to a Hamiltonian that
conserves spin. For example, K̃ ′ could describe the kinetic
energy of the Kane-Mele model without the Rashba spin-orbit
term.2 In principle, our approach could be generalised to time-
reversal invariant models that do not conserve spin, such as the
full Kane-Mele model. However, in that case, the interactions
we describe below would involve complicated terms that mix
both physical spin species—we will restrict our discussion to
the simpler, spin-conserving case.

To generate a fractional state, we would partially fill the
lowest band for each spin species and turn on a short-range
interaction,

Ṽ ′ =
∑
rr′σ

v′rr′σn̂rσn̂r′σ. (19)

This is diagonal in the spin index and so at this stage there is
no interaction between spins.

The total Hamiltonian

H̃ ′ = K̃ ′ + Ṽ ′ (20)

would generate a fractional topological state, but the overall
Chern and spin Chern number would depend on the filling
fraction of each of the two lowest spin bands. If both bands are
filled equally, say at ν = 1/3 each, then the system will retain
its time reversal symmetry and will form a fractional topo-
logical insulator (FTI) state. If one band remains empty but
the other is (fractionally) filled, then the system could sponta-
neously break time reversal symmetry and form an FCI state,
depending on the interaction V . The relative stability of these
two possibilities will be discussed in Sec. III C.

B. Topological Phases in Bands with Zero Berry Curvature

We now follow a similar approach to Sec. II to write down
an interaction which changes the effective band structure from
K ′ to K̃ ′. We use the local density operator N̂r as defined in
Eq. (6), but the lattice site density operator now sums over
both spin species,

n̂r =
∑
σ

n̂rσ. (21)

With this, we write

U ′ =
∑

rr′σσ′

T ′rr′σσ′ :
[
N̂rc

†
rσcr′σ′ + c†rσcr′σ′N̂r′

]
:, (22)

where any diagonal interaction-hopping terms necessary to
prevent phase separation have been absorbed into T ′rr′ .
Choosing

T ′rr′ = t̃′rr′ − t′rr′ , (23)

and following our previous reasoning, in the mean field limit
one finds

K ′ + U ′ → K̃ ′, (24)

which generates a spin-Chern band for each spin species. Fi-
nally, using the complete interaction U ′ + Ṽ ′, it is possible to
generate a fractional topological state from the noninteracting,
zero Berry curvature system.
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C. Tuning Ferromagnetism

We noted previously that Hamiltonian (20) could gener-
ate either an FCI or an FTI state, depending on whether or
not time reversal symmetry was spontaneously broken. For
example, if the lowest two bands were filled with density
(ν↑, ν↓) = (1/3, 1/3) then a state with zero Chern number
but nonzero spin Chern number would be produced. On the
other hand, if the fillings were (ν↑, ν↓) = (1/3, 0) then an FCI
state with nonzero Chern number would be produced.9

These states occur at different overall fillings, but also de-
pend on whether the system is susceptible to spontaneous fer-
romagnetism. In order to tune this susceptibility, we introduce
the spin-spin interaction

Vspin = α
∑
r

(
N̂r↑ − N̂r↓

)2
(25)

where the operators

N̂rσ =
1

n̄

∑
r′

f(r− r′)n̂rσ (26)

calculate the local spin density in a region of linear size ξ.
For α > 0, differences in spin density will lead to an energy
penalty, encouraging the fermions to be split equally between
both spin species. For α < 0, spontaneous ferromagnetism
will be energetically favoured, and fermion spins will tend to
align. By tuning α, it is therefore possible to produce both FTI
and FCI states from a topologically trivial system by adding a
time reversal invariant interaction.

The philosophy of this section is essentially the same as the
spinless fermion case: by choosing a suitable interaction, the
effective band structure of the single particle problem can be
altered. Using spin-1/2 fermions allows us to do this without
breaking symmetry explicitly, and we can thus generate both
FCI and FTI phases.

IV. NUMERICAL RESULTS

To support the arguments above, we now give some finite-
size numerical results which show an FCI state that has been
generated using interactions of the form described above. Al-
though our above arguments are rigorous in the limit of very
long-range interactions, we will find that even for a short-
range interaction, we can stabilise a fractional Chern insulator
in a band with zero Berry curvature.

We will consider a model of bosons hopping on a honey-
comb, forming bands with zero Berry curvature (as in section
II). We will consider a case where the interaction strength
(which determines the scale of K̃) is much greater than the
hopping bandwidth K. For simplicity we can set trr′ = K =
0 which is appropriate in this limit. For the kinetic energy K̃
that we wish to simulate, we consider the flattened Haldane
model, which is outlined in Ref. 5. The flattened Chern band

hopping, K̃, is defined by

K̃HH = −t̃1
∑
〈rr′〉

[
c†r′cr + h.c.

]
− t̃2

∑
〈〈rr′〉〉

[
c†r′cre

iφrr′ + h.c.
]

−t̃3
∑
〈〈〈rr′〉〉〉

[
c†r′cr + h.c.

]
+M

∑
r

c†rcr, (27)

where t̃1 = 1, t̃2 = 0.6, t̃3 = −0.58, φ = 0.4π, and ‘HH’
stands for Haldane honeycomb. This has a flatness ratio of
about 50, and exhibits a ν = 1/2 FCI state that remains stable
even in the presence of first and second neighbour density-
density interactions.5 In order to prevent phase separation, we
have also added a diagonal term with strength M , which in
the noninteracting model appears as a chemical potential.

For simplicity, we assume we have hardcore bosons and we
take the function f(r) to be a simple top hat,

f(r′ − r) =

{
1
n(l) if |r′ − r| ≤ l
0 otherwise

. (28)

In this expression, l is a length scale that covers a small num-
ber of nearest neighbours and n(l) is the number of sites that
lie within the top hat, so that the function is normalised. Using
Eq. (6), we can now write the flattened Haldane model as the
interaction

UHH =
1

2

∑
rr′

THH
rr′ :

[
N̂rc

†
rcr′ + c†rcr′N̂r′

]
:, (29)

where THH
rr′ contains all the hopping parameters from Eq. (27)

(including the diagonal M term). Since we are considering
hardcore bosons, we do not need to add any additional inter-
actions in order to stabilise the FCI state at half filling.

We carry out exact diagonalisation of UHH on a 24-site lat-
tice with 6 particles and on a 32-site lattice with 8 particles.
In both cases we choose the size of the top hat, defined by l,
to extend up to third-nearest neighbours—note that this is no
further than the hopping distance. For the 24-site case we set
M = 2 and for the 32-site case we set M = 3, chosen to give
the largest many-body gap to ground state splitting ratio. In
both cases, we find strong numerical evidence to suggest that
the ground state is a ν = 1/2 FCI.

In Fig. 1 we plot the low-lying energy levels for each lattice
size as magnetic flux φ is threaded through one handle of the
torus. In each case we find a twofold degenerate ground state
that is separated from excited states by a large many-body
gap, and which occurs at the momentum values predicted for
a ν = 1/2 FCI by the generalised Pauli principle.10 As flux
is threaded through the handles of the torus, the two ground
states for the 24-site case evolve into each other with a level
crossing. For the 32-site case, the two ground states are in
the same momentum sector, and display an avoided crossing
under a flux insertion.

We have also calculated the particle entanglement spec-
trum for various partitions for each lattice size.11,12 In Fig 2
we show the particle entanglement spectrum for the 32-site
lattice, tracing out three of the eight particles (we form the
density matrix from an incoherent superposition of the two
degenerate ground states, ρ̂ = 1

2

∑
|ψi〉 〈ψi|, as motivated
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Figure 1. (colour online). Low-energy spectra as flux φ is inserted
through one handle of the torus for the half-filled honeycomb lattice
with (a) 24 sites and (b) 32 sites. Insets show a close-up of the ground
state energy splitting. This figure gives evidence that the ground state
of our model Hamiltonian (bosons on a honeycomb with zero hop-
ping and interaction given by Eq. 29) is a fractional Chern insulator.
See main text for details of the model.
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Figure 2. (colour online). Particle entanglement spectrum forN = 8
hardcore bosons on a 32-site honeycomb, with NB = 3 particles
traced out. N1 and N2 are the number of unit cells in each direction,
with k1 and k2 the corresponding momentum integers in the Bril-
louin zone. The number of states below the dashed line matches the
expected quasihole counting rules (22 states in each sector, giving a
total of 352 states.). This figure gives evidence that the ground state
of our model Hamiltonian (bosons on a honeycomb with zero hop-
ping and interaction given by Eq. 29) is a fractional Chern insulator.
See main text for details of the model.

in Ref. 12). The entanglement spectrum shows a clear en-
tanglement gap, and the number of states below this gap
obeys the expected (1, 2)-admissible quasihole counting rules
for each momentum sector.10 This strongly suggests that our
interaction-stabilised state is in the same universality class as
other ν = 1/2 FQH and FCI states.

V. DISCUSSION

In this article we have proposed a type of interaction that
may be used to generate fractional topological phases from
a topologically trivial band structure. The underlying idea
throughout is that hopping, i.e. kinetic energy terms, are ef-
fectively a subset of the possible interaction terms. As such, it
is possible to change the single particle spectrum using an in-
teraction rather than a kinetic energy term. We have outlined
how this may be achieved by interacting with a local density
in a region of size ξ: it is possible that other approaches exist
which use the same philosophy.

Although we have used a formally short-range expression
for N̂r in the arguments above, our approach should also ap-
ply more generally (including, for example, cases where N̂r

decays algebraically). The essential requirement is that the
function f(r′−r) be normalised as in Eq. (7), although it will
also need to be suitably well behaved that it does not favour
charge density wave states.13

We note, however, that to change the Chern number of
a band using an interaction, the interaction must be strong
enough to mix the single-particle bands—i.e. it must be on
the order of the gap between the bands before the interaction
is added. It is often the case that FCIs are studied for flat bands
in the very weak interaction limit. For this case our strategy
will not work, since a very weak interaction would not be able
to change the effective Chern number of the band. However,
one could also consider a more complicated strategy where the
lattice translational symmetry is broken down further, enlarg-
ing the unit cell such that a band with zero Chern number is
broken into two bands with opposing nonzero Chern numbers.
This could be done with an arbitrarily weak perturbation.

Although the interactions we consider are not of the
density-density type, density-dependent hopping interactions
are predicted to arise in systems of cold atoms under cer-
tain conditions. They may arise as higher-order terms in cer-
tain tight-binding approximations14 and are also suggested
to occur in effective Hamiltonians when band mixing is
important.15,16 More directly, density-assisted hopping terms
may be induced using a periodically driven magnetic field
to modulate interaction strengths,17,18 an approach which
may also be used to produce density-dependent synthetic
gauge fields.19 In addition, vacancy-assisted hoppings have
recently been discussed in the context of kinetically con-
strained models, where they may also lead to topologically
ordered phases.20

Nonetheless, these proposals have yet to be realised in a
laboratory, and in their current formulation would not be able
to realise the specific local density Hamiltonians discussed in
this article. For the time being, experimental realisations of
FCI states seem most likely to be achieved through the con-
ventional Chern band route, a direction in which substantial
progress has already been made.21–23

Finally, it is interesting to note that our construction pro-
vides a nice counterexample to the claims of Ref. 24 (which
have also been disproven in another manner by the current
authors in Ref. 25). Ref. 24 claims to calculate the Hall con-
ductivity of an FCI as an integral of the Berry curvature of
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the noninteracting bands multiplied by some occupancies over
the Brillouin zone. It is clear that this cannot be correct, since
in our construction the Berry curvature of the noninteracting
bands is strictly zero (so that Ref. 24 would always predict
zero Hall conductivity) whereas, due to the (time reversal-
breaking) interaction, the system is an FCI with quantised,
nonzero, Hall conductivity.
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Appendix A: Berry Curvature and Berry Matrix

In this appendix we will briefly outline the definitions of
Berry curvature that we use in the main text. First, we write
the single-particle Bloch solution for the ath band as

ψak(r) = eik·ruak(r), (A1)

where uak(r + R) = uak(r) is periodic under lattice transla-
tions. For a single band, the (gauge-invariant) Berry curvature
is defined through

F a(k) = i

〈
∂uak
∂k

∣∣∣∣× ∣∣∣∣∂uak∂k

〉
, (A2)

where, for a two-dimensional system in the xy-plane, we
mean the kz-component of the cross product. Integrating this
quantity over the Brillouin zone (and dividing by 2π) gives
the Chern number, which is proportional to the transverse Hall
conductivity of the filled band and must take an integer value.

When there are several degenerate (or nearly degenerate)
bands, the generalisation of the Berry curvature is the Berry
matrix,

F ab(k) = i

〈
∂uak
∂k

∣∣∣∣× ∣∣∣∣∂ubk∂k

〉
(A3)

+i
∑
c

〈
uak

∣∣∣∣∂uck∂k

〉
×
〈
uck

∣∣∣∣∂ubk∂k

〉
,

where the sum over c includes all bands in the degenerate mul-
tiplet. The Berry matrix is not gauge invariant itself, but mea-
surable quantities are contained within gauge-invariant ex-
pressions like the trace. We note that the components of this
matrix vanish trivially if the multiplet contains all bands of the
system.

In an FCI state, the noninteracting band picture breaks
down and we can no longer calculate the Chern number from
the single-particle properties. Instead, the many-body Berry
curvature is calculated by threading flux through the handles

of the underlying torus. If the many-body ground state is writ-
ten as |Ψ〉, and we thread flux φ1 and φ2 through each handle,
then the many-body Berry curvature is defined through

F (φ1, φ2) = i

[〈
∂Ψ

∂φ1

∣∣∣∣ ∂Ψ

∂φ2

〉
−
〈
∂Ψ

∂φ2

∣∣∣∣ ∂Ψ

∂φ1

〉]
. (A4)

The many-body Chern number can then be calculated by inte-
grating the above quantity over φ1 and φ2.

Appendix B: Stability Beyond Mean Field Theory

In Sec. II we introduced an interaction that reproduces the
kinetic energy of a target Chern band model exactly in the
mean field limit. In this appendix we will consider pertur-
bative corrections to this mean field picture, and justify the
stability of the FCI ground state.

When the correlation length ξ tends to infinity (or reaches
the system size in the finite size case), the ‘local’ density op-
erator N̂r can be replaced with unity. In general, the operator
U can be written as U = UMF + δU , with

UMF =
∑
rr′

Trr′c
†
rcr′ , (B1)

δU =
1

2

∑
rr′

Trr′ :
[
δN̂rc

†
rcr′ + c†rcr′δN̂r′

]
: (B2)

and

δN̂r = N̂r − 1 =
1

n̄

∑
r′

f(r′ − r) [n̂r − n̄] . (B3)

In this way, the perturbation δU depends on the density fluctu-
ations in a region of linear dimension ξ, scaled by the average
particle density, n̄.

In order to estimate the size of the corrections due to δU ,
we first recall that for a general, uncorrelated Poisson process,
density fluctuations in an area of linear size ξ scale as δN̂r ∼
1/ξ. Quantum Hall states are more correlated than this, and so
we expect their density to fluctuations to scale as δN̂r ∼ 1/ξ
at most. Assuming that this property transfers to systems on a
lattice, we expect δNr acting on an FCI ground state to have
an effect that is no larger than O(1/ξ).

The action of the hopping component of δU is bounded
by the maximum bandwidth, W , multiplied by the number
of neighbouring sites and orbitals involved in the sum, h. At
pth order in perturbation theory, the action of δU on the FCI
ground state is then bounded by

δU (p) <

(
A
hW

ξ

)p
, (B4)

with A a constant that depends on energy denominators and
scale factors of order unity. By choosing ξ large enough, we
can ensure that perturbative corrections of this form are negli-
gible and convergent.

However, our assumption that δN̂r ∼ 1/ξ is only valid at
low orders in perturbation theory when the state being acted
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upon is close to a (homogeneous) FCI ground state. After ap-
plying δU many times, perturbative hopping processes may
generate virtual phase-separated states, which have δN̂r ∼ 1.
Assuming that the hopping described by Trr′ can transfer par-
ticles by up to L sites, virtual states that move particles by
linear dimension ξ will first start to appear at order ξ/L in
perturbation theory. A finite density of particles, over a region
of area ξ2 may then be moved, hence significantly changing
the value of N̂ at order (ξ/L)Cξ

2

in perturbation theory where

C is some constant. We can push these contributions to arbi-
trarily high order in perturbation theory by making ξ larger.
Additionally, we can suppress these perturbative corrections
with a large energy denominator by choosing M , the diag-
onal interaction term in Eq. (13), to be large and by adding
additional density-density interactions between nearby neigh-
bours. Finally we note that our numerical work confirms that
even for small ξ, fractional Chern insulators may be stabilised.
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