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Recently, several groups have reported observations of collective modes of the charge order present
in underdoped cuprates. Motivated by these experiments, we study theoretically the oscillations of
the order parameters, both in the case of pure charge order, and for charge order coexisting with
superconductivity. Using a hot-spot approximation we find in the coexistence regime two Higgs
modes arising from hybridization of the amplitude oscillations of the different order parameters.
One of them has a minimum frequency that is within the single particle energy gap and which is a
non-monotonic function of temperature. The other – high-frequency – mode is smoothly connected
to the Higgs mode in the single-order-parameter region, but quickly becomes overdamped in the case
of coexistence. We explore an unusual low-energy damping channel for the collective modes, which
relies on the band reconstruction caused by the coexistence of the two orders. For completeness, we
also consider the damping of the collective modes originating from the nodal quasiparticles. At the
end we discuss some experimental consequences of our results.
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I. INTRODUCTION

Despite the decades of intense research efforts, super-
conductivity in cuprates remains a profound mystery.
However, recently there has been a lot of progress in
clarifying and refining the phase diagram of these ma-
terials experimentally.1,2 In particular, there is growing
evidence of a charge order existing in the pseudogap
state of several cuprate families,3–9 which also coexists
and competes with superconductivity at lower tempera-
tures. Furthermore, it appears that this order has a non-
trivial d-wave phase factor,7,8,10 implying that within a
one-band model of copper sites it describes ordering en-
tirely on the links. For this reason it has been dubbed
“bond-density wave” (BDW).11 Recently, several groups
employed time-domain reflectivity12 as a tool to study
this order,13–16 and, in particular, its collective modes.
In some cases they were able to extract the amplitude
and phase oscillations and to track them as the system
became superconducting. These results can provide valu-
able insights into the physics of both pseudogap and su-
perconducting states, and, thus, it is desirable to have
a better theoretical understanding of the possible collec-
tive modes of these systems. One particularly interesting
point is that the coexistence of charge order and super-
conductivity makes possible the direct observation of the
superconducting Higgs mode, as first pointed out in the
pioneering work of Littlewood and Varma.17

In this work we present a theoretical study of the Higgs
modes,18 or oscillations of the amplitude,19 of the order
parameters in underdoped cuprates. We consider both
the pure BDW state, as well as the coexistent BDW-
superconductivity phase. We use the so-called “hot-spot”

model20–27 of the pseudogap phase, which is based on a
picture of a metallic state close to a magnetic instability,
and considers the physics of the special points on the
Fermi surface connected by the magnetic ordering vector.
Although relatively simple, this model has seen extensive
use recently, as it naturally leads to coexistence between
BDW and superconductivity, and also correctly predicts
the d-wave phase factor of the charge order.21–23

Our results provide a general framework for identify-
ing and understanding order-parameter collective modes
of the system. In the single-order phase (i.e., only BDW
or superconductivity) we find, as expected, a single am-
plitude mode, which is coupled with the quasiparticle
continuum and is always damped. However, the coex-
istence regime is much more interesting – the fluctu-
ations of the different order parameters become inter-
twined.17 As a consequence, in this region we find two
Higgs modes, which represent coupled oscillations of the
order parameters. One of the modes is slow, with fre-
quency well below the amplitude of the order parameters,
but which is, nevertheless, weakly damped. The other
mode is pushed inside the high-energy continuum, and
quickly becomes overdamped. We follow the slow mode
in the entire coexistence phase, and find its frequency
to be a non-monotonic function of temperature. This
mode is weakly damped through an unusual low-energy
decay channel for the antinodal qausiparticles, caused
by the coexistence of the two orders and the associated
band reconstruction. Even more unusually, this damp-
ing initially increases with the decrease of temperature.
To account for the damping from the gapless degrees of
freedom present at the nodal regions we develop a phe-
nomenological time-dependent Ginzburg-Landau theory.
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We demonstrate that, by allowing for significant damp-
ing, the in-gap mode is strongly suppressed, while the
frequency of the high-energy mode is brought down. Our
results provide a characterization of the amplitude modes
of the coexistent superconductivity-BDW system which
can be compared with the experimental data and used to
identify the appropriate Higgs modes of the system.

II. MICROSCOPIC CALCULATION OF

COLLECTIVE MODES FREQUENCIES

We will consider here the collective modes in a 2D
“hot-spot” model. Such a model can be obtained as a
low-energy theory from the 2D t-J-V model,20–23 which
contains hoppings t(1/2/3) on a square lattice as well as
nearest-neighbor exchange and Coulomb interactions J
and V . Specifically, one projects the lattice theory onto
regions in the vicinity of 8 “hot spots” where the Fermi
surface intersects the magnetic Brillouin zone boundary.
In the vicinity of these hot spots the nearest-neighbor
interactions J and V can be approximated by constants.
Time reversal symmetry allows the problem to be re-
duced to considering fermions near 4 inequivalent hot
spots where, in the channels of interest, the interactions
take the form

H∆
int =

gs
4

∑

k,p,q

Ψ†
k+q,aV̌∆Ψk,aΨ

†
p−q,bV̌∆Ψp,b, (1)

Hφ
int =

gc
4

∑

k,p,q

Ψ†
k+q,aV̌φΨk,aΨ

†
p−q,bV̌φΨp,b, (2)

where Ψa,b are Nambu spinors in pairs of hot-regions sep-

arated by the antiferromagnetic wave-vector ~K = (π, π)
and gs and gc are the non-retarded components of the in-
teraction in the superconducting and bond-density wave
(BDW) channels, respectively. V̌∆ and V̌φ are the vertices
for pairing in the superconducting and bond-density-
wave channels. Their explicit forms for the system stud-
ied here are shown in Eq. 4.

Due to the d-wave symmetry of the order parameters
one can further restrict attention to 2 of the 8 hot re-
gions.23 The interaction terms can be decoupled via a
Hubbard-Stratonovich transformation. In the usual man-
ner, the saddle point of the zero-frequency terms of the
decoupling fields leads to a mean-field theory, which in
this case has mean-field Hamiltonian

H =
∑

~k

Ψ†
~k
ȞMF(~k)Ψ~k +

2

gs
|∆|2 +

2

gc
|φ|2, (3)

where now Ψ is a Nambu spinor

(ck1↑, ck2,↓, c
†
−k2↓, c

†
−k1↑)

T describing one pair of hot
spots. The mean-field Hamiltonian describes two species
(denoted 1 and 2) of spinful fermions which pair only

with each other. Specifically,

ȞMF = Ȟ0 +∆V̌∆ + φV̌φ,

Ȟ0 = diag(ξ1, ξ2)⊗ τ̂z ,

V̌∆ = ρ̂0 ⊗ τ̂1, V̌φ = ρ̂1 ⊗ τ̂3,

(4)

where τ̂i and ρ̂i are Pauli matrices acting in particle-hole
space and species space, respectively, and ∆ describes
d-wave superconductivity while φ is the BDW order.23

Here, and in what follows, M̌ denotes a matrix in the
4× 4 Nambu-hot-spot space, and M̂ a 2× 2 matrix. The
self-consistency equations associated with Eq. 4 are

∆ =
gs
4
T
∑

k

tr V̌∆Ǧk,

φ =
gc
4
T
∑

k

tr V̌φǦk,
(5)

where Ǧk is the matrix Matsubara Green’s function of the
Hamiltonian in Eq. 3, which is described in Appendix A,

and k = (iǫn, ~k), with ǫn being a fermionic Matsubara
frequency. Here we have considered ∆ and φ to be real
and non-negative (they can always be brought to this
form via a gauge transformation).
In the case of a hot-spot model of cuprates, the two

species correspond to fermions within a vicinity of in-
equivalent “hot spots” in the Brillouin zone. Close to
the hot-spot points the electron dispersion can be mod-

eled as ξ1(~k) = ξ2(−~k) = vfkx + γk2y, where we include
the curvature γ as it plays an important role in break-
ing the degeneracy between the two orders and allowing
coexistence.23,28

We follow Ref. 23 by choosing units where vf = 1,
γ = 1/Λ = π, with Λ being the hot spot cutoff, and
parametrize {gc, gs} = 3J ± 4V with J = 1.2. Note
that V strengthens the interaction in the charge channel,
while decreasing the interaction in the superconducting
channel,29 and thus can be used to tune the coexistence
(as depicted in Fig. 1). We consider two qualitatively
different cases of coexisting charge order and supercon-
ductivity corresponding to the two dashed lines in Fig. 1:
one where charge order disappears for some finite temper-
ature below the superconducting Tc (V = 0.2), and one
where charge order survives all the way down to T = 0
(V = 0.21). In both of these cases, the BDW order will
onset at a temperature TBDW > Tc. The competition
between the two orders can be readily confirmed by a
decrease in φ below the superconducting Tc.
The ordering vector of the BDW is determined by

the separation in the Brillouin zone of the hot spots
being paired.20,21,23–26 It is important to note that we
are considering a BDW with ordering vector (Q,Q),
which is known to be the leading instability of this sim-
ple model.21,23–26 This is different from the experimen-
tally observed bond-oriented ordering directions (Q, 0)
and (0, Q), which correspond to a different choice of hot
spots for the BDW pairing to occur between. It is possi-
ble to stabilize the (Q, 0) and (0, Q) orders,24,26,30 but at
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FIG. 1. (Color online) Schematic phase diagram of the hot-
spot model,23,27 which illustrates the transition from super-
conductivity to charge order, tuned by V (nearest-neighbor
Coulomb interaction). In this work we consider the transition
from BDW to BDW-superconducting mixed state along the
“trajectories” indicated by the dashed lines. Depending on
the exact value of V the T → 0 limit of the system could be
either in a pure superconducting state (indicated by the blue
dashed line), or in a mixed state (green dot-dashed line).

the price of significantly complicating the model, and we
will not pursue these modifications here. We expect that
most of our results and conclusions are applicable to the
(Q, 0)/(0, Q) orders as well.

A. Hybridized Higgs modes

The collective modes of coexisting charge-density-wave
and superconducting states have been studied theoreti-
cally previously,17,31–36 and we apply the methods de-
veloped in these earlier works. In general, the collective
modes of the system are described by a 5 × 5 matrix,
which includes the amplitude and the phase modes of
each order parameter, as well as the density oscillations
of the fermions. However, this matrix factorizes into two
decoupled sectors,32 with a 2× 2 block describing the in-
teracting amplitude modes, and the other – 3× 3 – block
describing the order parameters phases coupled to each
other, as well as to the fermionic density.37 This being the
case, we devote our attention to the amplitude mode sec-
tor. In particular, we consider amplitude fluctuations of
these order parameters with finite frequency ω, but zero
wave-vector. Doing so allows us to calculate the mass of
the collective modes: the minimum energy required to
excite the collective modes of the ordered state.

Returning to the Hubbard-Stratonovich decoupling of
the hot-spot model’s interactions, inclusion of the finite-
frequency components of the decoupling fields leads to

the action

S = SMF+
∑

k,~q,ωm

Ψ̄~k+~q,ǫn+ωm

(

∆~q,ωm
V̌∆ + φ~q,ωm

V̌φ

)

Ψ~k,ǫn

+
2

gs

∑

~q,ωm

|∆~q,ωm
|2 +

2

gc

∑

ωm,~q

|φ~q,ωm
|2, (6)

where SMF is the action corresponding to Eq. 3, which
describes the mean-field state, and we are working in
imaginary time. We have kept here the fluctuations ∆(τ),
φ(τ) which are along the direction of ∆, φ in the complex
plane,38 corresponding to the amplitude modes,39, which
are described by the remaning terms in Eq. 6
Particularly we will be interested in the 2 × 2 matrix

collective mode propagator

Dij(ωm, ~q) = 〈Oi,ωm,~qOj,−ωm,−~q〉, (7)

where O1,ωm,~q = ∆ωm,~q and O2,ωm,~q = φωm,~q, and the
related object DR

ij(ω, ~q) = Dij(iωm → ω + i0+, ~q), which
can be obtained via analytic continuation. The off-
diagonal elements of this matrix are in general non-zero
and this is what leads to the hybridization of collective
modes. The poles of the retarded propagator D̂R will
describe the on-shell collective mode energies.
After integrating out the fermionic degrees of freedom,

D̂(ωm, ~q) can be expressed (at the quadratic level) as

D̂−1(ωm, ~q) = (D̂0)−1 − Q̂(ωm, ~q), (8)

where we have defined

D̂0 ≡
1

4

[

gs 0
0 gc

]

. (9)

Here Qij , also a 2 × 2 matrix, is the self-energy of
the collective modes due to the fermionic quasiparticles
(this treatment is equivalent to obtaining the generalized
susceptibilities of the order parameters within the RPA
approximation). Since, D̂0 is already known, Q̂ is the
object of interest.
Specifically, Q̂ is given by

Qij(iωm, ~q) = −T
∑

~k,ǫn

tr
[

Ǧ(~k, ǫn)V̌iǦ(~k − ~q, ǫn − ωm)V̌j

]

,

(10)
where i, j ∈ {∆, φ}. After performing the fermionic
Matsubara sums in Eq. 10 we analytically continue the
bosonic frequency to the real axis, in order to obtain the
finite-temperature, retarded self-energy QR(ω, ~q).40

The long-wavelength frequencies of the amplitude
modes are given by the solutions of

det[(D̂0)−1 − Q̂R(ω0 − iΓ0, ~q → 0)] = 0, (11)

where

ω0 ≡ Re[ω(q → 0)], (12)

Γ0 ≡ −Im[ω(q → 0)], (13)
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are, respectively, the mass and the decay rate of the Higgs
mode in the long wavelength limit. The in-gap collective
modes, are those for which ω0 < 2min(φ,∆).

One can explicitly show that the diagonal components
of Q̂R reproduce the usual 2φ/2∆ amplitude modes17 in
the limit where one of the order parameters vanishes.
However, in our case, we focus our attention on the
eigenmodes of the response function, which describe hy-
bridized modes of the system41 and which cannot be ob-
tained from purely considering the superconducting and
BDW susceptibilities.

Because we are interested in weakly damped oscilla-
tions such that it makes sense to describe them as col-
lective modes, we are able to employ a technique to de-
termine the complex frequency of the oscillations from
considerations of the response function on the real fre-
quency line. In particular, we obtain the real part of the
frequency as the solution to the equation Re[λ(ω0)] = 0
where λ is a solution to the eigenvalue problem

[

(D̂0)−1 − Q̂R(ω)− λ(ω)Î
]

(

∆ω

φω

)

= 0. (14)

The imaginary part of the frequency can then be calcu-
lated by expanding the eigenvalue as a function of com-
plex ω about the real frequency.31,42 We defer analysis of
the imaginary part (shown in Fig. 3) until Sec. II B and
focus now on the real part.
In order to track the temperature dependence of the

collective modes, we explicitly solve the mean field equa-
tions for a range of temperatures and then calculate the
collective mode frequencies at each temperature. Below
TBDW, in the pure BDW phase, we find an amplitude
mode starting at frequency 2φ, as expected.17 With the
onset of superconductivity, another mode appears inside
the gap. Physically, it represents coupled oscillations of
the two order parameters, wherein pairs are excited in
both the BDW and superconducting channels. The mix-
ing of the two orders arises due to the off-diagonal ele-
ments of Q̂R, proportional to φ∆. Intuitively, one might
anticipate the presence of such an in-gap mode by argu-
ing that one could convert one type of pairing into the
other at a smaller energy than it would take to completely
break a pair.
The temperature dependence of the mode’s frequency

is non-trivial – initially it grows, but then reaches a max-
imum and goes down with the decrease of either φ or ∆.
Depending on the shape of the coexistence region, this
mode either survives all the way down to T = 0 or it van-
ishes at the second transition to a single-order-parameter
phase. This behavior can be seen in Fig. 2. Note that
near the phase transitions, this mode approaches the
2φ/2∆ amplitude mode of the order that vanishes at that
temperature, which is the reason for the softening of the
mode in the vicinity of these points.

At the onset of the coexistent phase, the other (2φ)
mode is pushed to higher energies, enters the quasiparti-
cle continuum, and quickly becomes overdamped. Thus,

0.15 0.20 0.25 0.30 0.35 0.40
T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
eq
ue
nc
y

SC SC+BDW BDW
2∆

2φ

ω0

0.0 0.1 0.2 0.3 0.4 0.5
T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
eq
ue
nc
y

SC+BDW BDW
2∆

2φ

ω0

FIG. 2. (Color online) Mass of the in-gap hybrid Higgs mode
ω0 = Re[ω(q → 0)] as obtained from Eq. 11. The frequency is
plotted as a function of temperature for two different cases of
φ(T → 0) (V = 0.2, 0.21) as depicted by the dashed lines in
Fig. 1, using the units of Ref. 23. A soft mixed mode emerges
in both cases below the superconducting Tc. For reference,
twice the single-particle energy gap, which is determined by
2min(∆, φ), is plotted in the black dashed line. In proximity
of a phase transition, the in-gap mode approaches the 2∆/2φ
Higgs mode of the vanishing order.

it is outside the region of validity of our method of finding
ω, and so we do not track it.

B. Damping from antinodal quasiparticles

As explained in Sec. II A, the damping rate Γ0, can be
obtained by expanding the eigenvalues of Eq. 14 about
the real part of the zero momentum dispersion ω0. The
temperature dependence of this damping rate is shown
in Fig. 3. Although the in-gap mode stays below the
(2∆, 2φ) threshold, its frequency has a finite damping
rate, which, furthermore, initially increases as tempera-
ture goes down. This unusual behavior of the damping
arises from the BDW bubble QR

φφ; when just charge or-
der is present, the only scattering which could lead to
damping requires at least energy 2φ (as can be seen in
Fig. 4a). All other types of scattering have zero ma-
trix element, and thus there is no damping at q = 0 for
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FIG. 3. (Color online) Damping rate Γ0 of the in-gap collec-
tive mode in the long wavelength limit for two different values
of V corresponding to the two trajectories depicted in Fig. 1.
Damping is an order of magnitude smaller in the case where
φ(T → 0) 6= 0 (lower line), and is exponentially suppressed
at low temperature due a lack of thermally excited quasipar-
ticles. In both cases, the decay rate is strongly suppressed in
the vicinity of the superconducting Tc. The transition tem-
peratures are marked for φ(T → 0) = 0 (φ(T → 0) 6= 0)
by the dashed (dot-dashed) vertical lines. Tc denotes the on-
set temperature of superconductivity, while T< indicates the
boundary between the coexistent and pure superconductivity
phases for the case of the blue curve (c.f. the upper plot of
Fig. 2).

ω0 < 2φ. However, as soon as ∆ becomes non-zero the
bands are reconstructed due to hybridization of the BDW
bands with their corresponding hole bands, and simul-
taneously scattering matrix elements between all bands
become non-zero, allowing transitions between any two
bands to contribute (c.f. Fig. 4b). As a result, there now
exist transitions for arbitrarily small frequency (between
the two particle/hole bands), giving rise to the damping
of collective modes within the gap.

The specific temperature dependence of the damping
results from a combination of two effects. Because we
are considering energies ω0 < 2min(φ,∆), we see that
transitions from a particle to a hole band (or vice versa)
cannot contribute as they will always have energy equal
or greater than 2∆. Thus, damping must be solely due
to scattering between the hole or particle bands. As φ
decreases, the two particle (and correspondingly the two
hole) bands become more similar (in the limit φ → 0 they
are degenerate), increasing the phase space for low energy
transitions and therefore leading to greater damping of
the BDW amplitude mode. This in turn leads to an
increased damping of the mixed mode, which is visible in
Fig. 3. However, in opposition to this effect, as φ → 0,
the matrix element for scattering between these bands
will begin to vanish, as it is proportional to φ. At some
point this second effect will overcome the increase due to
the larger phase space, leading to a disappearance of the
damping as we approach the critical point at which the
charge order disappears.
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2
√
φ2 +∆2

(b)

FIG. 4. (Color online) Slices of the quasiparticle band struc-
ture for ky = 0. Dashed lines indicate the particle hole
conjugate of the band of the same color. (a) The normal
state (gray) and BDW state (green/blue) dispersions. Only
transitions between the two solid/dashed bands contribute
to ImQR

φφ. The onset of superconductivity hybridizes the
green/blue bands with their particle-hole conjugates. (b) Bo-
goliubov band dispersions in the coexistent state. Transitions
between all bands may contribute to ImQR

φφ leading to damp-
ing of the Higgs modes (even for those with mass less than
2∆.). Processes indicated by horizontal arrows are of par-
ticular importance as they occupy a finite phase space for
arbitrary frequencies within the gap.

The competition between scattering elements and band
structure generically leads to a non-monotonic temper-
ature dependence of the damping, which in turn means
that there exists a region of maximal damping away from
which the decay rate remains weak (within the gap). In
the case with φ(T → 0) 6= 0, the BDW order remains
sufficiently large that the system never approaches this
region of larger damping and thus the decay rate is no-
ticeably smaller than for φ(T → 0) = 0. In all cases
where the mixed phase exists down to T = 0, this damp-
ing term will be exponentially suppressed at low temper-
atures as there are no thermally excited quasiparticles
available to scatter.
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III. DAMPING FROM NODAL

QUASIPARTICLES

The hot-spot model we have used so far is only defined
in the antinodal regions, and thus completely ignores the
gapless degrees of freedom existing close to the nodes.
These can have a particularly strong effect on the damp-
ing of the collective modes by providing a low-energy
decay channel. However, the contribution of these quasi-
particles is different for the different orders. We expect
the charge order to couple only weakly to the nodal quasi-
particles, due to the mismatch between its wavevector
(Q,Q) and the wavevector separating the nodes43 [note
that the same argument applies to BDW with (Q, 0) or
(0, Q) wavevector]. There is no such restriction for the
superconductivity, however, and its amplitude fluctua-
tions are unavoidably damped by the nodal excitations.
To include these effects and to study their consequences
for the collective modes, we supplement the calculation
from the previous section with a phenomenological time-
dependent Ginzburg-Landau theory. In addition to the
more familiar quadratic and quartic in the order param-
eters terms, this theory contains also first and second
derivatives in (real) time. The time-dependent Ginsburg-
Landau equations can be written in the following form:44

−
∂2∆

∂t2
− γ∆

∂∆

∂t
=

∂FGL

∂∆∗
,

−
∂2φ

∂t2
− γφ

∂φ

∂t
=

∂FGL

∂φ∗
,

(15)

where the Ginsburg-Landau action is given by:

FGL = αφ|φ|
2+α∆|∆|2+βφ|φ|

4+β∆|∆|4+u|φ|2|∆|2.

The quadratic coefficients α have the usual linear-
in-temperature dependence, whereas β and u (which
parametrises the competition between the two orders)
are temperature-independent.45 Note that expressions
for the coefficients in FGL can be straightforwardly de-
rived from the microscopic theory presented in the pre-
vious section46 (spatial derivative terms are not included
since we are considering only uniform states). Although
the Ginzburg-Landau theory is strictly applicable only
close to the critical region, it can be used beyond its
region of validity as an effective model for the collec-
tive modes of the system.19 For this reason we keep the
second-order time derivative terms, which are usually
omitted close to the critical temperature.47

The coefficients γφ and γ∆ are responsible for the
damping of the collective modes. It is important to note
that despite the symmetric way these terms enter Eq. 15,
they encode very different physics. The γφ term is native
to the hot-spot regions. At low energies it is proportional
to ∆, since it is only allowed by the band reconstruc-
tion (see the discussion in the previous section), whereas
above 2min(∆, φ) we can treat it as a constant, origi-
nating from the coupling of the fluctuations to the high-
energy quasiparticle continuum. In contrast, the main

contribution to the γ∆ term originates from the nodal
regions (and thus is completely absent in the hot-spot-
only approach of the previous section). Close to Tc we
can obtain its temperature dependence from the follow-
ing qualitative considerations. This term is proportional
to the number of available states at the oscillation fre-
quency, given by ∼ ρ(ω) tanh (ω/4T ).48 Linearizing the
density of states close to the nodes ρ(ω) ∼ ω, and ap-
proximating the frequency as ω ≈ 2∆ we finally get for
the damping terms of the slow mode

γ∆ ≈ γ0
∆∆

2 = γ0
∆(Tc − T ), γφ ≈ γ0

φ∆ = γ0
φ

√

Tc − T

(we have expanded in powers of ∆). Note that we have
thus determined the temperature dependence of γφ and
γ∆, but their relative strength at some fixed tempera-
ture depends on the parameters of the microscopic mod-
els (like V ), which cannot be estimated within our phe-
nomenological theory. However, given the general tem-
perature dependence of γφ and γ∆, we expect the antin-
odal particles to dominate damping sufficiently close to
Tc (∆ vs. ∆2), whereas at low temperatures the nodal
excitations take over – γ∆ stays finite for T → 0, while
γφ goes to zero exponentially.
To obtain the frequencies and damping of the mixed

modes we expand φ(t) and ∆(t) around the mean field
values of the order parameters φ0 and ∆0: φ(t) =
φ0 + δφ(t) and ∆(t) = ∆0 + δ∆(t). Assuming that δφ(t)
and δ∆(t) are relatively small we can simplify Eq. 15 by
keeping only the terms linear in δφ and δ∆. Since we
are interested in the collective modes we write their time
dependence as e−iωt. Inserting this ansatz in the lin-
earized equations, we can exclude δφ and δ∆ altogether,
and finally arrive at the following equation for ω:

ω2+iγφω+2(αφ+u∆2
0)−

(2uφ0∆0)
2

2(α∆ + uφ2
0) + iγ∆ω + ω2

= 0.

(16)

We solve it numerically (with φ0(T ) and ∆0(T ) deter-
mined by the time-independent mean-field equations),
and obtain both complex and purely imaginary solutions
for ω. The former solutions are oscillatory (with Re[ω]
giving the frequency of the uniform oscillations around
the mean field values), while the latter represent expo-
nential decay. We show the real and the imaginary parts
of the two ω solutions as a function of temperature in Fig.
5. There we plot ω0 and Γ0 for two different strengths
of γ0

∆, as a comparison between small and large contri-
bution from the nodal quasiparticles, respectively. For
small γ0

∆ we can see that both the real and imaginary
parts of the frequency of the hybridized modes show be-
havior similar to that obtained in the previous section.
However, when we increase γ0

∆ we see not only enhance-
ment of the damping of both modes, but also decrease
of their real frequencies (the top panel of Fig. 5). Al-
though the effect is more dramatic for the in-gap mode,
which now exists only in a narrow region below Tc, it is
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significant for the fast one as well. This is a consequence
of one important feature of Eq. 16 – the coupling of the
two channels mixes their real and imaginary parts. Thus,
increase of the damping leads to the gradual suppression
of the real part of both mixed modes. Note also that the
disappearance of ω0 of the in-gap mode corresponds to a
peak in its Γ0.
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FIG. 5. (Color online) The evolution of ω0 (top panel) and
Γ0 (bottom panel) of the two Higgs modes with temperature.
For each mode the cases of weak and strong damping from
the nodal regions are shown [γ∆ = 0.1α (dashed line) and
γ∆ = 0.6α (solid line), respectively]. γφ, the damping from
antinodal region, is the same on both plots.

IV. DISCUSSION AND CONCLUSION

Note that our calculation is to some extent complemen-
tary to those in Refs. 28 and 49. These works studied
the dynamics of the system after an external perturba-
tion, and were done in the time domain, thus allowing
direct comparison with the experimental data. The tem-
perature dependence of the frequencies extracted in Ref.
49 appears consistent with our calculation, as it shows a
low-frequency mode appearing below the superconduct-
ing transition.
The experiments14–16 have not observed a soft mode

close to either charge or superconducting transition tem-
peratures. Instead, Refs. 14 and 15 identify a single am-
plitude mode, with intensity that goes down with temper-

ature, but whose frequency stays almost constant, with
only a small decrease at the superconducting Tc observed
in Ref. 14, and no clear change seen in Ref. 15.50 In con-
trast to these, Ref. 16 reported two collective modes at
the wavevector corresponding to the charge order, with
one of them disappearing close to the superconducting
transition (the other – higher-frequency – one follows
behavior similar to that observed in Refs. 14 and 15).
This seems to be a direct confirmation of the coupling
between the charge order and superconductivity, and in
agreement with our theory. However, the frequency of
this mode remains constant with temperature, without
any signs of softening. The absence of softening close to
either Tc or TBDW appears incompatible with our cal-
culation, and requires alternative explanations (such as
optical phonons).14

There remains an important point regarding the ex-
perimental signatures of the amplitude modes. Since the
superconducting Higgs mode does not directly couple to
the electromagnetic field (although it could be detected
by indirect methods51), the mixing provides a convenient
way of observing it. However, it can be easily shown that
the soft mode’s coupling to reflectivity is proportional
to ∆0, and is thus small just below the superconduct-
ing transition. Combined with the fact that damping
from the nodal regions can restrict this mode to a small
region in the vicinity of the superconducting transition
(as explored in Sec. III), this might explain why some
groups14,15 have not observed a low-frequency mode at
temperatures below the superconducting Tc.

In conclusion, we have studied the collective modes
for the bond density wave and superconducting order
parameters expected to exist in the pseudogap state of
cuprates. In the pure BDW phase we observed the con-
ventional amplitude mode with frequency starting at 2φ.
In the coexistent phase two collective modes represent-
ing the coupled oscillations of the amplitudes of the or-
der parameters are present. One of them is soft at the
superconducting critical temperature, and despite hav-
ing frequency ω0 < 2min(φ,∆) is (weakly) damped, due
to band-structure reconstruction caused by superconduc-
tivity. The other mixed mode is continuously connected
to the pure BDW mode, with frequency pushed up in
the coexisting regime. To study the effects of damping
originating from the nodal regions, we developed a phe-
nomenological time-dependent Ginzburg-Landau theory.
We demonstrated that strong damping can have signifi-
cant effect on the real frequency of the modes.
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Appendix A: Mean-field Nambu Green’s function

The matrix Matsubara Green’s function of Eq. 3 can
be obtained by two consecutive Bogoliubov transforma-
tions in subspaces of the Nambu-spinor matrix structure.
Doing so allows for the Green’s function to be written in
terms of the eigenvalues of the Hamiltonian as

Ǧk = ǓkǧkǓ
†
k , (A1)

ǧ−1
k = iǫn1̌− diag

(

E+
k , E−

k ,−E+
k ,−E−

k

)

, (A2)

where the energies of the Bogoliubov quasiparticles are
given by

E± =
√

(λ±)2 +∆2,

λ± = ξ+ ±
√

ξ2− + φ2,

ξ± =
ξ1 ± ξ2

2
.

(A3)

The diagonalization matrix can be written in terms of
the matrices

Â =

[

w −z
z w

]

,

w =

√

1

2

[

1 + ξ−
(

ξ2− + φ2
)−1/2

]

,

z =

√

1

2

[

1− ξ−
(

ξ2− + φ2
)−1/2

]

,

(A4)

and

B± =

[

u± −v±

v± u±

]

u± =

√

1

2

(

1 +
λ±

E±

)

,

v± =

√

1

2

(

1−
λ±

E±

)

,

(A5)

as

Ǔ =
(

Â⊗ τ̂0

)

(

∑

±

P̂± ⊗ B̂±

)

,

P̂± =
1

2
(ρ̂0 ± ρ̂3).

(A6)

Appendix B: Effect of phonons

Beyond just the non-retarded interaction considered
above, one can also consider the effect of phonons on
the collective modes. Here we will take this into account
by considering the contribution of the frequency depen-
dent phonon-mediated interaction between electrons to
the collective mode propagators. In particular, we will
project this interaction onto a hot spot model by taking
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FIG. 6. (Color online) The in-gap collective mode mass ω0

(relative to the gep = 0 case) as a function of the electron
phonon coupling gep, for ΩQ = 1. The gep = 0 line corresponds
to the behavior shown in Fig. 2.

the phonon momentum to be the fixed wavevector ~Q sep-
arating the hot spots which are being paired – this is the
same approximation that one uses on the non-retarded
interaction in deriving the hot spot model.
A simple A1g symmetry phonon has no effect on the

collective modes due to the pure d-wave symmetry of the
order parameters. However, in reality we expect some
direct order parameter-phonon coupling, either because
there is a phonon mode with the correct symmetry (B1g),
or because in real systems the order parameter would
not necessarily have a pure d-wave symmetry, but could
have an s-wave component admixed. Regardless of the
exact nature of the coupling, it gives rise to a term in the
mean field theory which includes the phonon-mediated
interaction as

Hph = f
∑

k,ǫn,ωm

U(ωm)

×
(

φ(ωm)c†1σ(k, ǫn − ωm)c2σ(k, ǫn) + h.c.
)

(B1)

where

U(ωm) =
g2ep
2

ΩQ

ω2
m +Ω2

Q

is an Einstein phonon type propagator and f is a constant
of order one arising from the form factor of the electron-
phonon vertex.
If we consider the effect of this term on the charge

collective mode, we find that it can be captured by the
replacement gc → g̃c(iωm). We absorb the ω = 0 compo-
nent into the definition of gc (as that is what determines
the static mean-field solution) and include the remain-
ing frequency dependent part in our calculation of the
collective modes. Upon analytic continuation to real fre-
quency, this amounts to the substitution

gc → g̃c(ω) = gc −
fg2ep
Ω

− fg2ep
Ω

ω2 − Ω2
(B2)
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in the collective mode equations (the additive constant
is chosen so that we recover g̃c(ω = 0) = gc). The previ-
ous analysis can now be repeated for a range of electron
phonon couplings. As can be seen in Fig. 6, the cou-

pling to phonons tends to push the collective mode mass
slightly upward, while leaving the softening at the phase
transitions unmodified. Overall, the qualitative behavior
of the mode is not markedly different.
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12 J. Demsar, K. Biljaković, and D. Mihailovic, Phys. Rev.
Lett. 83, 800 (1999).

13 J. P. Hinton, J. D. Koralek, G. Yu, E. M. Motoyama, Y. M.
Lu, A. Vishwanath, M. Greven, and J. Orenstein, Phys.
Rev. Lett. 110, 217002 (2013).

14 J. P. Hinton, J. D. Koralek, Y. M. Lu, A. Vishwanath,
J. Orenstein, D. A. Bonn, W. N. Hardy, and R. Liang,
Phys. Rev. B 88, 060508 (2013), 1305.1361.

15 D. H. Torchinsky, F. Mahmood, A. T. Bollinger, I. Božović,
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