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We study the instabilities towards (exotic) superconductivity of mixtures of spin-1/2 fermions cou-
pled to scalar bosons on a two-dimensional square lattice with the Dynamical-Cluster-Approximation
(DCA) using a numerically exact continuous-time Monte-Carlo solver. The Bogoliubov bosons pro-
vide an effective phononic bath for the fermions and induce a non-local retarded interaction between
the fermions, which can lead to (exotic) superconductivity. Because of the sign problem the biggest
clusters we can study are limited to 2×2 in size, but this nevertheless allows us to study the pairing
instablilities, and their possible divergence, in the s- and d -wave channels as well as the competition
with antiferromagnetic fluctuations. At fermionic half-filling we find that d-wave is stable when the
mediated interaction by the bosons is of the same order as the bare fermionic repulsion. Its critical
temperature can be made as high as the maximum one for s-wave, which opens perspectives for its
detection in a cold atom experiment.

I. INTRODUCTION

Mixtures of bosons and fermions are ubiquitous: They
are fundamental in particle physics, where bosons are
the carriers of forces between fermionic matter particles.
In condensed matter systems, they appear in the con-
text of superconductivity, where the conventional pair-
ing mechanism consists of phonons inducing an effec-
tive retarded attractive interaction between electrons
leading to the formation of Cooper-pairs, as well as
in mixtures of 3He and 4He in which the inter- and
intra-isotope interactions are of comparable magnitude.
Cold-atom systems are uniquely suited to simulate this
physics as they allow fine experimental control over the
interactions as well as the tunelling amplitudes1,2.

The optical lattice system does not have phonons.
Nevertheless, pairing mechanisms with cold fermions in
an optical lattice can be investigated by quantum sim-
ulation. Bosons deep in the superfluid phase have a lin-
ear dispersion 3 which can play the role of phonons as
in conventional superconductors (when fermions form
an electron gas) but, as we will see, they can equally
well couple to spin density wave fluctuations (relevant
when the charge of the fermions is near localization).
Spin density wave fluctuations induce an attractive in-
teraction between electrons in a spin-singlet, with the
pair wavefunction changing sign between different re-
gions of the Fermi surface4–13. It plays a prominent
role in the cuprates (where it correctly predicts d-wave
pairing), the iron superconductors and heavy fermion
materials14–23. The fermionic Hubbard repulsion and
the lattice dispersion can, in principle, be changed in
a cold-atom experiment and allow to systematically in-
vestigate the interplay of both pairing mechanisms.

Quantum degenerate mixtures of bosonic and spin-
polarized fermionic species have first been realized ex-
perimentally with 23Na and 6Li24. Since then a variety
of different species combinations have been employed

in experiments and these systems have been studied
extensively25–45. Recently, using 6Li and 7Li a sys-
tem has been realised experimentally for the first time
in which both bosonic and spinful fermionic species
are superfluid46, giving rise to induced interactions in
the bosonic sector due to excitations of the fermionic
superfluid47,48. Another promising candidate for ex-
periments with spinful mixtures are 23Na and 40K in
which a large number of interspecies Feshbach reso-
nances at experimentally accessible magnetic fields have
been identified enabling the tuning of the interspecies
interactions and the simulation of boson-induced inter-
actions between the fermions49,50 and the creation of
stable fermionic Feshbach molecules51.

Theoretically, the interactions mediated by superfluid
bosons 52 were studied in the regime where the sound ve-
locity of the bosons is fast compared to the Fermi veloc-
ity and found to be attractive and capable of overcoming
a sufficiently weak repulsive fermi interactions leading to
s-wave pairing both in the continuum52–60 and in opti-
cal lattices3,61,62. Recently, the phase diagram of Bose-
Fermi mixtures in 3 dimensional optical lattices has
been studied numerically within the DMFT-formalism63

and analytically in a mean-field treatment64 finding
such phases as charge-density waves, superfluidity in ei-
ther or both sectors, and supersolids. In 2 dimensional
lattices the competition between s- and d-wave super-
fluidity and antiferromagnetic phases was investigated
using the functional renormalization group65.

In this work we restore some momentum fluctuations
compared to the aforementioned DMFT study by
studying mixtures in the Fermi liquid regime in a DCA
framework in two dimensions and monitor the pairing
susceptibilities. We assume that the bosons are deep
in the superfluid phase which allows to find (exotic)
pairing channels (unlike single-site DMFT) and the
interplay with anti-ferromagnetic fluctuations but it
rules out charge density wave order. We find that the
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bosonic condensate can enhance both s- and d-wave
pairing. Just as in conventional superconductors s-wave
pairing is possible for weakly repulsive bare fermions.
However, as the lattice effects and the bare Hubbard
repulsion grow in importance, d-wave takes over and
can be the dominant pairing channel. Atomic Bose-
Fermi mixtures thus effectively display two different
pairing mechanisms, relevant for superconductors.

II. MODEL

Our system is described by the fermionic action S =
Sf + Sret, with

Sf =

∫ β

0

dτ
∑
〈i,j〉,σ

c̄σi (τ) [δi,j (∂τ − µf + n0Ubf)− tf ] cσj (τ)

+ Uff

∑
i

nfi,↑(τ)nfi,↓(τ) (1)

Sret = −n0 U
2
bf

2

∫∫ β

0

dτ1dτ2
∑
i,j

nfi (τ1)Dij(τ1 − τ2)nfj (τ2).

It describes a fermionic Hubbard model with hopping
amplitude tf , on-site repulsion Uff and chemical po-
tential µf coupled to bosons deep in the condensed
phase with condensate density n0 via an on-site density-
density coupling Ubf . The bosons are treated in the
Bogoliubov approximation and subsequently integrated
out, giving rise to the chemical potential shift n0Ubf and
the non-local retarded density-density action term Sret

with kernel

D(i−j, τ) =

∫∫
B.Z.

d2k

(2π)d
eik(ri−rj) e

Ekτ + eEk(β−τ)

eβEk − 1

|ε̄k|
Ek

(2)

where Ek =
[
ε̄2
k + 2ε̄kn0Ubb

]1/2
is the dispersion of the

Bogoliubov quasi-particles, ε̄k = εk − ε0 the lattice dis-
persion of the bare bosons, shifted to be positive, and
Ubb the repulsion between the bare bosons on the lat-
tice. The chemical potential µb was fixed to give unit
filling for the bosons (its density is unimportant in the
superfluid regime). The explicit construction from the
underlying Hamiltonian is performed in Appendix A.
This treatment neglects any back-action of the fermions
on the bosons, in particular, bosonic charge order is
excluded, which might be mediated from the fermionic
sector by the density-density coupling between bosons
and fermions. However, for fast bosons (amounting to
tb > tf) which we consider, charge-density ordering was
found to be suppressed and superconductivity to be fa-
vored in DMFT63.

In the instantaneous limit, i.e., the case of a
very high bosonic speed of sound compared to the
Fermi velocity as it can be made in the NaK sys-
tem3, this simplifies to Dinst(k) = 1

n0Ubb
c(k) =

1
n0Ubb

{
1 + ξ2 [4− cos(kx)− cos(ky)]

}−1
, with

ξ =
√
tb/(2Ubb) as obtained in65. The induced

on-site interaction is given by W =
U2

bf

Ubb

∑
k c(k), thus

scaling as V = U2
bf/Ubb. The bosonic dispersion Ek

can only have an influence on the fermionic system if ξ
is comparable to the lattice spacing, which is satisfied
for NaK.

III. METHODOLOGY

To numerically study the action Eq. (1) we use the dy-
namical cluster approximation (DCA)66–68, which maps
the many-body problem onto a self-consistently embed-
ded cluster impurity problem. Its action S = S0 + Sint

reads

S0 =

∫ β

0

dτ
∑
i,j,σ

c̄σi (τ1)G−1
σ,i,j(τ1 − τ2)cσj (τ2) (3)

Sint = Uff

∑
i

nf
i,↑(τ)nf

i,↓(τ) + Sret (4)

Here, the sums run over the cluster degrees of freedom,
G is the unknown cluster-excluded Green’s function of
the impurity problem which has to be determined self-
consistently. The local Hubbard interaction Uff remains
unaffacted by the DCA mapping, but the non-local in-
duced interaction is coarse-grained, i.e., Dij in Sret is
replaced by D̄ij , which is the Cluster-Fourier transform
of the coarse-grained interaction kernel D(i− j).

To solve the impurity problem, we use a general-
ized weak-coupling solver69,70 to include the non-local
phononic degrees of freedom similar as in Ref.71. We
are limited to 2 × 2 clusters because of the sign prob-
lem, which also occurs at half filling because the induced
interactions, D̄i,j(τ) (Eq. 2), do not have a definite sign.
Results of the average sign for characteristic values of
the parameters and temperatures used in our simula-
tions are shown in Appendix B. Unfortunately, 2 × 2
clusters are known to overestimate the d-wave transi-
tion temperature and to strongly suppress antiferromag-
netic phases68,72. Bigger clusters are highly desired to
take the Kosterlitz-Thouless transitions properly into
account, but are out of reach.

To obtain transitions to a superconducting state we
need to consider the two-particle Green’s function for
opposite spin pairing in the particle-particle channel

χ(q, k, k′) =

∫ β

0

∫ β

0

∫ β

0

∫ β

0

dτ1dτ2dτ3dτ4 (5)

× ei[(ωn+ν)τ1−ωnτ2+ωn′τ3−(ωn′+ν)τ4] 〈TτP (·)〉
P (·) = c†k+q,σ(τ1) c†−k,−σ(τ2) c−k′,−σ(τ3) ck′+q,σ(τ4)

where we adopt the notation k = (k, iωn), k′ =
(k′, iωn′) and q = (q, iνn)73. For transitions to states of
lower symmetry than the lattice, the Green’s function
needs to be projected according to

Πg,g(q, k, k
′) = g(k)χ(q, k, k′)g(k′) (6)
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Figure 1. Inverse pairing field susceptibility 1/Pg on a log-
arithmic scale for g = s(d)-wave symmetry at the top (bot-
tom) at fixed Uff = 0(1) at the left (right) and fermionic
half filling as a function of temperature for different coupling
strength Ubf to the bosons corresponding to V = 0.5, 1.0 for
the bosonic parameters Ubb/tf = 5 and tb/tf = 10. The
vanishing of 1/Pg signals the transition to a superconduct-
ing state of the corresponding symmetry. The solid lines are
linear fits to the lowest temperature points and are used to
derive Tc.

where g(k) is the form-factor for the corresponding sym-
metry. The pairing susceptibility is then given by

Pg(q, T ) =
T 2

N2
c

∑
K,K′

Πg,g(q,K,K
′) . (7)

where Π is the coarse-grained version of Πg,g obtained
by inverting the coarse-grained Bethe-Salpeter equation
as described in67. The calculation of the corresponding
quantity for pairing in the particle-hole channel, rel-
evant for transitions to an antiferromagnetic state, is
similar and explained in detail in68.

IV. RESULTS

We now turn to the investigation of the fermionic
instabilities, which is reflected in the behavior of sus-
ceptibilities in the particle-hole and particle-particle
channels, specifically the antiferromagnetic susceptibil-
ity χAF at momentum transfer q = ((π, π), 0) and the
pairing field susceptibility Pg as defined in Eq. (7) for
the dominant momentum transfer q = (0, 0) in the case
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Figure 2. Pairing vertex in the particle-particle channel
ΓPP (K − K′) as a function of the relative momentum for
Uff/tf = 0.2, V/tf = 2 in (a) where s-wave pairing domi-
nates showing a peak at K − K′ = (0, 0) and for Uff/tf = 5,
V/tf = 1 in (b) where d-wave pairing dominates displaying
a clear peak at K − K′ = (π, π).

of the s-, extended s-, p- and d-wave symmetry67,72.
The divergence of the pairing field signals the phase
transition to the state of the corresponding symme-
try. To obtain the respective transition temperature
we fit a linear function to the pairing fields in the low-
temperature region as is appropriate for the mean-field
nature of DCA close to Tc

68,72. At half filling, we only
found transitions to s- and d-wave, as well as strong an-
tiferromagnetic correlations, whose competition is the
focus of what follows.

The s(d)-wave pairing fields with the linear fits are
shown in the upper (lower) panel of Fig. (1). In the
free model (Uff = Ubf = 0) there is no pairing in either
channel. When increasing Ubf (but keeping Uff = 0),
competing s- and d-wave instabilities develop as seen in
the left panel. For Ubf/tf = 1.58, i.e., V/tf = 0.5, we
observe that the extrapolated s-wave transition temper-
ature is higher than the d-wave one and s-wave pairing
is thus the dominant channel. For weak V the mecha-
nism for induced s-wave superconductivity is the same
as in BCS theory. Upon increasing V , the s-wave gap
becomes stronger and we enter the regime where su-
perconductors are routinely described by the Migdal-
Eliashberg theory58,74–79. The momentum dependence
of the bosonic dispersion Ek is here unimportant but re-
tardation effects do matter in general. A selfconsistent
treatment of the bosons (e.g,, via a damping term) is
left for future work.

Upon increasing Uff s-wave-pairing is suppressed and
d-wave is the dominant instability as seen in the right
panel for Uff/tf = 1 where no s-wave instability is
found for the range of V shown. This is easily under-
stood in the instantaneous limit where W scales with
V = U2

bf/Ubb and for |W | < |Uff | no s-wave pairing is
possible.

The competition between s- and d-wave pairing is also
clearly reflected in the momentum structure of the pair-
ing vertex shown in Fig. (2) in (a) for a situation where
s- wave dominates and in (b) where d-wave is dominant.
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Figure 3. (a) Phase diagram based on the transition tem-
peratures obtained from the linear extrapolation of the in-
verse pairing field susceptibilities Pg for the competing insta-
bilities towards s- and d-wave pairing for bosonic parameters
Ubb/tf = 5 and tb/tf = 10. The phase transition line cor-
responds to the critical coupling Uc

ff where the computed
transition temperatures for the respective phases cross. The
dashed lines correspond to the cuts along which the tran-
sition temperatures are shown in Fig. 4. (b) Phase dia-
gram focusing on the transition between the cluster antifer-
romagnetic instability (’AF’) and the superconducting phase
(’SC’).
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Figure 4. Critical temperature Tc for s- and d-wave pairing
as a function of Uff at fixed V/tf = 3 in (a) and as a function
of V at fixed Uff/tf = 0.5 in (b).

In the case of s-wave pairing the vertex peaks at a zero
momentum transfer leading to a homogeneous real space
structure whereas for d-wave a strong peak develops for
a momentum transfer K−K′ = (π, π) leading to oscil-
latory behaviour in real space.

Based on the extrapolated transition temperatures we
obtain the phase-diagram in Fig (3)(a). For the bosonic
parameters Ubb/tf = 5 and tb/tf = 10 we have that
W ≈ 0.25V and we expect s-wave pairing to become
relevant around V ≈ 4W ∼ 4|Uff |. Indeed, on increasing
Ubf we first observe increasing transition temperatures
for d-wave pairing up to the regime |W | & |Uff |.

The critical temperatures for s- and d-wave pairing
along cuts in the phase-diagram are shown in Fig (4).
As the 2 × 2 cluster represents the mean-field result
for d-wave, underestimating the fluctuations and con-
sequently overestimating the d-wave transition temper-
atures, we expect the transition line to shift in favor of
s-wave in those regions in which the s-wave transition
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Figure 5. Inverse pairing field susceptibility 1/χAF as a
function of temperature T/tf at fixed Uff = 5.2(5.8) to
the left (right) and fermionic half filling for different cou-
pling strength Ubf to the bosons corresponding to V =
0.5, 1.0, 1.5, 2.0 for the bosonic parameters Ubb/tf = 5 and
tb/tf = 10. The vanishing of 1/PAF signals the transition to
an AFM state. The solid lines are linear fits to the lowest
temperature points and are used to derive Tc.

temperature is finite, i.e., qualitatively those for which
the effective induced interaction W is stronger than the
repulsion given by Uff .

Next we consider the instability towards an antiferro-
magnetic state. In the thermodynamical limit antifer-
romagnetism is allowed at zero temperature only but in
selfconsistent cluster approaches such as DCA it can be
found at finite temperature as well, rather accurately
reproducing correlations at short distances but missing
their fluctuations at long distances.

The spin susceptibility χAF (T ), corresponding to an
instability in the spin sector of the particle-hole chan-
nel, is shown in Fig. 5 for Uff = 5.2, 5.8 and for dif-
ferent values of the strength of the induced interaction
V = 0.5, 1.0, 1.5, 2.0. To obtain the Neel temperature
which corresponds to the divergence of χAF (T ) a linear
function to the inverse spin susceptibility in the low-
temperature region is used as explained above.

Based on the extrapolated transition temperatures
for the divergence of the antiferromagnetic susceptibil-
ity χAF, we obtain a transition to an AFM state as
shown in the corresponding phase diagram in Fig (3)(b).
Again a stronger Fermi-Bose coupling V tends to sta-
bilise the d-wave state, in turn shifting the transition to
the AFM state to higher values of Uff . The transition
to the AFM state appears at considerably higher Uff

than in65, because the 2×2 cluster is known to strongly
suppress antiferromagnetism68,72, thus favoring the su-
perconducting state.

From these observations it emerges that increasing V
enhances both s- and d-wave (with s-wave being domi-
nant for nearly-free fermions). Increasing Uff increases
the spin density wave fluctuations and suppresses s-wave
pairing, as a result of which d- can become dominant
over an extended regime in parameter space. This sug-
gests that Tc for d-wave can be increased by increasing
both V and Uff and staying near the line where s-wave
becomes subdominant compared to d-wave. In the static
mean-field study of Ref.3 the highest Tc for a NaK mix-
ture was found at ξ = 0.6. For those parameters we find
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a maximal Tc/t = 0.17. Whereas Migdal-Eliashberg
theories usually do not have a built-in mechanism that
puts a limit on Tc, the gain stops here when Ubf is too
large compared to Uff and Ubb causing a mechanical
instability towards phase-separation25,27.

V. CONCLUSIONS

In this work we studied the antiferromagnetic und
superconducting instabilities of Bose-Fermi-Mixtures
in the limit where the bosons can be treated within the
Bogoliubov approximation. We used a weak coupling
Monte-Carlo cluster solver within the DCA-framework
allowing us to distinguish between s- and d-wave
pairing in the fermionic sector. The dominant pairing
mechanism is determined by the relative sizes of the
repulsive fermi-fermi interaction Uff and the interac-
tions induced by the bosons scaling with V = U2

bf/Ubb

leading to the phase diagram shown in Fig (3)(a).
In particular, we find that d-wave superconductivity
can be stabilized by the presence of bosonic particles.
This extends the results of a recent DMFT study63

which found phases in which both bosons and fermions
are superfluid, but could not determine the symme-
try of the superfluid state. In addition, for strong
Fermi-Fermi interaction, we observe a transition to an
antiferromagnetic state suppressing the superconduct-
ing pairing as seen in Fig (3)(b), consistent with a
previous study based on the functional renormalization
group65. Our approach holds whenever the bosonic
speed of sound c is larger than the Fermi velocity vF.
We checked that for c/vF = 2 the phase diagram looks
similar but with stronger retardation effects. Our work
can straightforwardly be extended to doped systems,
allowing to address the strange metal physics and where
also p−wave phases are predicted. The mechanisms
discussed here are equally valid in 3d where Tc for d-
wave could well be much higher than in 2d.
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Appendix A: Derivation of the effective action

In this appendix we explicitly discuss the construction
of the effective action in Eq. 1. Starting from the Hamil-

tonian of Bose-Fermi-Mixtures on a 2D square lattice

H =Hf +Hb +Hbf

=− tf
∑

<i,j>,σ

c†i,σcj,σ − µf
∑
i,σ

nfi,σ + Uff

∑
i

nfi,↑n
f
i,↓

− tb
∑
<i,j>

b†i bj − µb
∑

nbi +
Ubb

2

∑
nbi (n

b
i − 1)

(A1)

+ Ubf

∑
i,σ

nbi n
f
i,σ

where c†i (b†i ) are fermionic (bosonic) creation opera-

tors at site i, n
f(b)
i the corresponding densities, tf(b)

describes the hopping of a fermion (boson) from site
i to site j, µf(b) is the chemical potential for fermions
(bosons), Uff(bb) is the on-site repulsion of fermions
(bosons) and Ubf the on-site interaction between bosons
and fermions. The model is the sum of a Fermi-Hubbard
model (first line) the Bose-Hubbard model (second line)
and a density-density interaction between bosons and
fermions (third line). In the following we will treat the
bosons within the Bogoliubov approximation allowing
us to integrate them out in favour of a retarded density-
density interaction between fermions.

In the Bogoliubov approximation the bosonic Hamil-

tonian Hb takes the form Hb ≈
∑

kEk α
†
kαk in terms of

the Bogoliubov quasi-particles defined by bk = ukαk −
vkα

†
−k and b†k = ukα

†
k − vkα−k respectively. As usual

the coefficients are given by uk = coshφk and vk =
sinhφk where tanh 2φk = n0Ubb/(ε̄k+n0Ubb). The Bo-

goliubov spectrum is given by Ek =
[
ε̄2
k + 2ε̄kn0Ubb

]1/2
with ε̄k = εk − ε0, the lattice dispersion of non-
interacting bosons shifted to be positive. We empha-
size that this treatment neglects any backaction of the
fermionic sector on the bosons, in particular we assume
that the bosons do not charge order, which limits our
approach to the case of fast bosons.

Rewriting the coupling term Hbf in momentum space
we obtain

Hbf =
1

Ns

∑
i,~k1,k2

e−i(k1−k2)rib†k1
bk2

nfi (A2)

=
N0

Ns

∑
i

nfi +

√
N0

Ns

′∑
i,k

(
eikribk + e−ikrib†k

)
nfi

+
1

Ns

′∑
i,k1,k2

e−i(k1−k2)rib†k1
bk2

nfi (A3)

where N0 is the macroscopic number of bosonic atoms
in the condensate, Ns is the number of sites in the lat-
tice and the primed sum indicates that the k = 0 terms
should be omitted. In the following we will neglect the
last term as it is suppressed by a power of

√
N0 com-

pared to the second term. The first term corresponds to
the shift in the fermionic chemical potential present in
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Eq. 1 whereas the second term represents the linear cou-
pling of bosons to the fermions that will be integrated
out.

Next, we reexpress the second term in the Bogoliubov
boson operators to obtain

′∑
ik

(
eikribk + e−ikrib†k

)
nfi

=

′∑
i,k

(
αk [uk − v−k] eikri + α†k [uk − v−k] e−ikri

)
nfi .

(A4)

which clearly shows that the Bogoliubov bosons couple
linearly to the fermionic density with momentum de-
pendent couplings.

Employing coherent states for both the bosons and
fermions the action reads as S = Sf + Sbog + Sbf where
the fermionic action Sf has already been defined in Eq. 1
and

Sbog =

∫ β

0

dτ
∑
k

ᾱk(τ)

[
Ek +

∂

∂τ

]
αk(τ) (A5)

Sbf =
√
n0 Ubf

∫ β

0

dτ
1√
Ns

∑
i,k

(
αk(τ) [uk − v−k] eikri

+ ᾱk(τ) [uk − v−k] e−ikri
)
nfi (τ) (A6)

Finally, integration over the quadratic bosonic Bo-
goliubov action yields the non-local, retarded density-
density interaction, i.e. e−Sret =

∫
d(ᾱ, α) e−Sbog−Sbf

with

Sret = −n0 U
2
bf

2

∫∫ β

0

dτ1dτ2
∑
i,j

nfi (τ1)Dij(τ1−τ2)nfj (τ2)

(A7)
which combined with Sf gives the total action S = Sf +
Sret of the effective model in Eq. 1 and the kernel Dij

has been defined in Eq. 2.

Appendix B: Discussion of the sign problem

As we are at half-filling the simulations are sign-free
for V = 0. However, as discussed in the main text
the induced interactions lead to a sign-problem. The
average sign of the simulations is shown in Fig. 6 in
each panel at a fixed value of Uff for different values of
V = U2

bf/Ubb.
We only observe a very weak dependence of the sign

on the fermi-fermi interaction Uff as expected from the
sign free character for V = 0. In all cases the sign is ex-
ponentially decreasing as a function of β with a decay
rate that increases as V is increased and the induced
interactions become more important. This exponential
dependence on the temperatures limits the lowest tem-
peratures we can access in the simulations. Moreover,
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Figure 6. Average sign of the Monte-Carlo simulations as a
function of β for Uff/tf = 1, 2, 3, 4 in panels (a)-(d), in each
case for V/tf = 0.5, 1.0, 2.0, 4.0 from top to bottom.

the strong dependence on the induced interactions limits
the maximally accessible V and ultimately the extension
to bigger clusters where the number of interaction terms
proliferates.
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