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Observing constituent particles with fractional quantum numbers in confined and deconfined
states is an interesting and challenging problem in quantum many-body physics. Here we further
explore a computational scheme [Y. Tang and A. W. Sandvik, Phys. Rev. Lett. 107, 157201 (2011)]
based on valence-bond quantum Monte Carlo simulations of quantum spin systems. Using several
different one-dimensional models, we characterize S = 1/2 spinon excitations using the intrinsic
spinon size λ and confinement length Λ (the size of a bound state). The spinons have finite size in
valence-bond-solid states, infinite size in the critical region (with overlaps characterized by power
laws), and become ill-defined (completely unlocalizable) in the Néel state (which we stabilize in
one dimension by introducing long-range interactions). We also verify that pairs of spinons are
deconfined in uniform spin chains but become confined upon introducing a pattern of alternating
coupling strengths (dimerization) or coupling two chains (forming a ladder). In the dimerized
system an individual spinon can be small when the confinement length is large—this is the case
when the imposed dimerization is weak but the ground state of the corresponding uniform chain
is a spontaneously formed valence-bond-solid (where the spinons are deconfined). Based on our
numerical results, we argue that a system with λ� Λ is associated with weak repulsive short-range
spinon-spinon interactions. In principle both the length-scales λ and Λ can still be individually tuned
from small to infinite (with λ ≤ Λ) by varying model parameters. In contrast, in the ladder system
the two lengths are always similar, and this is the case also in the weakly dimerized systems when the
corresponding uniform chain is in the critical phase. In these systems the effective spinon-spinon
interactions are purely attractive and there is only a single large length scale close to criticality,
which is reflected in the standard spin correlations as well as in the spinon characteristics.

PACS numbers: 75.10.Jm, 75.10.Nr, 75.40.Mg, 75.40.Cx

I. INTRODUCTION

In one-dimensional (1D) strongly correlated systems,
the emergence of fractional quantum numbers is a generic
consequence of collective behaviors.1 In the exactly solv-
able critical S = 1/2 antiferromagnetic (AFM) spin
chain, the fundamental excitations are soliton-like quasi-
particles (kinks and anti-kinks), called spinons, which
carry spin 1/2.2,3 Similar objects exist also in the
valence-bond-solid (VBS) state stabilized by frustrated
interactions.4 A bound state of spinons can be induced
in the Heisenberg chain by an external magnetic field.5

In higher dimensions, in systems with long-range AFM
order, the fundamental excitation are magnons with spin
1, as explained successfully by spin-wave theory.6 Spinon
excitations are associated with spin-liquid ground states,
which have no broken symmetries described by conven-
tional local order parameters (but do have non-local,
topological order).7 In 2D AFM systems, deconfined
spinons should emerge when a transition into a VBS state
is approached, according to the theory of “deconfined”
quantum-critical points.8–10

The search for spinons has been a quest in exper-
imental and theoretical condensed matter physics for
decades, primarily because the fractionalization of ex-
citations is a characteristic of exotic collective quantum
many-body states, such as the spin liquids.7,10,11 More-
over, in some cases the mechanism of confinement of
spinons is a condensed-matter analogue of the confine-
ment of quarks in quantum chromodynamics. In this

paper, building on a previous brief presentation,12 we
will explore systems where confinement and deconfine-
ment of spinons can be detected and characterized using
large-scale quantum Monte Carlo (QMC) simulations in
the valence-bond (VB) basis. We here focus on a range
of different 1D systems but note that the same ideas have
also already been applied to 2D systems in the context
of deconfined quantum-criticality.13

The starting point of our studies is the S = 1/2 AFM
Heisenberg chain, defined by the Hamiltonian

H = J

N∑
i=1

Si · Si+1, (1)

where the nearest-neighbor coupling J > 0, N is the
total number of spins, and we apply periodic boundary
conditions. We will add other interactions to this model
later, in order to bring the system to the different types
of ground states mentioned above.

The ground state of the plain Heisenberg model (1)
can in principle be solved exactly by the Bethe-Ansatz
approach,14 but in practice many of its salient fea-
tures, such as the power-law decaying spin-spin corre-
lations, were found using the bosonization method.15

Reflecting the deconfined spinons, the lowest excited
states of the Heisenberg model form bands of degener-
ate singlets and triplets5,16,17 with the energy ε1(q) as
a function of the total momentum q of the state being
ε1(q) = (π/2)J | sin(q)|, which was first calculated by des
Cloiseaux and Pearson using the Bethe Ansatz.16 Form-
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ing all possible combinations of two spinons propagat-
ing independently with fixed momenta, q̃1 and q̃2 with
q = q̃1 + q̃2 gives a continuum above the lower bound
and an upper bound given by ε2(q) = πJ | sin(q/2)|.
A large spectral weight between these bounds (concen-
trated close to the lower bound because of matrix ele-
ments18), which is detectable in inelastic neutron scat-
tering experiments,19 is considered a good indicator of
spinons in one dimension.

The continuum spectrum of spinons has been ob-
served in weakly-coupled-chain compounds such as cop-
per pyrazine dinitrate and KCuF3 at zero magnetic
field,19,20 while in none-zero magnetic fields incommen-
surate modes have been observed.20,21 In another chain
compound, CuCl·2(dimethylsulfoxide), there is an effec-
tive internal staggered magnetic field present, and spinon
bound states have been observed.22 In addition, in the
spin ladder system (C5H12N)2CuBr4, it was reported
that the magnon could be fractionalized into spinons
by tuning the external magnetic field.23 The above ex-
perimental results can be modeled using the Heisenberg
Hamiltonian (1) including the other effects mentioned
above (external fields, inter-chain couplings). In addi-
tion to neutron scattering, other experimental signals of
spinons have also been proposed.24 So far, however, all
the experimental probes give indirect information on the
existence of spinons, and not much information on the
properties of spinons other than their dispersion and ex-
citation continuum.

Motivated by the on-going interest in the quantum
physics of fractionalization, in this paper we are inter-
ested in exploring other aspects of spinons and their
confinement-deconfinement transitions. Using the QMC
approach introduced in Refs. 12,25 and used in Ref. 13
to study 2D systems, we here explore a wider range of
1D systems where confinement and deconfinement can
be studied systematically under various conditions. The
method operates in a basis of VBs (two-spin singlets) and
unpaired spins and allows us to compute quantities defin-
ing the size of an isolated spinon as well as the size of an
S = 1 bound state. We also show that the same length
scales appear in standard spin correlation functions, but
are harder to access there in practice because the sig-
nal only appears in the differences between correlations
in different spin sectors (and is therefore very noisy in
QMC calculations of large systems).

The structure of the rest of the paper is as follows: In
Sec II we introduce the projector QMC method and cal-
culate observables used to characterize spinons. in Sec III
we present results for the J-Q chain model,12,25 which
undergoes a quantum phase transition from the Heisen-
berg critical phase to a spontaneously symmetry-broken
valence-bond solid (VBS). This system has deconfined
spinon excitation in the entire range of the ratio Q/J of
the Heisenberg exchange J and a multi-spin coupling Q.
To achieve confinement, in Sec. IV we introduce a stag-
gered pattern of J-interactions, as recently done also in
an investigation of spinons binding to a static impurity.26

In Sec. V we study spinon confinement when two Heisen-
berg chains are coupled to form a ladder. In Sec. VI we
discuss the fact that the same length scales that appear
in our VB-based definition of spinons can also be identi-
fied in the fine-structure of the spin-spin correlations in
the higher-spin states, thus confirming that these length-
scales are not basis dependent and can be investigated
using other methods as well. We summarize our work
and discuss future prospects in Sec. VII.

II. METHODS AND CALCULATED
OBSERVABLES

We use VB projector QMC (VBPQMC) algorithm,
which has been described in detail in Refs. 12,27,28. Here
we first briefly review the essential ideas underlying sim-
ulations of spin systems with this algorithm, and then
focus on the definitions of spinon quantities and how to
evaluate them.

A. VB basis and projector QMC method

Searching for the ground state of a Hamiltonian H,
we start with a “trial” wavefunction and write it as the
linear superposition of all eigenstates of H as

|Ψ〉t =
∑
n

cn|Ψn〉. (2)

We then operate with H a number m times on this trial
state to project out the ground state |Ψ0〉;

(−H)m|Ψ〉t = c0(−E0)m

[
|Ψ0〉+

∑
n>0

cn
c0

(
En
E0

)m
|Ψn〉

]
,

(3)
where, since normally E0 < 0, we have added a minus
sign in front of H. Provided that |En/E0| < 1 for all
n > 0, which can always be accomplished by adding some
negative constant to H, the ground state is projected out
when m→∞.

While the ground-state projection approach formu-
lated above is completely general, the use of the VB basis
has distinct advantages,29,30 as the spin of the trial state
can be chosen to match that of the ground state under
investigation. For the bipartite spin models we are in-
terested in here, if the number of spins N is even, then
the ground state is a singlet and a VB basis state can be
written as

|Vα〉 =

N/2∏
i=1

|a, b〉i, (4)

where |a, b〉i is the ith VB (singlet),

|a, b〉i =
1√
2

(
| ↑a(i)↓b(i)〉 − | ↓a(i)↑b(i)〉

)
, (5)
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with a(i) and b(i) sites on sublattice A and B, respec-
tively. The trial state can be expanded in these VB basis
states as

|Ψ〉t =
∑
α

fα|Vα〉, (6)

where the coefficients fα ≥ 0, reflecting Marshall’s sign
rule for the ground state of a bipartite system.31,32 It
should be noted that the VB basis is overcomplete and,
therefore, the expansion coefficients fα are in principle
not unique, which, however, is not explicitly of impor-
tance in the work discussed here. What is important is
that the basis is non-orthogonal, with the overlap be-
tween two states given by31,32

〈Vα|Vβ〉 ∝ 2nloop−N/2, (7)

where nloop is the number of loops in the transition graph
formed when superimposing the bond configurations of
|Vα〉 and |Vβ〉. An example with nloop = 2 is shown in
Fig. 1(a). Expectation values of interest can normally
also be expressed using transition graphs, e.g., for study-
ing the spin-spin correlation operator

Ĉ(r) =
1

N

N∑
i=1

Ŝi · Ŝi+r, (8)

we need matrix elements of the form,

〈Vα|Ŝi · Ŝj |Vβ〉
〈Vα|Vβ〉

=

{
±3/4, i, j in same loop,

0, i, j in different loops.
(9)

where the + and − sign in front of 3/4 applies for sites
on the same and different sublattices, respectively. Other
examples of transition-graph estimators, e.g., dimer-
dimer correlations of the form

D̂xx(r) =
1

N

N∑
i=1

(Ŝi · Ŝi+x̂)(Ŝi+r · Ŝi+r+x̂), (10)

have been discussed in Refs. 30 and 33.
In the “double projection” version of the VBPQMC

method29 that we use here, bra and ket VB states are
generated stochastically by operating on the bra and ket
versions of the trial state with strings of m Hamiltonian
terms (operators defined on bonds or groups of bonds for
J and Q interactions, respectively). The probability of
the bra 〈Vα| and ket |Vβ〉 appearing together is given by

Pα,β = gαgβ〈Vα|Vβ〉, (11)

where the unknown coefficients are such that
∑
α gα|Vα〉

approaches the ground state of H when m → ∞ and
expectation values in this ground state are obtained using
the stochastically generated transition graphs 〈Vα|Vβ〉.
For details of the computational procedures, which make
use of very efficient loop updates, we refer to Ref. 27.

(a)

(b)

(c)

FIG. 1: (Color Online) Transition graph formed by bra (up-
per, black) and ket (lower, green) valence bond states on a
spin chain. Part (a) shows an S = 0 state on an even num-
ber of sites. In (b) the number of sites is odd and there is
an unpaired spin in both the bra and the ket state. Part (c)
shows an S = 1 configuration, where there are two unpaired
spins. In VBPQMC simulations, the distance distribution of
the unpaired spins in (b) gives information on the size of an in-
dividual spinon, while the size of an S = 1 bound state of two
spinons is reflected in the distance distribution of unpaired
spins on different sublattices in (c).

For the trial state we normally choose an amplitude-
product state,31 where the coefficients fα in (6) are sim-
ple products of amplitudes hα(r) corresponding to bond-
lengths r;

fα =

N/2∏
i=1

hnα(r)
α (r), (12)

where nα(r) is the number of bonds of length r in VB
configuration α. These amplitudes can in principle be de-
termined variationally27,31,34 to optimize the trial state,
but in practice such optimization is not crucial and the
simulations converge well regardless of the details of the
trial states. We typically choose a power-law form, e.g.,
hα(r) = r−2. The bonds configurations of the trial state
are sampled stochastically as well.27

Our VBPQMC calculation projects out the lowest
state with given total spin, S = 0 as discussed above
or higher spins, as will be discussed further below. With
periodic systems, the momentum is also a good quantum
number and is determined by the trial state. With the
simple amplitude-product trial states we are using, the
momentum can be obtained very easily by translating the
bonds by one lattice spacing. If the number of bonds is
odd, i.e., the number of sites is of the form N = 4n+2 for
some integer n, this results in a negative phase, and, thus,
the momentum k = π. Otherwise, for N = 4n, there is
no phase and k = 0. These are exactly the momenta of
the ground states of bipartite spin chains.
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B. Generalized VB basis for S > 0

In addition to the use of the VB basis for singlet ground
states, extensions of the VB basis with unpaired spins
also provide a natural and convenient way to describe ex-
citations with higher spin.12,25,28 In our study of spinons,
we will study systems with one or two unpaired spins. In
the former case, the total number of sites N is odd, and
a generalized VB state can be written as

|Vα(r)〉 =
[ (N−1)/2⊗

i=1

|a, b〉αi
]
⊗ | ↑r〉, (13)

where the notation explicitly indicates the location r in
the chain of the unpaired spin and α labels the possible
(N − 1)/2-bond configurations with this site excluded.
For system with even N and two unpaired spins, analo-
gously an extended VB basis state is written as

|Vα(ra, rb)〉 =
[N/2−1⊗

i=1

|a, b〉αi
]
⊗ | ↑ra〉 ⊗ | ↑rb〉, (14)

with N/2 − 1 singlet pairs and two unpaired spins on
different sublattices. These extended VB bases are
also overcomplete and non-orthogonal in their respective
total-spin sectors S, and, if we choose (as we do here) the
unpaired spins to have Szi = 1/2, the z-projection of the
total spin is Sz = S.

The transition graphs shown in Figs. 1(b,c) have open
strings [with an open string of length zero being a special
case corresponding to a bra and ket spinon residing on
the same site, an example of which is seen in case (c)]
in addition to loops. If we fix the spin-z orientation of
the unpaired spins, as we do here, the strings do not con-
tribute to the weight (since they only have one allowed
state, in contrast to the two allowed states of each loop)
and the overlap of two states is still given by Eq. (7).
Note, in particular, that the unpaired spins can be at
different lattice locations and the states still always have
non-zero overlap. The strings do contribute to expecta-
tion values.

It should be pointed out that, in periodic chains of odd
size N , which we use here to study a single unpaired spin
in S = 1/2 states, there is magnetic frustration caused
by the boundary condition and the lattice is no longer
strictly bipartite. Thus, maintaining the updating rules
in the simulations27,35 the VB singlets here can some
times be formed between sites on the same sublattices
if we continue to label the sites as alternating A and
B, except for one instance of adjacent AA or BB sites.
(in the simulation we do not explicitly label the sites
and there is no breaking of translational symmetry as
we just use the same updating rules for the bonds and
unpaired spins as for the even-N chains). The distance
between the unpaired spin in the bra and ket can then
be an odd number of lattice spacings (while it is always
even in a true bipartite chain). In many cases (which we

will discuss in detail in Sec. III) the system is completely
dominated by short bonds and the distance between the
bra and ket spinon is then always even in practice.

The trial states used for S > 0 calculations are simple
generalizations of the amplitude-product states discussed
in Sec. II A, with the wave-function coefficient given by
Eq. (12) with no dependence on the unpaired spins. In
principle one could improve the trial states by factors
depending on the unpaired spins and spin-bond correla-
tions as well (as recently investigated in detail in Ref. 37),
but this is not necessary here. Following the reasoning
in Sec. II A, for S = 1, k = π for N = 4n and k = 0 for
N = 4n + 2, i.e., the momentum difference with respect
to the S = 0 ground state is π in both cases, as it should
be for the lowest triplet excitation. For the S = 1/2
states, if we strictly label the sites with sublattice labels
A and B, there is a defect in the odd-N system, as dis-
cussed above. However, in the simulations there are no
explicit references to sublattices and in effect the system
is then translationally invariant. Then, under the fur-
ther assumption that no bonds with length as large as
N/4 are present (such configurations having ill-defined
signs),36 the momentum is k = 0 or π, for N of the form
4n+ 1 and 4n+ 3, respectively.

C. Characterization of spinons in the VB basis

In order to study spinon sizes and confinement lengths,
we consider overlaps written in the form

1
2
〈Ψ0|Ψ0〉 1

2
=
∑
r,r′

∑
α,β

gα(r)gβ(r′)〈Vα(r)|Vβ(r′)〉, (15)

generalizing Eq. (11) to S = 1/2 (single-spinon) systems
and written explicitly using sums of terms with all possi-
ble locations of the unpaired spins. We have an analogous
form

1〈Ψ0|Ψ0〉1 =
∑
ra,rb

∑
r′a,r

′
b

∑
α,β

gα(ra, rb)gβ(r′a, r
′
b)

〈Vα(ra, rb)|Vβ(r′a, r
′
b)〉,

(16)

for S = 1 (spinon-pair) systems.

The overlaps are not computed explicitly in the sim-
ulations but serve as normalization factors and weights
in the sampling procedures, such that the different con-
tributions to the above sums appear according to their
relative weights. The practical simulation procedures for
S > 0 are relatively straight-forward generalizations of
the method with loop updates for S = 0. We refer to
Refs. 25,28,33 for technical details. Below we discuss dis-
tribution functions used to characterize spinons. We will
here make us of the unpaired spins, though in princi-
ple one can also define spinon quantities using the entire
strings, of which the unpaired spins are the end points.
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1. Single-spinon distribution function

As discussed above, in the VBPQMC method the bra
and ket states are generated stochastically, and for S =
1/2 we can use Eq. (15) to define a distribution of the
separation of the unpaired spins in the bra and ket states.
Restricting ourselves to a translationally invariant system
we have the probability of separation r − r′ (up to an
irrelevant normalization factor which is easily computed
at the end):

PAA(r − r′) =
∑
α,β

gα(r)gβ(r′)〈Vα(r)|Vβ(r′)〉, (17)

where the subscript AA serves to indicate that the un-
paired spins should be on the same sublattice (because
there is an excess of one site on one of the sublattices,
which is the sublattice with the unpaired spin), which
we can take as the A sublattice. Thus, PAA(r) should
vanish when the separation r is an odd number of lattice
spacings. Our basic assertion is that, if spinons are well-
defined quasiparticles of the system, then we expect PAA
to reflect the size and shape of an intrinsic “wave packet”
within which the net magnetization Sz = 1/2 carried by
the spinon is concentrated. We will show below that 1D
VBS states are characterized by an exponentially decay-
ing overlap, PAA(r) ∝ e−r/λ, and it is then natural to
take λ as a definition of the intrinsic spinon size.

We should here note again that, for a periodic system
with an odd number of sites, there is, strictly speaking,
no absolute distinction between the sublattices (i.e., the
system is strictly speaking not bipartite). However, when
the system size N →∞ we in general expect the role of
the boundary condition to diminish and PAA(r) to tend
to zero for any given odd r. In Sec. III we will discuss
in detail how this limit is approached, and we will also
see an example (one where spinons are not well-defined
quasi-particles) where the boundaries continue to play a
role even for infinite size.

2. Two-spinon distance distribution function

In the case of S = 1 states (two spinons), we can define
several different distributions. Here we will focus on the
separation of spinons on different sublattices in the bra
and ket;

PAB(ra − r′b) =
∑
α,β

∑
rb,r′a

gα(ra, rb)gβ(r′a, r
′
b)×

〈Vα(ra, rb)|Vβ(r′a, r
′
b)〉. (18)

In the case where a single spinon is a well-defined quasi-
particle, i.e., λ < ∞, we expect this quantity to give us
information on the confinement or deconfinement of two
spinons. In the former case, we will see that asymptoti-
cally PAB(r) ∝ e−r/Λ and, thus, we consider Λ as a defi-
nition of the confinement length-scale (i.e., the size of the

S = 1 spinon bound state). We will see that deconfined
spinons give rise to characteristic broad distributions.

We could also have defined the above distance distri-
bution with the two unpaired spins both in the bra or in
the ket, and we have also investigated it. This distribu-
tion typically does not differ significantly from the one
defined in Eq. (18).

3. Same-sublattice distribution in two-spinon states

We will also study the analogue of the S = 1/2 quan-
tity PAA(r), Eq. (17), in the triplet state, defined as

P ∗AA(ra − r′a) =
∑
α,β

∑
rb,r′b

gα(ra, rb)gβ(r′a, r
′
b)×

〈Vα(ra, rb)|Vβ(r′a, r
′
b)〉, (19)

where we use the ∗ superscript to distinguish this distri-
bution from the single-spinon distribution (17). We can
define P ∗BB in the same way, and use P ∗AA(r) = P ∗BB(r)
to improve the statistics. We will see that, under certain
conditions, P ∗AA of the triplet state contains the same in-
formation for the spinon size λ as the S = 1/2 quantity
PAA, and we can use this property of the S = 1 state to
characterize the intrinsic spinon size also in cases where
the S = 1/2 state breaks translational invariance and is
not appropriate for use with our calculations presuming
translational invariance (the 2-leg ladder system being
such an example, which will be studied below in Sec. V).

III. DECONFINED SPINONS IN UNIFORM
SPIN CHAINS

We here first test the concepts and methods for a class
of spin chains, the J-Q3 model, which can be tuned be-
tween a ground-state phase with properties similar to the
standard critical Heisenberg chain and a VBS phase with
VBs crystallizing on alternating nearest-neighbor bonds.
In the critical state, spinons are rigorously known to be
elementary excitations based on the exact Bethe-Ansatz
wave function of the plain Heisenberg chain, and in a
VBS state there are also strong arguments for spinons.4

In either case, a pair of spinons can be regarded as a kink
and an anti-kink of an ordered (in the case of the VBS)
or quasi-ordered (in the critical state) medium. There
is no apparent confining potential between these defects
in one dimension (and clearly any effectively attractive
potential would lead to a bound state and confinement of
the spinons in the ground state—though deconfinement
could still take place at higher energy). Our calcula-
tions show explicitly that there are instead weak repul-
sive interactions, the effects of which diminish with the
system size, thus leading to independently propagating
spinons in the thermodynamic limit down to the lowest
energies. We will also investigate a modified J-Q3 model
with long-range interactions, which hosts a Néel ordered
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ground state. Here spinons are not expected to be decon-
fined and we investigate the break-down of the spinon as
well-defined quasi-particle in this case.

A. Results for the J-Q3 chain

We here consider the 1D J-Q3 chain Hamiltonian,12

H = −
N∑
i

(JCi,i+1 +Q3Ci,i+1Ci+2,i+3Ci+4,i+5), (20)

where Cij is a singlet-projection operator on two sites,

Ci,j = 1/4− Si · Sj, (21)

and the J term is simply the standard antiferromagnetic
Heisenberg interaction. We here use the Q3 term with
three projectors, as its ground state at the extreme point
J = 0 is more strongly VBS-ordered than that of the Q2

model with only two projectors.
When the coupling ratio g = Q3/J is small, the sys-

tem remains in the Heisenberg-like critical state, where
the spin-spin correlation function C(r), i.e., the ex-
pectation value of Eq. (9), has the asymptotic form

C(r) ∼ ln1/2(r)/r.15,38,39 When g is large, the Q3 term
enforces VBS ordering and C(r) is exponentially de-
caying. The VBS state is two-fold degenerate. The
physics of this phase transition is identical (in the sense
of universality)12,35 to that in the frustrated J1-J2 chain,
where spinons in the VBS state were discussed on the ba-
sis of a variational state by Shastry and Sutherland.4,40

In field-theory language, the phase transition is driven
by the sign-change of a marginal operator, and this op-
erator is also the root cause of the logarithmic correction
to C(r) in the critical phase. Exactly at the critical–
VBS transition point the correlations decay as 1/r with
only very small corrections. The transition point of the
J-Q3 model is at gc = (Q3/J)c ≈ 0.1645, as deter-
mined from level spectroscopy12 (excited-state singlet-
triplet crossing41) and VBPQMC calculations of correla-
tion functions.35

Though we do not expect the Hamiltonian (20) to be
naturally realizable in any specific material, the fact that
it has the same kind of ground state phases as the more
realistic frustrated J1-J2 chain still makes its physics in-
teresting, and not being frustrated in the standard sense
it is not associated with sign problems in QMC simula-
tions. The same physics of spontaneous dimerization also
occurs in spin chains with phonons (often called spin-
Peierls systems)42 We expect the properties of spinons
to be discussed below to apply also to frustrated chains
and spin-Peierls systems.

1. Single spinons in states with total-spin 1/2

We here first investigate PAA(r) as defined in Eq. (17)
to study the size of spinons in the VBS phase at dif-
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FIG. 2: (Color Online) Single spinon overlap distribution
in the J-Q3 chain. (a) Exponential decays indicating well-
defined quasi-particles in VBS states at different values of
g = Q3/J . The size λ of the spinon (the inverse of the slopes
of the lines on the lin-log plot) diverges as the critical point
is approached. Panel (b) shows that the spinon is marginally
defined at the critical point, with the overlap decaying as a
power-law with exponent α = 0.500(2) (with a fitted line to
the even-r points shown for N = 1025). The even-odd oscil-
lations are due to the frustration caused by the single-spinon
defect in a periodic chain (with the odd-r contributions only
possible in a non-bipartite system). The effects of frustration
for r less than N/2 diminish as the chain size increases.

ferent coupling ratios g = Q3/J . In Fig. 2(a) we see
that the intrinsic spinon wave packet has a pronounced
exponential decaying form, PAA(r) ∝ e−r/λ, showing
that spinons indeed are well defined quasi-particles of
the VBS, with a characteristic size λ. The spinon size
decreases with increasing g (going deeper into the VBS
phase), with λ = 30.0(1) when g = 1 and λ = 9.2(1)
when g → ∞ (the pure Q3 model). When λ is large,
there are also significant deviations from the pure expo-
nential form for a range of small r, indicating cross-over
behaviors to a different form obtaining when g → gc.
As shown in Fig. 2(b), exactly at the transition point gc
the decaying form is indeed no longer exponential, in-
stead it is very well described by r−α with the power
α = 0.500(2). Our physical interpretation of this result
is that, the spinon at the transition point can be consid-
ered only as a marginally well-defined quasi-particle in
real space.

As we discussed in Sec. II B, for N odd there is a
complication with the periodic boundaries, which ren-
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FIG. 3: (Color online) (a) Single-spinon distribution function
at the VBS transition point and inside the critical phase (g ≤
gc = 0.1645) computed using chains of length N = 513. (b)
The data at gc for several system sizes, rescaled such that data
collapse is achieved. The lines in both (a) and (b) correspond

to the r−1/2 form.

ders the system non-bipartite in principle. The distance
between the unpaired spin in the bra and ket can then
be odd. However, the probability of these odd distances
is exceedingly small in the VBS state of the N = 1025
chains used in Fig. 2(a), but in the critical-chain results
in Fig. 2(b) we clearly can see non-zero odd-r proba-
bilities. Relative to the even-r probabilities, for fixed
r they decrease rapidly as N grows, while approaching
the even-r probabilities as r → N/2 (and, interestingly,
the odd branch follows almost an inverse of the behavior
of the even branch, increasing as r−0.5 in the relevant
range of r). In our simulations we neglect the non-trivial
(non-Marshall) signs in the wave function arising from
the even-length bonds (where we define the length as the
shortest of the two possible distances between the two
paired spins under the periodic boundary conditions),
but we find it unlikely that this approximation would af-
fect our conclusions on the nature of the spinon as these
signs also are due to boundaries and we are interested in
the thermodynamic limit. We will also see further be-
low that we obtain the same exponential (for g < gc)
or power-law (for g = gc) decay also in P ∗AA, Eq. (19),
in the chains with two unpaired spins, where the lattice
remains bipartite and there are no frustration effects.

Given the fact that the exponent α of the critical
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FIG. 4: (Color online) Two-spinon distance distribution in
VBS states of the J-Q3 chain at (a) fixed g = 4 and different
chain lengths, and (b) fixed chain length N = 256 and differ-
ent coupling ratios. The y- and x-axis has been rescaled with
N and 1/N , respectively, in order to achieve data collapse for
large r in (a). The increase in the small-r distribution for the
lowest g-value in (b) show that the effective short-distance
spinon-spinon repulsion becomes weaker as the system ap-
proaches the the transition point (gc = 0.1645).

spinon overlap in Fig. 2(b) is very close to 1/2, and the
behavior is seen to remarkable consistency over two or-
ders of magnitude of r, we conjecture that the exponent
should in fact be exactly 1/2. It is tempting to asso-
ciate it with the square-root of the spin correlation func-
tion C(r) = 1/r, although we have not tried to formally
compute this quantity within the bosonization approach
(which in principle should be possible43).

Another interesting question to ask is, how is the criti-
cal ∼ r−1/2 form of the single-spinon distribution PAA(r)
at gc changed when going further into the critical region
(g < gc)? The logarithmic correction to the correlation
function 1/r is a well known consequence of the presence
of a marginal operator, as mentioned above. One would
then expect corrections to PAA(r) as well. As seen in
Fig. 3(a), PAA(r) indeed changes noticeably when mov-
ing away from the transition point into the g < gc crit-
ical phase. The behavior can be fitted to a power-law
with exponent depending on g, but most likely the r−1/2

behavior persists for all 0 ≤ g ≤ gc and it is only the
strength of a logarithmic correction that changes. While
the data can be fitted to the r−1/2 with a multiplicative
logarithmic correction, the power of the logarithm is not
clear, and further quantitative studies of this behavior
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FIG. 5: (Color Online) Distribution of spinon separations in
S = 1 states at and below the VBS transition point gc; in (a)
for fixed chain-length N = 512 and varying g, and in (b) at
gc for different chain lengths. The lines going through the gc
points have slope 0.7.

would require much longer chains.
In Fig. 3(b), we further analyze the behavior at gc

for different system sizes, re-graphing the even-branch of
Fig. 2(b) such that data collapse is achieved; NPAA ver-
sus r/N . An interesting aspect of these results is that
there are no noticeable enhancements due to the peri-
odic boundaries at the longest distances, r ∼ N/2 (which
are typically seen prominently in correlation functions),
with the power-law describing the data very well from
the smallest to largest distances for all system sizes.

2. Two spinons in states with total spin 1

Next, we consider chains with even N and two un-
paired spins. The distribution function PAB(r) here
reflects the effective mutual interaction between two
spinons, mediated by the background of singlets. For
a confining case, we would expect to observe PAB(r) ∝
e−r/Λ, with a finite confinement length Λ. Deconfine-
ment should be signaled by a divergence of Λ. Results
for the J-Q3 chain in the VBS phase, graphed in Fig. 4,
show distribution functions with no decay at long dis-
tances. Instead PAB(r) exhibits a very broad maximum
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FIG. 6: (Color Online) The same-sublattice distribution func-
tion for S = 1 states at three different values of the cou-
pling ratio. The corresponding distributions PAA(r) for the
S = 1/2 states at the same couplings are shown in lighter
(brown) color and they coincide very closely with the S = 1
functions (thus, demonstrating that the single-spinon size can
be obtained also from the S = 1 simulations). The system size
here is N = 1024 for S = 1 and 1025 for S = 1/2.

at the largest distance, which we naturally interpret as
resulting from a weak repulsion between two spinons. As
shown in Fig. 4(a), the repulsion diminishes somewhat
when tuning down the coupling ratio toward the criti-
cal point, where, apparently, increasing quantum fluctu-
ations (including an increasing fraction of long VBs) re-
duce the repulsive potential. The range of r over which
the distribution is almost flat increases essentially pro-
portionally with N . In Fig. 4(a) we have multiplied the
distribution function with N for several N at a fixed g
inside the VBS phase, and find that the curves collapse
well on top of each other for r/N roughly in the range
0.1 to 0.5. This indicates that the effective interactions
are short-range in nature, with spinons far away from
each other behaving as free particles. Clearly, all these
results point to deconfined spinons, as expected. While
the details of the cause of the repulsive potential are un-
certain, it is clear that the sign of the effective interaction
is crucial for deconfinement (at the lowest energies stud-
ied here)—any weak attractive potential would bind the
spinons, while short-range repulsive interactions aid de-
confinement.

Results for PAB(r) at the VBS transition and inside
the critical phase are shown in Fig. 5(a), while results for
several chain lengths at the critical point are shown with
rescaled axis to achieve data collapse in 5(b). The criti-
cal distribution is also here consistent with a power-law,
PAB(r) ∼ rγ , with γ ≈ 0.7 (and with a prefactor decreas-
ing with the system size). Based on these results one may
argue that the effective spinon-spinon interactions be-
come increasingly long-ranged as gc is approached from
the VBS side, although the short-range part is decreas-
ing, based on the fact that distribution at short distances
grows upon decreasing g. Inside the critical phase there
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are again likely logarithmic corrections, and the trend of
decreasing effective short-distance spinon-spinon interac-
tions continue as g decreases.

Next we consider the same-sublattice distribution func-
tion P ∗AA(r), defined in Eq. (19). Since the spinons are
deconfined and typically are further away from each other
than the single-spinon length-scale λ, one would expect
that P ∗AA(r) contains essentially the same information as
the single-spinon function PAA(r) for the S = 1/2 state,
defined in Eq. (17). This is indeed the case in the VBS
phase, as demonstrated in Fig. 6. Clear exponential de-
cays are observed, and the results coincide almost per-
fectly with the previous results for PAA(r) in Fig. 2(a).

To reiterate what is going on here, the two spinons in
the S = 1 state are on different sublattices, and the un-
paired spin on sublattice A in the ket state is correlated to
the one on the same sublattice in the bra state, to within
the length-scale λ that we have argued describes the in-
ternal spinon size. The same holds for the unpaired bra
and ket spins on sublattice B. Due to spinon deconfine-
ment the A and B spinons are not bound to each other,
however, and typically are far away from each other. Un-
der these conditions, the distribution functions PAA(r)
and P ∗AA(r) are essentially the same.

To illustrate this point more explicitly, in Fig. 7 we
plot results in the VBS state and approaching the criti-
cal point for the spinon-size estimates λ and λ∗ [extracted
from the distribution functions PAA(r) and P ∗AA(r)], to-
gether with the standard spin correlation length ξc [ob-
tained from the spin-spin correlation function (9)] and
the VBS correlation length ξd [extracted from dimer-
dimer correlation function (10)]. It can be seen that λ
and λ∗ are almost identical to each other, as expected.
The four lengths: ξc, ξd, λ, λ∗, diverge at a similar rate
upon approaching the critical point gc = 0.1645. Since
the phase transition from the ordered VBS state to the
critical state in the 1D J-Q3 model is similar to a 2D
classical Kosterlitz-Thouless (KT) transition, we fit these
four lengths with functions to the form of the correlation
length in that case, ξ ∼ aeb/

√
g−gc , where a, b are fit-

ting parameters. Due to the statistical errors and the
small number of data points, we cannot determine these
fitting parameters very precisely. Representative curves
from these fits are shown in Fig. 7. We also notice in
Fig. 7 that the spinon size λ extracted this way is much
larger than the correlation lengths ξc and ξd, which we
will discuss again later in Sec. VI, in connection with the
correlation functions in S = 1/2 or S = 1 states (which,
we argue, should also contain the spinon size).

As shown in Fig. 8, the S = 1 function P ∗AA(r) in-
side the critical phase exhibits an interesting cross-over
behavior, most clearly visible at g = gc. The behavior
at short distances is well described by the same r−1/2

behavior as the corresponding single-spinon function in
Fig. 3. However, at larger distances the behavior changes
to ∝ 1/r. We do not have any explanation for this be-
havior and it would be interesting to investigate it within
bosonization.
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FIG. 7: (Color online) Spin and dimer correlation lengths, ξc
and ξd, along with the spinon size measured in the S = 1/2
and S = 1 states, λ and λ∗, upon approaching the critical
point gc = 0.1645 from the VBS phase in 1D J-Q3 model.
Since this transition is of the KT type, we fit the data to the

form aeb/
√
g−gc (solid lines).
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FIG. 8: (Color online) Same-sublattice distribution functions
for S = 1 states in the critical phase. (a) shows results for
different coupling ratios for fixed system size N = 512, while
in (b) results at gc are re-scaled to achieve data collapse for
several system sizes. The lines have slope 1/2 and 1 for small
and large r, respectively.
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FIG. 9: (color online) Size-scaled spinon overlap function in
a Néel-ordered chain with total S = 1/2, computed for chain
lengths N = 257, 513, and 1025. The asymptotically flat
(with even and odd-r branches) distribution shows that the
spinon is not a well-defined quasi-particle in the Néel state, as
expected. The inset shows the tail of the spinon overlap func-
tion of Néel-ordered chains with a clearer view of the N = 217
and N = 513 data.

B. Break-down of spinons as quasi-particles of a
Néel state in one dimension

In a long-range ordered Néel AFM state, the elemen-
tary excitations are spin waves (magnons) carrying spin
S = 1. It is then interesting to ask how the change in
the nature of the excitations is manifested in our spinon
distribution functions if the system can be driven to a
Néel state. The continuous spin-rotational symmetry of
the ground state of the Heisenberg or J-Q chains can-
not be spontaneously broken, however, according to the
Mermin-Wagner theorem.44 We can circumvent this limi-
tation on 1D ground states by including long-range inter-
actions, in which case the theorem does not apply. We
here consider unfrustrated power-law decaying interac-
tions defined by the Hamiltonian

H =

N∑
i=1

N/2∑
odd r

JrSi · Si+r, Jr > 0, (22)

where there are no couplings for even separations of spins,
while for odd separations the coupling is Jr = 1/rα. A
similar Hamiltonian was studied before in Ref. 45, where
it was found that by tuning the decay exponent α the sys-
tem undergoes a continuous phase transition from critical
states when α > αc to a long-range ordered Néel states
when α < αc. The critical power depends on details, e.g.,
on the strength of the nearest-neighbor coupling, and in
the cases studied in Ref. 45 αc ≈ 2.2. In Ref. 46 frus-
tration was added to the model in order to drive it to a
VBS phase. In our study we are just interested in study-
ing an example of a 1D Néel state and choose Jr = r−3/2

(odd r) in Eq. (22), for which we verified that indeed the
system is AFM ordered.

We investigate the single-spinon distribution function
PAA(r) in an S = 1/2 state for odd N . In Fig. 9, we
plot PAA(r) scaled by N versus r for different system
sizes and find good convergence as a function of the sys-
tem sizes, though the error bars are large at the largest
distances. The behavior here is quite different from the
previous cases, Figs. 2 and 3, with (i) no vanishing of
the probability of odd-r separation and (ii) no decay of
the rescaled function. The latter behavior indicates that
the spinon here is not a well-defined particle, with no
concentration of the net magnetization to within an in-
trinsic wave packet. This is of course not surprising, in
the sense that spinons are not expected to be the ele-
mentary quasi-particle excitations of the Néel state. We
had also already found above that in the critical state
the quasi-particles are only marginal, characterized by
power-law overlaps (and hence any further enhancement
of antiferromagnetic correlations should completely de-
stroy the spinons). It is still interesting to see that the
break-down of the spinons as quasi-particles can be ex-
plicitly observed in the distribution function PAA(r).

IV. SPINON CONFINEMENT ARISING FROM
MODULATED COUPLINGS

In order to observe confinement of spinons, we here
use a generalized version of the J-Q3 model with differ-
ent nearest-neighbor coupling constants on even and odd
bonds. The Hamiltonian is

H = −
∑

even i

(J1Ci,i+1 + J2Ci+1,i+2)

−Q3

∑
i

Ci,i+1Ci+1,i+2Ci+2,i+3. (23)

When the modulation parameter ρ = J2/J1 6= 1, the
Hamiltonian itself breaks translational invariance and
there is no longer a VBS phase transition with sponta-
neously broken symmetry. If we start in a spontaneously
formed VBS (Q3/J1 > gc) for ρ = 1, the ground state is
doubly degenerate, but once ρ > 1 the degeneracy is bro-
ken and the ground state is unique. This is expected to
confine the spinons, as the string of out-of-phase bonds
formed between two separated spinons is now associated
with an energy cost increasing linearly with the separa-
tion, instead of the energy only being associated with the
domain walls when ρ = 1. This model was also studied in
the presence of an impurity in Ref. 26, and it was found
that the localization length of the magnetization distri-
bution forming around the impurity could be tuned by
ρ. It was argued that two regions of confinement could
be defined; (i) strong confinement, where the size of the
bound state is similar to the standard spin correlation
length, and (ii) weak deconfinement, where the bound
state is much larger than the correlation length. Here
we find similar behavior for two spinons binding to each
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FIG. 10: (Color online) Spinon distribution functions in the
J1-J2-Q3 chain with Q3/J1 = 4 and several values of the mod-
ulation parameter ρ = J2/J1. (a) shows exponential decays,

PAA(r) ∼ e−r/λ, of the single-spinon distribution function of
the S = 1/2 state, demonstrating well-defined spinons with
finite intrinsic size λ. In (b), spinon confinement for ρ 6= 1
is demonstrated in the spinon-distance distribution function;
PAB(r) ∼ e−r/Λ. The size of the bound state (the confine-
ment length-scale) decreases as the coupling modulation is in-
creased. Data for ρ = 1 are graphed for comparison—in this
case the spinons are deconfined and the distribution function
does not decay with the separation.

other instead of a static impurity. A priori it is not clear
that the situations are identical, as the impurity-spinon
and spinon-spinon potentials are not identical (since a
dynamic spinon perturbs its singlet environment differ-
ently than a static impurity).

We first test for confinement deep inside the VBS phase
at g = Q3/J1 = 4. As shown in Fig. 10(a), the spinon
size λ computed from PAA(r) in the S = 1/2 ground
state becomes smaller when the confining potential in-
creases (tuning ρ from 1 to 8). Fig. 10(b) shows that the
confinement length Λ indeed becomes finite once we tune
ρ off 1. For ρ very close to 1 it is difficult to extract Λ be-
cause we also need to satisfy L� Λ and the calculations
become very demanding. Upon increasing ρ we find that
Λ approaches λ.

An interesting observation in Fig. 10(b) is the max-
imum developing in PAB(r), seen around r = 20 for
ρ = 1.1 and moving to R = N/2 at the uniform point
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FIG. 11: (Color online) The same quantities as in Fig. 10 but
with the ratio Q3/J1 = gc = 0.1645. Here the tuning of the
modulation parameter ρ toward 1 corresponds to approaching
a critical point.

ρ = 1. In Sec. III we already argued that there is an effec-
tive short-range repulsive interaction between the spinons
in the uniform chains, and it is natural that these inter-
actions should persist also for some range of ρ away from
1, although there is also an attractive part binding the
spinons. Thus, we arrive at the conclusion that when
ρ is close to 1 there is a short-range repulsion followed
by the linear confining attractive potential at longer dis-
tances. Judging from the fact that the maximum proba-
bility moves toward r = 0 for larger modulation param-
eters, ρ = 2, 8 in Fig. 10(b), the role of the short-range
repulsion diminishes (leading to the spinon core being
“crushed”) relative to the linear attractive confinement
potential, which grows with ρ. The cases of λ ≈ Λ and
maximum probability at r = 0 seems very similar to the
case of “strong confinement” by an impurity in Ref. 26,
while the case of remaining effects of repulsions push-
ing the maximum probability away from r = 0 is like
the “weak confinement” case. It would be interesting to
compare the two cases more quantitatively, but we leave
this for future studies.

We also observe similar behaviors in the dimerized
model at the critical Q3/J1 value, as shown in Fig. 11.
The main difference is that now the spinon size λ diverges
as ρ→ 1, instead of tending to a finite value in the VBS
phase. Both length-scales are actually smaller than in the
VBS phase for larger ρ, e.g., for ρ = 2, Λ ≈ 2.42(1) at
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gc while Λ ≈ 3.78(4) at g = 4. This implies that the im-
posed dimerization in the critical region has a stronger
effect than in the ordered VBS phase. In the critical
region all lengths diverge, and, therefore, once we add
the explicit dimerization ρ 6= 1 it dominates the physics
immediately. In contrast, in the VBS phase there are
competition effects between the spontaneous VBS and
the explicit dimerization, which apparently reduce the
effects on the spinon size and confinement length. Also
here we can see a maximum in PAB(r) away from r = 0,
and Λ here is somewhat larger than λ. It would be inter-
esting to study in detail the divergence of these lengths
as ρ → 1 and compare them with both the spin and
VBS correlation lengths (and also to compare with the
impurity-binding case), but we also have to leave this for
future studies.

V. HEISENBERG LADDERS

Another way to confine the spinons of the Heisenberg
chain is to couple two chains into a ladder, described by
the Hamiltonian

H = J1

L∑
i=1

(S1
i · S1

i+1 + S2
i · S2

i+1) + J2

∑
i=1

S1
i · S2

i , (24)

where the superscripts 1 and 2 label the two chains, J1

is the nearest-neighbor coupling within the chains, and
J2 is the inter-chain (rung) coupling. It is known that
any inter-chain coupling J2 opens a gap in the excitation
spectrum and changes the critical correlations to an ex-
ponentially decaying form.47 This is true for ladders with
any even number of legs, while odd-leg ladders are criti-
cal and exhibit the universality of the single chain.48 The
situation here is similar to single chains of Heisenberg-
coupled integer or half-odd-integer spins, with the former
always being gapped according to the now well confirmed
“Haldane conjecture”.49 The integer-S chains have local-
ized spinons at the ends of open chains, and this is also
the case (perhaps less surprisingly) in open ladders where
a spin is removed from each end. We here investigate the
spinon confinement mechanism in the periodic, transla-
tionally invariant ladder.

Gapped triplons (S = 1), which are the low-lying ex-
citations of ladder systems, have already been observed
in the excitation spectrum of real materials by inelas-
tic neutron scattering.23 It has been argued that this
observation makes the ladder system the simplest con-
densed matter system where one can in practice realize
a phenomenon similar to quark confinement in particle
physics.50 The energy gap, spin-triplet dispersion relation
and the dynamic spin structural factor of the Heisenberg
2-leg ladder model have also been extensively studied by
numerical methods.47

We begin by discussing the standard spin-spin correla-
tion function in the S = 0 ground state. We fit it to the
form C(r) ∝ e−∆/ξ when g = J2/J1 > 0, and will later
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FIG. 12: (Color online) Spin correlation function in Heisen-
berg ladder systems. Here the intra-chain coupling J1 = 1
and results are shown for several values of inter-chain cou-
plings J2. C(x, 0) decays exponentially when J2 6= 0 and ex-
hibits the power-law decay of the isolated chain when J2 = 0.
In the inset, the correlations are large distances on a log-log
scale at J2 = 0 and J2 = 0.1. Because here the system length
L is smaller than the correlation length it is not yet possible
to observe the exponential decay.

compare the spinon-related length-scales with the corre-
lation length ξ. Results are shown in Fig. 12. Note that
it is very difficult to extract ξ when g is small, as ξ then
becomes large and the system size has to be even larger,
L � ξ. The inset of Fig. 12 illustrates this problem for
g = 0.1. We here focus on rung couplings sufficiently
large for extracting ξ reliably based on our available lad-
der sizes.

We now turn to the characterization of the spinons.
In the 2-leg ladder it is not possible to study a system
with an odd number of spins N (N = 2L) without break-
ing the translational symmetry of the system (which is
a much more severe issue than the boundary subtleties
in the single chain, discussed in Sec. II B, which do not
ruin the translational symmetry). We here only discuss
calculations in the S = 1 state for even N and present re-
sults for the distributions P ∗AA(r) and PAB(r) in Fig. 13.
As we discussed in Sec. III, P ∗AA(r) can reliably give the
intrinsic spinon size λ if this length-scale is smaller than
the size Λ of the bound state—in principle one would ex-
pect to need Λ � λ but in practice, as shown in Figs. 6
and 10, it seems to work also otherwise. In the ladder,
the length λ∗ as extracted from P ∗AA(r) is always very
similar to Λ from PAB(r), however, and, therefore, it is
not clear whether λ∗ can be interpreted strictly as the
size of an individual spinon, although based on the pre-
vious comparisons one may well argue that it is the case.
In the ladder systems, λ∗ is even somewhat larger than
Λ , e.g., at J2 = 1, λ∗ ≈ 3.9 and Λ = 3.5.

We recently studied a 2D J-Q3 model with a VBS
state.13 In that case, an individual spinon in an S = 1/2
state can be studied and we found that the so extracted
λ is considerably smaller than the bound state of two
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FIG. 13: (Color online) Spinon distribution functions in S =
1 states of Heisenberg ladders with different rung couplings
J2. Both distribution functions are exponentially decaying
for J2 = 0.5, 1, and 2, while for J2 = 0.1 the system size is
not sufficiently large for observing the expected asymptotic
exponential decay.

spinons. We interpreted this as being due to a softness
of the extended spinons, which are expected to be a kind
of vortices in 2D. Such soft spinons shrink when they are
subject to mutual attractive interactions and form a pair.
Also there the single-spinon length λ∗ extracted from the
S = 1 state is somewhat larger than Λ. Given this simi-
larity, we also interpret λ∗ ≈ Λ in the Heisenberg ladder
as due to softness of the spinons.

VI. DETECTING SPINONS IN SPIN
CORRELATIONS

The definitions Λ and λ of the spinon length-scales
are closely tied to the VB basis, and the underlying
distribution functions are not directly physically mea-
surable quantities. It is therefore interesting to investi-
gate whether the same length scales also appear in bona
fide quantum-mechanical expectation values as well. The
natural candidate is the standard spin correlation func-
tion using the operator (8) in the total-spin sectors with
S = 1/2 and S = 1. It is clear that these correlations
overall should not differ significantly from those in the
ground state with S = 0 and we therefore look explicitly
at at the difference between the two correlation functions,
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FIG. 14: (Color online) Absolute value of the spin correlation
function in the S = 1/2 and S = 1 state, after subtraction of
the S = 0 correlation function according to Eq. (25). (a) is for
a J-Q3 chain with Q3/J = 4 and (b) is for a J1-J2-Q3 chain
with J2/J1 = 1.1 and Q3/J1 = 4. In both cases the chain
length is L = 512. The sharp dips where the relative errors
are large for the S = 1 quantities correspond to phase shifts
[in S1(r) and ∆1(r)]. In (b) the even-r and odd-r branches
are graphed in different colors to show the even-odd effects,
while in (a) these effects are too small to be visible. All lines
correspond to exponential fits.

defining

∆S(r) = CS(r)− C0(r), (25)

where the subscript in CS indicates the spin sector in
which the correlations are computed. We plot the abso-
lute value of these functions for a J-Q3 chain in Fig. 14(a)
and for a J1-J2-Q3 chain with a small modulation param-
eter ρ = 1.1 in Fig. 14(b). In both cases, Q3 is relatively
large, so that the uniform J-Q3 chain is deep inside the
VBS phase.

For S = 1/2, we find an almost pure exponential decay
in Fig. 14(a), with a decay constant almost the same as
the single-spinon size λ obtained previously for this VBS
state. As shown in Fig. 7, λ > ξc, and, thus, the excess
correlations in the S = 1/2 state decay slower than those
in the S = 0 state and it is natural to associate these
correlations with the intrinsic spinon size. We conclude
that λ is an actual physical characteristic of the S = 1/2
state, observable in the long-distance decay of ∆1/2(r).

In the S = 1 state, we find an interesting structure,
where at short distances the behavior follows closely the
same exponential decay as in the S = 1/2 state, while for
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FIG. 15: (Color online) Spin correlation difference for Heisen-
berg ladder systems in the S = 1 sector. The lines show
exponential fits.

larger distances there is a rather dramatic change, with
a phase shift in the staggered correlations (which here is
not seen directly as we are graphing only the absolute
value, but the shift is reflected indirectly in the sharp
dip to very small value within a narrow r-range), fol-
lowed by a flattening out of the correlations. The phase
shift and subsequent flattening out can be understood in
terms of deconfined spinons in the following way: Since
we are looking at a state with total Sz = S = 1, the spin
correlations at long distances are completely dominated
by the contributions from the unpaired spins and their
transition-graph strings (the singlet background, corre-
sponding to the loops in the transition graphs, having
exponentially decaying correlations). Since these spinons
are fixed in the “up” state and always reside on differ-
ent sublattices, we will get positive (negative) contribu-
tions from odd (even) distances, in contrast to the nor-
mal phase of the correlations an antiferromagnet, which
is negative (positive) at odd (even) distances. We find
the standard phase of the correlations in the S = 1 state
as well at short distances. Given this, there must be
a phase shift at some distance r. The exact location of
the phase shift depends on the model parameters and the
chain length in a way which we have not yet disentangled.

As shown in Fig. 15, in the case of the ladder systems
we do not find any phase shifts and in all cases studied
the correlation difference between the S = 1 and S = 0
is essentially a pure exponential form. In the ladder we
have not found any case where Λ is significantly larger
than λ and most likely these quantities both diverge in
the same way as J2/J1 → 1. There is therefore no clear
regime of weak deconfinement, although the term may be
misleading when the length scales both do become large.
We therefore suggest the term marginal deconfinement to
describe this scenario.

VII. SUMMARY AND DISCUSSION

We have used a computational technique based on
valence-bond projector QMC simulations to study the
spinon size λ and the confinement length Λ in 1D spin
systems. We found that when a system has only one un-
paired spinon, the overlap between valence-bond states
with unpaired Sz = 1/2 moment residing at distance
r away from each other decays as e−r/λ in a gapped
VBS, where we interpret λ as characterizing the intrin-
sic spinon size. In a critical state, the overlap instead
decays as r−1/2, which we interpret as spinons that are
only marginal particles, on the verge of losing their identi-
ties as quasi-particles. When the system has two spinons,
the distributions function for the distance between them
decays as e−r/Λ if the spinons are confined (which we
have studied using a modulated pattern of weak and
strong coupling constants, which leads to a linear spinon-
binding potential), with Λ characterizing the size of the
bound state. For deconfined spinons (which we have
studied in VBS states and critical states) we found that
the distribution function instead exhibits a broad peak
at the largest separation, demonstrating a weak repulsive
potential between the spinons. We studied the Heisen-
berg 2-leg ladder system. By tuning the rung coupling,
the system can be driven from a deconfining phase (two
decoupled chains) to a confining phase. In this case the
spinon size is always similar to the size of the bound state.

In the Bethe-Ansatz solution of the Heisenberg chain,
spinons are non-interacting particles (kinks and anti-
kinks), but it should be noted that these particles are
obtained from the original spin degrees of freedom using
a highly non-local transformation. What we have probed
here is instead more direct measures of the spatial “con-
centration”, PAA(r), of the total magnetization of a sin-
gle spinon, and the correlations between (essentially) the
center-of-mass of two such distributions, PAB(r). Since
our calculation projects out the lowest state with given
total spin, in the case of S = 1 the total momentum k = π
(in the case of a chain with N = 4n sites). Therefore the
spinons here are not propagating, having individual spin
0 and π (these giving the lowest possible energies in light
of the des Clauseaux-Pearson dispersion). In principle
our calculations can also handle total momentum away
from k = π, but in practice, due to phase problems in
the Monte Carlo sampling, we are restricted to momenta
close to 0 and π.

In the future it would be interesting to more exhaus-
tively characterize all the length-scales of the system (in-
cluding λ, Λ, as well as the spin and VBS correlation
lengths) and their divergences under the various condi-
tions afforded by the models we have performed initial
studies on here.
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