
This is the accepted manuscript made available via CHORUS. The article has been
published as:

1/f^{α} noise and generalized diffusion in random
Heisenberg spin systems

Kartiek Agarwal, Eugene Demler, and Ivar Martin
Phys. Rev. B 92, 184203 — Published 24 November 2015

DOI: 10.1103/PhysRevB.92.184203

http://dx.doi.org/10.1103/PhysRevB.92.184203


1/fα noise and generalized diffusion in random Heisenberg spin systems

Kartiek Agarwal,1 Eugene Demler,1 and Ivar Martin2

1Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA∗
2Material Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

(Dated: November 5, 2015)

We study the ‘flux noise’ spectrum of random-bond quantum Heisenberg spin systems using a
real-space renormalization group (RSRG) procedure that accounts for both the renormalization of
the system Hamiltonian and of a generic probe that measures the noise. For spin chains, we find that
the dynamical structure factor Sq(f), at finite wave-vector q, exhibits a power-law behavior both at
high and low frequencies f , with exponents that are connected to one another and to an anomalous
dynamical exponent through relations that differ at T = 0 and T = ∞. The low-frequency power-
law behavior of the structure factor is inherited by any generic probe with a finite band-width and
is of the form 1/fα with 0.5 < α < 1. An analytical calculation of the structure factor, assuming a
limiting distribution of the RG flow parameters (spin size, length, bond strength) confirms numerical
findings. More generally, we demonstrate that this form of the structure factor, at high temperatures,
is a manifestation of anomalous diffusion which directly follows from a generalized spin-diffusion
propagator. We also argue that 1/f -noise is intimately connected to many-body-localization at
finite temperatures. In two dimensions, the RG procedure is less reliable; however, it becomes
convergent for quasi-one-dimensional geometries where we find that one-dimensional 1/fα behavior
is recovered at low frequencies; the latter configurations are likely representative of paramagnetic
spin networks that produce 1/fα noise in SQUIDs.

I. INTRODUCTION

Disordered interacting spin systems display a variety
of physical phenomena: the spin glass transition [1–5]
and slow relaxation [6–9], many-body localization tran-
sition [10–14] and a breakdown of ergodicity, Griffiths
(rare-region) effects [15–18], strong-randomness fixed
points [19–21], spin-liquid states [22] and even excited
topological states [23]. A great deal of our understand-
ing of these phenomena has come from the development
of the real-space renormalization group (RSRG) [alter-
natively, strong disorder RG (SDRG)] method [24–26].
Previous applications of the method focussed on studying
the low-temperature thermodynamic properties of disor-
dered spin chains. More recently, the approach has been
applied to study both high temperature and dynamical
properties—this is based on the identification that the
protocol, more generally, involves the creation of local in-
tegrals of motion, i.e., the high-energy modes eliminated
during the RG process are pieces of approximate many-
body eigenstates of the system [19, 27, 28]. Using such
ideas, theoretical analysis of the low-temperature optical
conductivity of Anti-Ferromagnetic spin chains of vari-
ous kinds was carried out in Ref. [19] while that for Ising
spin chains was performed computationally to identify
a transition between various infinite-temperature many-
body localized phases in Ref. [27].

The work presented here builds on and extends the
RSRG program to address a crucial question in the dy-
namics of disordered systems—how do they generate
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scale-invariant 1/ωα (or 1/fα) noise? Numerous ex-
periments [29–35] on Superconducting Quantum Inter-
ference devices (SQUIDs) observe a flux noise with a
spectrum N(ω) ∼ 1/ωα whose magnitude is nearly tem-
perature independent, but exponent α changes smoothly
with temperature [30, 31]. The noise likely originates
from fluctuating electronic spins localized on the metal-
insulator (the conducting strip and the substrate) inter-
face of the SQUIDs [29, 36, 37]. Such spins can inter-
act via oscillatory RKKY (Heisenberg) interactions [37]
whose sign flips on the order of the Fermi-wavelength
and is effectively random at the scale of separation of
the spins, i.e., interactions can be both Ferromagnetic
(F) or Anti-Ferromagntic (AF). The dynamics of such
spins, and how they generate the observed noise spec-
trum is less understood. In particular, it was posited that
the two-dimensional surface spins exhibit regular diffu-
sion [37, 38] and that the 1/ω noise spectrum arises in a
limited frequency range owing to specifics of the geom-
etry of the probe coupling. Such explanations predict a
large frequency lower bound to the 1/ω form of the noise
spectrum which is not observed in experiments. More
importantly, it was assumed that the disorder is self-
averaging (which leads to diffusion). A central finding
of our work is that, for sufficiently strong initial disor-
der, this is not the correct conclusion for one-dimensional
and two-dimensional ‘strips’ of Heisenberg spins—we find
that such interacting spin networks generically flow to-
wards strong-randomness fixed points where they exhibit
anomalous diffusion and, moreover, this entails a flux
noise that intrinsically exhibits a 1/ωα (α < 1) noise
spectrum.

The RSRG protocol we develop allows us to directly
compute the noise spectrum N(ω) measured by a probe
that couples (through arbitrary geometrical factors) to
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FIG. 1. (a) Phase diagram of the strongly disordered Heisen-
berg spin chain (with 1/|J | distribution of initial couplings in
a range |J | ∈ [1, eD] ) extrapolated to finite temperatures us-
ing RSRG results at zero and infinite temperatures; the color
scheme encodes the variation of the dynamical exponent z as
a function of the bias ηi [initial proportion of F/AF (-1/1)
bonds in chain]. (b) The low-frequency noise power law α
and (c) the dynamical critical exponent z are plotted against
ηi at T = 0 (data-points and error bars) and T = ∞ (flat
line with dashed lines indicating error), for disorder strength
D = 3 (see main text). At T = 0, the purely F system har-
bors heavily damped spin wave excitations whose localization
length diverges as 1/ω in the zero-frequency limit. The purely
AF system, which is known to flow to a infinite-randomness
fixed point, exhibits 1/ω noise. Intermediate biases (non-
hatched region) flow to strong-randomness fixed points ac-
companied by 1/ωα noise spectra. Hatched region is inacces-
sible to RSRG. At high temperatures (T � ω), the 1/ωα noise
spectra is generic to strongly disordered Heisenberg chains
and can be interpreted in the context of generalized diffusion.
The crossover from zero-temperature to infinite-temperature
behavior occurs at T/ω ∼ 2z0 , where z0 is the dynamical
exponent found for the zero temperature system.

the flux generated by spins interacting via disordered ex-
change couplings, at both high and low temperatures.
Our approach is elaborated upon in Sec. II. A numeri-
cal application of the protocol suggests that a (strongly)
disordered Heisenberg spin chain flows towards a strong-
randomness fixed point characterized by an anomalous
dynamical exponent z = 1/β 6= 1,2. Moreover, this dy-
namical exponent determines the form of the noise; a har-
monic probe with wave-vector q measures the noise Sq(ω)
(the dynamical structure factor) which shows a piece-
wise power-law frequency dependence: Sq(ω) ∼ 1/ωα

for ω � q1/β and Sq(ω) ∼ 1/ωα
′

for ω � q1/β . The
precise values of these power laws are independent of
the initial composition (proportion of F/AF bonds) of

the spin chain if the distribution of couplings is suffi-
ciently non-singular, but varies for more singular initial
distributions such as those relevant for experiments on
SQUIDs (and that we primarily consider)—for such dis-
tributions, the low-frequency noise exponent varies in the
range 0.5 < α < 1 (Fig. 1). [Note that any probe of finite
spatial bandwidth will inherit the low frequency exponent
α in the structure factor Sq(ω).] Our numerical results
for spin chains are discussed in Sec. III.

While exponents z, α, and α′ can take a range of
values, they are tied by the non-trivial relations α′ =
1 + 2(1 − α), α = 1 − 1/z at high temperatures, and
α′ = 1 + 3(1 − α), α = 1 − 1/2z at low temperatures.
In Sec. IV, we show how these relations can be obtained
from a scaling form of the probability distribution func-
tion PF (AF ) that governs the distribution of F(AF) bonds
with a given coupling at energy scales where the RG pro-
cedure has converged. These relations are then verified
numerically by performing a scaling collapse of Sq(ω) for
a wide range of wave-vectors and frequencies (Fig. 4)
at both T = 0, and T = ∞; the success of the scaling
collapse gives further credence to the validity of the RG
procedure.

While the above discussion pertains specifically to the
Heisenberg spin chain, we show, in Sec. V, that the form
of the dynamical structure factor carries over generally,
at high temperatures, independently of dimensionality,
to systems exhibiting anomalous diffusion. We propose
a generalized-diffusion ansatz for the spin propagator,
Gq(ω) = 1/[−iω + q1/βf(ω/q1/β)], that can account for
anomalous diffusion and show that it directly reproduces
the limiting q− and ω−dependencies of the structure
factor. Thus, we conclude that at high temperatures
(T � ω), 1/ωα noise is generic to a system exhibiting
anomalous diffusion (accompanied by an anomalous dy-
namical exponent). The generalized-diffusion approach,
however, fails to explain the structure factor at T = 0.
We discuss how this is a consequence of the failure of
linear response at T = 0—we show that the system ex-
hibits a divergent static susceptibility for even finite-q
perturbations.

The 1/ωα low-frequency behavior of the structure fac-
tor also has the consequence that all (harmonic) spin cor-
relations decay to zero in the long time limit as 1/t1−α.
Conversely, when α = 1 precisely, even finite-q modes,
which are not conserved are unable to equilibrate, sig-
naling the onset of the many-body localization (MBL)
transition. Thus, 1/ω noise is connected to the MBL
transition. A hint of this is observed in our simulations at
T =∞, where, upon increasing the disorder strength, the
low-frequency noise exponent approaches 1, but does not
reach it. At T = 0, the noise exponent 1 is obtained in
the case of a purely AF chain, where the RG is expected
to flow towards infinite-randomness fixed point [24, 39].
The status of ergodicity in our model is less clear. The
RG constructs a macroscopic number of integrals of mo-
tion which suggests a lack of ergodicity. However, these
integrals of motion are not exact since the RG flows to-
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wards a strong-randomness fixed point, as opposed to
infinite-randomness where it does become probabilisti-
cally exact. We anticipate future studies should elucidate
this question. (While MBL implies a lack of ergodicity,
the converse is not true; see for instance Ref. [40].)

In Sec. VI we discuss the application of the RSRG
procedure to two-dimensional spin networks. For square
geometries, at high temperatures, the structure factor
shows scaling behavior (although in a limited range of
frequencies) according to the generalized-diffusion ansatz
for a dynamical exponent z ≈ 2. Note that regular dif-
fusion is also associated with z = 2; however, in the
generalized-diffusion framework, this implies that the
finite-q structure factor has a 1/

√
ω low-frequency tail

instead of the flat spectrum expected in the case of reg-
ular diffusion. We note that for square geometries, the
accuracy of the decimation procedure does not improve
significantly over the course of the RG. Therefore, we
cannot rule out (or confirm) regular diffusion. In con-
trast, for an elongated two-dimensional ‘strip’, we find
that at the lowest frequencies, this 1/

√
ω tail transitions

into an anomalous 1/ωα tail (0.5 < α < 1) as in the
one-dimensional case; thus, as the clusters become wider
than the width of the two-dimensional strip, their collec-
tive dynamics mimics that of a one-dimensional array of
disordered spins. We end by summarizing our results and
their connection to experiments in Sec. VII and propos-
ing further possible extensions of our RSRG protocol to
systems with anisotropic couplings.

II. RSRG APPROACH FOR COMPUTING
NOISE

The model we study is the disordered Heisenberg spin-

1/2 system with Hamiltonian H =
∑
ij Jij

~Si.~Sj . Jij ’s

are picked independently from a distribution P0(J) with
support over both negative and positive values of J . The

probe measures a magnetic flux ~M =
∑
i gi

~Si, and the
noise measured by such a probe has a spectral form

N(ω) = F{
〈

[ ~M(t)., ~M(0)]+

〉
}, that is, the Fourier trans-

form of the autocorrelation of ~M(t). (Such an auto-
correlation directly yields the x−, y−, z−component-wise
noise auto-correlations due to spin-rotation symmetry of
the model. Also note that the methodology presented
here can be straightforwardly extended to the case where
gis are vectors measuring a certain the projection of the
local spin, which can be non-uniform. We do not treat
this general case here for the sake of simplicity.) The
RSRG approach and the evaluation of the noise spec-
trum can be summarized succinctly as follows. We first

find the 2 spins ~SA and ~SB that are most strongly cou-
pled to one another; these spins tend to precess rapidly

around their total moment ~S+ = ~SA + ~SB , which on the
other hand, moves slowly if the constituent spins are rel-

atively weakly coupled to the external neighbors. The

total spin ~S+ is then kept as an effective spin with an ef-
fective interaction with the probe and its neighbors, while
the rapid precession of the constituent spins is counted
towards the ‘noise’ at the frequency at which they pre-

cess about ~S+. This procedure is repeated ad-infinitum.
The approach is illustrated in Figs. 2 (a) and (b).

It must be noted that the quantum-mechnical deriva-
tion of the ground state RSRG rules for bond decima-
tion in mixed AF/FM case for was first carried out in
Ref. [41]. However, as mentioned above, to calculate the
noise spectrum at arbitrary temperature, we need to ex-
tend these rules to arbitrary composite states and pro-
vide renomalization rules for the probe function gi. In
order to keep the discussion self-contained and shed light
on the physics of the problem, we discuss the derivation
of these rules using a straightforward semi-classical ap-
proach, that yields the quantum-mechnical results upon
spin re-quantization.

A. Derivation of RG rules

To obtain the general bond decimation rules, let us

first consider a set of two strongly interacting spins ~SA
and ~SB with mutual coupling J and couplings JA and
JB to external spins, such that J � JA, JB . Due to
their large mutual coupling J , spins A and B precess

about their combined moment ~S+ = ~SA + ~SB with a

large frequency ∆0 = J
∣∣∣~S+

∣∣∣. The neighboring spins

couple only to the slow motion of spins ~SA and ~SB
which is the projection of these spins on to the slow com-

bined moment ~S+. Thus, the effective couplings JA(B)

are modified to J ′A(B) = JA(B)(~SA(B) · ~S+)/
∣∣∣~S+

∣∣∣
2

. The

quantum-mechanical result is obtained by re-quantizing

the spins, i.e., |~SA|2 = sA(sA + 1), |~SB |2 = sB(sB + 1),

and |~S+|2 = s(s+ 1).
The quantum-mechanical interpretation of the above

procedure is that, at every step of the RG, we solve the

approximate Hamiltonian HAB = J ~SA.~SB + ... to first
order in perturbation theory by projecting the system

to a particular eigenstate of ~S+ with quantum number
s. This effective spin has couplings J ′A and J ′B deter-
mined above with its neighbors. The frequency ∆0 with

which the spins precess about the total moment ~S+ is
split into 2 in the quantum-mechanical situation, and
is given by the energy difference between total angu-
lar momentum states s and s ± 1 of the coupled spins.
The perturbation theory is controlled by the parameter
∆A(B)/∆0 where ∆A,∆B correspond to a similar gaps
generated by the combination of spins A and B with their
neighbors. Note that in the case of singlet-formation
(s = 0), second-order perturbation theory must be per-
formed, eliminating spins A and B altogether and yield-
ing an effective coupling between their neighboring spins,
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FIG. 2. (a) Two-spin dynamics. Two spins A and B strongly coupled to one another revolve around their net moment
~S+ = ~SA + ~SB with a large frequency J |~S+|, while ~S+ moves slowly owing to weak interactions J ′A and J ′B . ~S− = ~SA − ~SB
is effectively decoupled from the slow dynamics of ~S+ and results in the ‘noise’ evaluated at this RG step. (b) Demonstration
of RG rules. The strongly coupled spin-pair are decimated to form an effective spin (with quantized net moment s+), and
Heisenberg couplings are renormalized from JA(B) to JA′(B′). The effective spin couples to the probe with amplitude g+. If a
singlet is formed, both spins are integrated out, providing an effective interaction J ′ between the neighboring spins. (c) Scaling
behavior at T = ∞ (at T = 0, the bonds, composed of long-range singlets scale as the cluster size). Size of clusters n, their
spin size s and the time-scale of their dynamics 1/ω are connected through the anomalous dynamical exponent 1/β. Harmonic
probes (illustrated in blue) measure a low-(high-)frequency noise-exponent α or α′ in the regimes where the probe length 1/q
is smaller (greater) than the clusters whose dynamics they probe.

J ′ = 2sA(sA + 1)JAJB/3J (sA = sB) [41]. Note that in
higher dimensions, when external spin A (and/or B) may
couple to both spins 1 and 2 undergoing a singlet forma-
tion with couplings JA,1 and JA,2 respectively, the cou-
pling JA in this result should be replaced by JA,1−JA,2.

The renormalization of the probe coupling is also im-
mediate: if the probe couples with strength gA and gB to

spins A and B, it couples to the effective spin ~S+ with a

strength g+ = gA(~SA · ~S+)/
∣∣∣~S+

∣∣∣
2

+gB(~SB · ~S+)/
∣∣∣~S+

∣∣∣
2

=

(gA+ gB)/2 + (gA− gB)/2

[∣∣∣~SA
∣∣∣
2

−
∣∣∣~SB

∣∣∣
2
]
/
∣∣∣~S+

∣∣∣
2

. Note

that in the case of singlet formation, the spins are elim-
inated altogether and the probe does not couple to the
singlet. This will result in important differences in the
behavior of the system at T = 0 (where singlets are pre-
ferred) and T = ∞ (where singlets are unfavorable for
entropic reasons).

B. Evaluation of Noise at every RG step

We want to evaluate the dynamics of the object

M(t) =
∑
i gi

~Si. As mentioned above, we do this in
a step-by-step RG fashion. In particular, the flux can

be partitioned into a slow part MS(t) =
∑
i6=A,B gi

~Si +

g+
~S+ whose dynamics is determined in subsequent RG

steps, and the remaining fast part MF (t) = (gA −
gB)/2

[
~S− − ~S+(~S− · ~S+)/

∣∣∣~S+

∣∣∣
2
]
, where ~S− = ~SA − ~SB

and the combination in square brackets is the compo-

nent of ~S− orthogonal to ~S+. To zeroth order in pertur-
bation theory (in ∆A(B)/∆), the noise spectrum N(ω)
receives a contribution F{〈[MF (t),MF (0)]+〉} from this
step of the RG, where the brackets 〈〉 correspond to a
quantum mechanical expectation in an eigenstate |s,m〉
with |~S+|2 = s(s+ 1) and an arbitrary projection quan-
tum number m (there is no preferred axis for the total

moment ~S+).

Note that, ~S− produces transitions from states
|s,m〉 to states |s± 1,m± 1〉. Due to the full ro-
tational symmetry of the problem, the transition
rates are independent of m, and the transition
frequencies only depend on s. Hence, the noise
associated with these contributions is N(ω) =
(gA − gB)2/4 [M(s, ↑)δ(ω − ω↑) +M(s, ↓)δ(ω + ω↓)],
where ω↑(↓) is the frequency of the transition from the
angular momentum state s to s + 1 (s to s − 1) and
M(s, ↑ (↓)) is the accompanying matrix element of this
transition. In what follows, we will refer to the factor
(gA − gB)2/4 as the ‘probe form factor’ since this factor
depends on the precise details of the probe, and the
matrix elements M(s, ↑ (↓)) corresponding to the spin
operators will be referred to as the ‘noise amplitude’.
The precise evaluation of the noise amplitude is discussed
in Appendix A.
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III. NUMERICAL SIMULATIONS IN ONE
DIMENSION

A. Implementation

As a first check of the efficacy of the RG rules, we per-
form a direct comparison of the complete energy spec-
trum determined by exact-diagonalization and the RG
procedure for small random spin chains. A typical run
is shown is Fig. 3; the RG result appears to be in good
agreement with the exact-diagonaliation result. (More
quantitative checks of the RG procedure are discussed
in Appendix E.) For the determination of the noise and
the structure factor, we perform numerical simulations
for spin chains of size L = 15000 at two fixed temper-
atures T = 0 and T = ∞. The majority of our sim-
ulations assume distribution of magnitude of the initial
couplings P0(|J |) is of the form P0(|J |) ∼ 1/|J |, with
values in the range |J | ∈ [1, eD]. We note that this dis-
tribution is effectively a gapped 1/J distribution [42].
This choice of distribution is motivated by the obser-
vation that a system of spins scattered randomly in d
dimensions interacting with a 1/r3 RKKY interaction,
has a distribution P0(|J |) ∼ 1/|J |1+d/3; the additional
factor of d/3 is not systematically considered since it is
found to not affect the results qualitatively. (In Ref. [41],
Westerberg et al. work with an array of initial distribu-
tions and conclude that distributions more singular than
P0(|J |) ∼ 1/|J |0.7 flow to non-universal fixed points at
T = 0.) Following Ref. [43], another simplification we
make is to consider interactions only between nearest-
neighbor spins even though spins interact with all other
spins via the RKKY mechanism; we think of |J | ≈ 1 as
the interaction strength at the typical distance between
neighboring spins. We do not expect these simplifica-
tions to qualitatively modify results because 1/r3 inter-
actions are sufficiently short-ranged in one- and quasi-
one-dimensional geometries we primarily consider. (This
may not be the case for longer-ranged interactions, see
Ref. [44].)

We also perform simulations with a uniform distribu-
tion (range |J | ∈ [0, 1]). We choose a finite proportion of
these couplings to be AF(F) and characterize this initial
‘bias’ by a variable ηi ∈ (−1, 1): ηi = +1(−1) corre-
sponds to a system with purely AF(F) couplings. To
perform the zero temperature calculations, at every RG
step, we choose the effective spin to reside in a state with
s = |sA− sB | ( s = sA + sB ) for spins A and B that are
coupled by a AF(F) bond. At infinite temperature, the
quantum number s is chosen probabilistically according
to the degeneracy 2s+ 1 associated with the state.

The choice of the probe is another free parameter to
be considered in our problem. The most natural choice
of probe is gi = cos(qi), that is, a harmonic probe that
measures the dynamical structure factor Sq(ω) at a given

FIG. 3. RG-determined spectrum (red) compared with exact
diagonalization determined spectrum (blue) for a particular
12-site random spin chain with initial 1/|J | distribution, dis-
order strength D = 3, and equal mix of F/AF bonds.

wave-vector q. A generic probe simply measures a noise
N(ω) =

∑
q |gq|2Sq(ω).

B. Convergence

It was pointed out in Ref. [41] that the uniform distri-
bution flows to a universal fixed point (at zero tempera-
ture) with a final bias ηf ≈ 0.26 irrespective of its initial
bias ηi, while more singular distributions, such as the
ones we primarily consider do not flow to that particular
fixed point. While we recover this result for initially uni-
form distributions in our simulations, we note that for the
1/|J | distributions we consider, the system also flows to
fixed points (with a stable final bias ηf ∈ (0, 0.3), see Ap-
pendix D) but one that varies slightly depending on the
value of the initial bias ηi, disorder strength D, and tem-
perature. Regardless of the precise values of the initial
bias, the form of the distribution, or the temperature, we
find that the effective gaps (and the corresponding effec-
tive couplings, as well) flow to a power law distribution
P∆(∆) ∼ 1/∆γ , γ < 1. This validates the RG proce-
dure because a singular power law distribution results in
a typical value of the gap ∆ that is significantly smaller
(by a factor e1/(1−γ)) than the maximum gap ∆0 and
guarantees a separation in energy scales between nearby
regions. We also note that while the RG protocol re-
sults in larger and larger spin sizes over the course of the
RG, these spins also couple more weakly to their neigh-
bors (see Appendix I) and this ensures that the RG can
converge to a fixed point with stable scaling properties.

The final bias ηf and γ display the following trends:
i) at T = 0, for a uniform distribution, we find in con-
firmation with Ref. [41], that ηf and γ are independent
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FIG. 4. Scaled dynamical structure factor (a) S̃0
q (ω̃) = x1/2−1/βS0

q (ωx1/β) at T = 0, (b) S̃∞q (ω̃) = x−1/βS∞q (ωx1/β) at T =∞
for q ∈ 2π/[40(yellow), 80(cyan), 120(green), 400(blue), 800(red)], and x = (2π/40)/q; the results shown correspond to a system
of an equal proportion of F/AF bonds, and disorder strength D = 3; (c) scaling relations at T = 0 and T = ∞ between the
power laws α and α′ determining the high- and low-frequency dependence of Sq(ω) as given in Eq. (1). α and α′ were plotted
for D = 3 and ηi = [1, 0.75, 0.5, 0.25, 0,−0.25,−0.5,−0.75] for T = 0, while, at T = ∞, the results are independent of ηi, and
the data-points correspond to D = [1, 3, 9]. Decreasing D and decreasing ηi correspond to smaller values of α. At T = ∞,
α′ ≈ 1 + 2(1− α), while at T = 0, α′ ≈ 1 + 3(1− α); these relations are plotted as dashed lines. The optimal scaling collapse
in (a) (at T = 0) and (b) (at T = ∞) was found for β = 0.40 and β = 0.36 respectively. These values are in accordance with
analytically determined relation to the low-frequency noise exponent α, i.e., β = 2(1− α) at T = 0 and β = 1− α at T =∞.

of the initial bias; ii) at T = 0, for 1/|J | initial distri-
bution, these quantities depend on the initial bias. In
particular, γ goes from 1 to 0 as the initial bias is varied
from a purely AF to purely F chain, signaling the break-
down of the RG procedure for the purely F chain; and
iii) at T = ∞, for both forms of distributions, ηf ≈ 0
always, and γ is independent of the initial bias but de-
pends weakly on disorder strength D for the 1/|J | initial
distribution. Further details on these observations can
be found in Appendix E.

[Additional validity checks : i) simulations for classical
spin chains using classical RSRG rules at T = ∞ were
found to compare well with the quantum T =∞ RSRG
results, see Appendix M ; ii) the structure factor obtained
from the classical RG results was found to be in good
agreement with that obtained from direct integration of
Bloch-dynamics of the classical spins, see Appendix N].

C. Form of the structure factor

A most interesting facet of the simulations is the
emergence of a finite, anomalous dynamical exponent
z = 1/β 6= 1,2. This dynamical exponent dictates that
the size of clusters, n, and the time-scale of their dynam-
ics, ω−1, scale as n ∼ ω−β [as illustrated in Fig. 2 (c)].
Furthermore, this scaling gives rise to a piece-wise power-
law behavior of the frequency dependence of the structure
factor Sq(ω) for ω � q1/β and ω � q1/β corresponding
to whether the probe’s period of oscillations 2π/q is much
greater than the cluster size or much smaller. Moreover,
the exponent β is directly connected to the exponent α
in the noise spectrum N(ω) ∼ 1/ωα.

The full form of the dynamical structure factor Sq(ω),
defined as S0

q (ω) at T = 0 and S∞q (ω) at T =∞ can be
extracted using a scaling collapse [Fig. 4 (a), (b), see also
Appendix C for verification of q−dependent scaling] and
is found to be

S0
q (ω) = q1/2−1/βg0

(
ω

q1/β

)
=

{
1/ω1−β/2 ω � q1/β ,

q2/ω1+3β/2 ω � q1/β ,

S∞q (ω) = q−1/βg∞

(
ω

q1/β

)
=

{
1/qω1−β ω � q1/β ,

q2/ω1+2β ω � q1/β ,

(1)

where g0(x) and g∞(x) are arbitrary scaling functions
whose limits x � 1, x � 1 have been verified numeri-
cally. (The limiting forms of the structure factor are also
derived using an analytical approach in Sec. IV.) The
low-(high-)frequency power-law exponent in both cases is
identified as α (α′). As we had mentioned before, Sq(ω)
shows a power-law frequency tail of the form 1/ωα. It
is curious to note that, at high temperatures, the noise
exponent deviates from 1 by the inverse of the dynamical
exponent, i.e., α = 1 − 1/z while at low temperatures,
the appropriate relation is α = 1− 1/2z. The frequency
dependence of the noise at higher frequencies (character-
ized by exponent α′) is also related in a non-trivial way
to the dynamical exponent that differs at low and high
temperatures.

Using the scaling form of the structure factor, one can
easily find that a typical probe that measures the noise
N(ω) =

∑
q |gq|2Sq(ω) will not observe any lower bound

in the 1/ω-like behavior of the noise. In particular, for
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frequencies ω � q
1/β
0 , where q0 characterizes the probe’s

resolution so that gq(q < q0) ≈ const., the noise spec-
trum will inherit the low-frequency behavior of this finite-
q structure factor.

As for the precise values of these exponents, we find
at T = 0, for the 1/|J | initial distribution, that the low-
frequency noise-exponent α varies from 1 (β = 0) for the
AF chain to approximately 0.5 (β = 1) for the nearly F
chain. The AF result of α ≈ 1 can be understood from
the point of view that the purely AF Heisenberg spin
chain flows to an infinite-randomness fixed point with a
distribution of couplings P (J) ∼ 1/J . In the nearly AF
case, these couplings also directly give the gap ∆ = J(1+
|s1 − s2|) ≈ J since the system forms only singlets and
the spins don’t grow in magnitude over the course of the
RG. Since the noise generation happens at the frequency
∆ (in particular, at every RG step, the maximum gap
∆0), it simply inherits the power law of the coupling
distribution. (The connection between the noise power α
and the power law of the gap distribution is detailed in
Appendix F)

As we introduce more ferromagnetic bonds into the
spin chain, the low-frequency noise exponent gradually
approaches 0.5, and the distribution of effective gaps be-
comes less singular (accompanied by a reduction in the
fidelity of the RG). For an initial bias ηi ≈ −0.75, the dis-
tribution of gaps is almost uniform indicating a failure of
the RG. Note that, at T = 0, α → 0.5 is accompanied
by a dynamical exponent z = 1/β → 1 (recall that ex-
ponents are related at T = 0 via α = 1− 1/2z), and one
can show (see Appendix K) that in such a case the RSRG
fails due to the proliferation of faraway resonances.

To gain more insight into the behavior of nearly F
chain, we perform a Holstein-Primakoff (see Appendix L)
expansion on top of the fully polarized ground state of
a purely F chain. Unlike Eq. (1), the structure for the
purely F spin chain is peaked at a finite frequency ω
for wave-vector q that scales as ω ∼ q2 as expected for
magnons. However, these magnons are heavily damped;
the width of the magnon peak also scales as q2. Due to
the large damping, these spin waves are ‘localized’ in the
sense that they exhibit a finite inverse participation ratio
[given by

∑
i n

2
i /(
∑
i ni)

2 ; ni is the spin wave density at
site i of the chain]. If we interpret this finite inverse par-
ticipation ratio as a localization length, we find that it
diverges in the low-frequency limit as ξ(ω) ∼ 1/ω; this is
in agreement with the observation that spin clusters scale
as n(ω) ∼ 1/ω (z = 1) for the nearly F chain in the RG
at T = 0. (In two dimensions, the Holstein-Primakoff
analysis shows that the spin-wave peaks are sharper and
delocalized; the results are in agreement with effective-
medium approximation based approaches [45, 46].)

At infinite temperature, α is independent of the initial
bias, but depends weakly on the disorder D, approach-
ing 1 as disorder is increased [a crossing beyond 1 is not
observed, see Fig. 4 (c) where α and α′ are plotted]. The
range of the low-frequency noise-exponent is, as in the
T = 0 case, 0.5 < α < 1. In Sec. V we will argue that

the infinite-temperature results we obtain are natural for
any system exhibiting anomalous diffusion. Moreover,
we will see that the special case of α = 1 (or 1/ω noise,
precisely) is singular enough that it leads to the absence
of relaxation of non-conserved finite-q modes signaling
many-body localization. It seems reasonable, in the light
of these arguments, that the exponent α should approach
1 as the disorder strength D is increased [as we find, see
Fig. 4 (c)].

We now recapitulate the findings for the strongly dis-
ordered Heisenberg spin chain with initial coupling dis-
tribution P0(|J |) ∼ 1/ |J | ,|J | ∈ [1, eD]. At T = 0,
we find that the system has three distinct regimes ac-
cording to the initial bias: a) the purely AF spin chain
which flows towards infinite-randomness and has a diver-
gent dynamical exponent and 1/ω noise spectrum; b) the
purely F spin chain which has peaked spectral functions
associated with heavily damped magnons whose size n(ω)
diverges as 1/ω; and c) a wide range of mixed AF/F
spin chains which flow towards non-universal strong-
randomness fixed points (thus, accessible by RSRG) and
whose structure factor is of the form in Eq. (1). These
chains exhibit 1/ωα noise for 0.5 < α < 1, which arises
due to spin clusters whose size n(ω) diverges as 1/ω1/z

with z > 1; this divergence is slower than 1/ω found for
the purely F chain. At T = ∞, the physics of the spin
chain is independent of the proportion of AF/F bonds. It
exhibits a 1/ωα noise spectrum, again with 0.5 < α < 1
where α increases as D is increased. Note that at T =∞,
the dynamical exponent is related to α via the relation
α = 1− 1/z, implying that z ≥ 2 at T =∞.

We can also qualitatively glean the form of the struc-
ture factor at finite temperatures by considering a
straightforward extension of the RSRG protocol: we fol-
low the zero-temperature RSRG rules for eliminating
modes with frequencies ω & T (since we expect these
modes to be populated primarily in their ground state
configurations), and infinite-temperature rules for elimi-
nating modes at frequencies ω . T (since we expect these
modes to be sufficiently excited). As we discuss below,
such a protocol leads to the conclusion that the dynam-
ics of the system resemble the T = ∞ (T = 0) behavior
for frequencies ω � T/2z0 (ω � T/2z0 ), where z0 is the
dynamical exponent of system (with a given initial bias
ηi) found at T = 0. Over the course of eliminating high-
frequency modes (ω & T ), the gap distribution develops a
power-law form with an exponent that is expected for the
zero-temperature system. The zero-temperature RG pro-
tocol continues until ∆0 ≈ T . Beyond this scale, the RG
continues with infinite-temperature rules, which begin to
have an effect on the gap distribution only when a signif-
icant fraction, say 1/2 of the spins have been eliminated.
Using the dynamical exponent z0, the maximum gap ∆0

at this length scale is given by ∆0 = T/2z0 . Thus, we ex-
pect that the infinite-temperature form of the structure
factor appears only for frequencies below ω . T/2z0 .

Our findings are summarized in the phase diagram of
Fig. 1.
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IV. SCALING APPROACH TO STRUCTURE
FACTOR

A. Scaling distribution PF (AF )

We now explain the results in Eq. (1) by extending the
arguments of Westerberg et al. (Ref. [41]) to evaluate
the dynamical structure factor. They find that the RG
flow eventually converges to a fixed point where the F/AF
bias stabilizes and the probability distribution for F (AF)
bonds is given by the scaling form PF (AF )(∆, SL, SR) ∼

1

∆1−β
0

QF (AF )(∆∆−1
0 , SL∆

β/2
0 , SR∆

β/2
0 ), where ∆0 corre-

sponds to the maximum gap at any step of the RG, while
SL, SR are the left and right spins across the bond of fre-
quency ∆. Note that, at T = 0, ∆ is defined as the energy
difference between first excited state from the ground
state of the F/AF spin pair, while, at infinite tempera-
ture, the notion of a gap still holds—entropic considera-
tions dominate and the relevant gap is approximately the
gap associated with the largest few total-spin states. The
form implicitly assumes a dynamical exponent z = 1/β;
the scaling of the spin size with the exponent −β/2 oc-
curs because it scales as the square-root of the cluster
size n (as long as the chain is not purely F or AF); n
scales with the exponent −β) at both high and low tem-
peratures. The reason that both F and AF spins scale
in the same way is attributed to the fact that proportion
of F and AF bonds in the limit that the RG converges is
a finite, intermediate value. Additional requirements of
finiteness of 〈∆〉 /∆0 and normalization fix the form of
the distribution.

The emergence of a finite dynamical exponent is ex-
plained as follows: in k RG levels, ∼ 2k microscopic
spins are combined into a single cluster, while the en-
ergy gap, expected to reduce by a factor r at each level,
reduces from ∆0 to ∆0/r

k; the dynamical exponent z is
then readily found to be z = ln r/ ln 2. Note that even
though our simulations with more singular initial bond-
distributions exhibit non-universal values of the exponent
z = 1/β, the convergence of the RG towards a fixed value
of the final bias indicates that the notion of a scaling dis-
tribution as discussed above still applies.

[Aside: the scaling form of the distribution PF (AF ) also
implies that the distribution of gaps or excitation energies
in the system (obtained after integrating over spin sizes
SL and SR) has a power-law form. This gives rise to a
certain form of the distribution of the lowest excitation
gaps in the system and is explored in Appendices G.]

B. Calculation of Sq(ω)

From the scaling forms of the distribution functions
PF (AF ), the dynamical structure factor Sq(ω) is given by

Sq(ω) =
∑

a=F,AF

∫
d∆0dSLdSRδ(ω −∆0)N(∆0)

×M(SL, SR)F (qn0)Pa(∆ = ∆0, SL, SR) (2)

The above integral simply reflects the discussion of the
noise calculation procedure: at every step of the RG, a
local integral of motion combing spins SL and SR, with
a gap ∆ = ∆0 is eliminated, producing noise of magni-
tude M(SL, SR)F (qn0) at frequency ω = ∆0. Here, as
mentioned before, M(SL, SR) corresponds to matrix ele-
ments of the spin operators associated with the transition
at frequency ω = ∆0, while F (qn0) modifies this ampli-
tude depending on how the probe couples to the cluster
generating the noise; this depends on the ratio of the
size n0(∆0) of the typical clusters at maximum gap ∆0

and the probe wave-length 2π/q. N(∆0) ∼ 1/n0 ∼ ∆β
0

denotes the number of bonds that remain at the cut-off
scale ∆0.

We now use Eq. (2) to evaluate the form of the struc-
ture factor and show that it reproduces the results in

Eq. (1). The noise magnitude M(SL, SR) ∼ |~S−|2 and,
consequently, at any finite temperature (as any generic
combination of spins SL and SR) scales as the square

of the typical spin size, i.e., M ∼ s2
0 ∼ ∆−β0 . However,

at zero temperature, the scaling changes to M ∼ s0 ∼
∆
−β/2
0 (see Appendix A).
Next we consider the scaling of the form factor F (qn0).

To arrive at the results in Eq. (1) starting from Eq. (2),
we need to show that at both T = 0 and T = ∞, and
frequencies ω � q1/β , F (qn0) ∼ q2n2

0, while for fre-
quencies ω � q1/β , at T = 0, F (qn0) ∼ const. and at
T = ∞, F (q, n0) ∼ 1/qn0. Let us note that the distinc-
tion between the two regimes comes from the fact that at
high-frequencies, the clusters are smaller than the typi-
cal length 1/q of the modulations of the probe, while at
lower-frequencies, the clusters are larger in comparison.
So, the noise generated by two clusters A and B much
smaller than the probe scale 1/q comes with an form-
factor F (qn0) that scales as the square of the gradient
q of the probe, that is, F (qn0) ∼ q2n2

0. (Recall that
the form factor is the square of the difference of the cou-
plings of these individual clusters A and B to the external
probe.)

We now consider the scaling of F (qn0) at low frequen-
cies (ω � q1/β) where clusters are much larger than the
probe scale 1/q. At low temperatures, clusters are com-
posed of a large number of singlets, and consequently,
cluster sizes and the bond lengths scale in the same way
(as ∼ n0, see Ref. [41]). When two such clusters are
merged, the relative phases of the probe coupling are
effectively scrambled. Thus, in this regime, at low tem-
peratures, F (qn0) is q-independent.

At T =∞, we find the scaling of F (qn0) ∼ 1/qn0 using
the following two facts—i) singlets are entropically un-
likely at high temperatures; clusters are compact (nearly
contiguous arrays of spins that are not part of singlets)
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and bond-lengths are of the order of the microscopic scale
and; ii) spin-clusters point in arbitrary directions; as a
result, one can show that variance σ(g+) of the probe
coupling g+ of a cluster composed of two smaller clusters
with couplings gA and gB respectively is precisely equal
to the probe form factor associated with combining these
clusters (see Appendix B). The first of these implies that
the mean of the probe coupling gA of cluster A of size
n0 can be approximated by |〈gA〉| ∼

∫ n
0
dx cos(qx)/n ∼

1/qn0 for qn0 � 1. The second result shows that the
scaling of the probe form factor is given by the scal-
ing of the variance of the probe couplings; F (qn0) ∼
σ(g+) =

〈
(gA − gB)2/4

〉
≈ [σ(gA) + σ(gB)]/4, where, to

obtain the last (approximate) result, we assumed that

the squared-mean 〈gA〉2 ∼ 1/(qn0)2 is negligible in com-
parison to the variance σ(gA) in the limit qn0 � 1. If we
reasonably assume that clusters A and B of similar size
∼ n0 (and consequently, similar variance) are combined
typically, then the this immediately leads to the result
F (qn0) ∼ σ(g+) ∼ 1/qn0 (which also justifies neglecting
the mean values 〈gA〉,〈gB〉) as mentioned above.

With the aid of the specific form of the distribution
function, the noise amplitude and the form factors dis-
cussed above, we can perform the integration in Eq. (2)
by first homogenizing all flow parameters in favor of the
maximum gap ∆0, which can then be integrated directly
to yield the q,ω dependent behavior. This yields the re-
sults in Eq. (1).

V. GENERALIZED DIFFUSION AND THE
STRUCTURE FACTOR

The derivation of the structure factor presented in the
previous section relies on specific details of the model.
We now present a general ansatz for the spin-diffusion
propagator in a system exhibiting anomalous diffusion
and show that it reproduces the form of the structure fac-
tor in Eq. (1) at high temperatures. (See also Ref. [15].)

A. Ansatz for the anomalous diffusion propagator

The spin propagator describes the decay of the spin
density S(x, t) at any point x and time t > t′ given the
spin density profile at all points x′ at some fixed t′, that
is, S(x, t) =

∫
dx′G(x− x′, t− t′)S(x′, t′), where, by def-

inition, G(x − x′, 0) = δ(x − x′). Note that we do not
keep the tensor structure of the Green’s function because
off-diagonal components vanish by symmetry and there
is no preferred ordering direction in one-dimension for
any non-zero concentration of AF bonds at any temper-
ature. (In higher dimensions, the approach is directly
applicable above any ordering temperature.) In the case
of regular diffusion, the Green’s function satisfies the dif-
fusion equation, and, in the Laplace domain, is given by
Gq(ω) = 1/(−iω + Dq2). This diffusive propagator has
two salient features: i) limω→0(−iω)Gq=0(ω) = 1 imply-

ing that the q = 0 mode does not relax (that is, total
spin/density is conserved), and ii) it has a pole at finite
imaginary frequencies for all finite-q modes, which as a
consequence, relax exponentially in time.

We now generalize this propagator to the case of
anomalous diffusion, where the system exhibits an
anomalous scaling (the dynamical exponent z = 1/β 6=
1, 2) between q,ω: q ∼ ωβ -

Gq(ω) = 1/[−iω + q1/βf(ω/q1/β)], (3)

where f is some well-behaved function which ensures con-
servation of the total spin [Gq=0(ω) ∼ i/ω].

B. Calculation of the structure factor at T =∞

We would like to use the Green’s function postulated
above to calculate the structure factor Sq(ω). First,
we introduce the dynamical susceptibility χq(ω) which

is the usual Kubo-response of the spin-density ~Sq =∫
dx~S(x)eiqx to a field hq that couples to ~S−q. That

is, χq(ω) is the Laplace-transform of χq(t− t′) = −iθ(t−
t′)

〈[
~Sq(t)., ~S−q(t′)

]
−

〉
. The dynamical susceptibility

is connected to the propagator Gq(ω) via the relation
χq(ω) = χ0

q[1 + iωGq(ω)], where χ0
q is the static suscep-

tibility at wave-vector q. The result can be rationalized
as follows: the measurement of the dynamical suscepti-
bility is carried out by slowly ramping up the perturba-
tion hq(t) = h0

qe
εt (coupled to S−q) for times t < 0 and

observing the relaxation of the spin-density Sq for subse-
quent times. One can think of such an experiment as one
that sets up a spin-density χ0

qh
0
q by time t = 0, and whose

subsequent relaxation is given by the diffusion propaga-
tor, i.e., 〈Sq(ω)〉 = χ0

qhqGq(ω) (in Laplace-domain; note
that 〈Sq(ω)〉 denotes the expectation value of the spin-
density operator and not the structure factor). Alterna-
tively, we can appeal to the definition of the dynamical
susceptibility to directly find 〈Sq(ω)〉 = [χq(ω)−χ0

q]h
0
q/iω

(see Sec. (7.14) of Ref. [47]). These alternative interpre-
tations yield the relation between Gq(ω) and χq(ω). Fi-
nally, the structure factor is related to the imaginary part
of the dynamical susceptibility using the (fluctuation-
dissipation) relation Sq(ω) = coth (ω/2T )Im [χq(ω)].

At high temperatures (ω � T ), the Green’s func-
tion in Eq. (3) yields a structure factor Sq(ω) =

Tχ0
qq
−1/βf(ω/q1/β)/[(ω/q1/β)2 + f(ω/q1/β)2]. It is easy

to confirm that the above form can be represented as
Sq(ω) = const. × q−1/βg∞(ω/q1/β), in agreement with
the result for S∞q (ω) in Eq. (1) if we assume that Tχ0

q

has a finite limit for small q � 1. This is expected for
any physical system with short range interactions, at high
temperatures.

To complete the argument, we now determine the lim-
iting forms of the scaling function g∞(y = ω/q1/β),
that is, its high (low)-frequency limits y � 1 (y � 1).
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First, note that the (real part of the) optical conduc-
tivity σq(ω) = 〈[Jq(ω), J−q(−ω)]〉 /iω can be computed
from the structure factor using the relation Re [σq(ω)] =
ω
q2 tanh (ω/2T )Sq(ω); the result (at any non-zero fre-

quency) follows from the continuity relation iωJq(ω) −
iqSq(ω) = 0 and using the fluctuation-dissipation re-
lation discussed above. Straightforward calculation us-
ing these results yields σ(q = 0, ω) = c(q = 0)ω1−2β ,
where the pre-factor c(q) is finite and non-zero only if
g∞(y) ∼ y−1−2β for y � 1. Since there is no reason
for the optical conductivity to vanish or diverge at fi-
nite frequencies in a high-temperature system, we expect
this condition yields the scaling of the function g∞(y)
in the high-frequency limit. The argument for the low-
frequency limit is as follows. The form of the Green’s
function ensures G(x = 0, t) ∼ 1/tβ . On this basis,
we expect large q modes should decay algebraically as
∼ 1/tβ as well. This implies that f(y � 1) ∼ y1−β ,
and consequently, g∞(y � 1) ∼ y−1+β . These results
together reproduce the complete form and limits of the
structure factor S∞q (ω) (T = ∞) in Eq. (1). Because of
the generality of this derivation, we expect that any sys-
tem exhibiting anomalous diffusion must have a structure
factor that scales as described in Eq. (1).

C. Failure of linear response at T = 0

The generalized-diffusion ansatz fails to explain the
T = 0 structure factor. In particular, the low-frequency
power-law Sq(ω) ∼ 1/ωα, with 0 < α < 1 is impos-
sible to obtain with this Green’s function form. Fur-
thermore, according to the thermodynamic sum rule,
χ(q) =

∫
dωχ′′(ω)/ω (χ′′(q, ω) = sign(ω)Sq(ω)), the

static susceptibility is expected to diverge even at finite
q making the derivation suspect. Hence, at T = 0, we
are forced to conclude that either linear response does
not work, or the scaling hypothesis for the Green’s func-
tion breaks down, or both. In what follows, we provide a
heuristic argument for the breakdown of linear response
by showing the the divergence of the static susceptibility
at finite-q.

Following Ref. [41], we imagine applying a perturb-
ing field hqe

iqx to the chain. This perturbation cuts
off the RG flow at a scale where the energy gap ∆0 is
comparable to the Zeeman energy of typical, polarizable
(of size n . 1/q) spin-clusters; that is, the RG is cut-
off at ∆0 ∼ hq min

[√
n0, 1/

√
q
]
, where we note that

the typical cluster size at an energy scale ∆0 is given

by n0 ∼ ∆−β0 , and possesses a spin ∼ √n0. Crucially,
the magnitude hq determines the point at which the RG
is cut-off (in particular, whether n0 > 1/q or n0 < 1/q
at this scale) and consequently, the response of the sys-
tem. Let us define n0(hq) and ∆0(hq) as the amplitude
hq-dependent length and energy scales at which the RG
is cut-off. The condition n0(hq) ≶ 1/q can be alterna-

tively cast (using the scaling results) as q1/2+1/β ≶ hq,
and both limits of this condition may be experimentally

relevant.
We first analyze the case q � 1/n0(hq),∆0(hq) ∼

hq/
√
q first. We note that the magnetization m of polar-

ized clusters of size n is
√
n for n < 1/q and small oth-

erwise. If we assume that the distribution D(n) of the
cluster size n satisfies D(n < n0) ∼ 1/n0 and D(n > n0)
is negligible (the form of D(n) is numerically justified, see
Appendix H), then the average magnetization is given by
mq = n−2

0 (hq)q
3/2 = q−3/2−βh2β

q . Thus, for 2β < 1, the

static susceptibility χ0
q = mq/hq|h→0 diverges even at

finite q.
For the opposite limit of q � 1/n0(hq),∆0(hq) ∼

hq
√
n0, the magnetization is simply mq = mq=0 ∼

1/
√
n0 and the susceptibility diverges for all values as

β as, χ0
q = mq/hq|h→0 = h−2/(2+β), in agreement with

the q = 0 result of Ref. [41].
Thus, the static susceptibility generically diverges at

T = 0 in this system, although the precise nature of the
divergence is controlled by the condition q1/2+1/β ≶ hq.
Let us note that, a divergent static susceptibility at cer-
tain wave-vectors for clean F (at q = 0) or AF (at
q = π) systems is not surprising—a small perturba-
tion with the correct wave-vector results in a macro-
scopic reduction in free-energy and consequently, a di-
vergent response. Since, in our disorder system, the
probability distribution of cluster sizes, D(n), has sig-
nificant weight for all clusters of size n < n0 (and n0

diverges in the zero-frequency limit), our system has a
thermodynamically-relevant presence of approximately
independent spin clusters of all sizes. This results in a
divergent response to perturbations over a broad range
of wave-vectors.

D. Relation of 1/f noise and
many-body-localization at finite temperatures

For frequencies ω � T/2z0 (where z0 is the dynamical
exponent found for the system at T = 0, and is non-finite
only in the purely AF case), we expect the behavior of the
structure factor to be given by the infinite-temperature
form of the structure factor we compute. This structure
factor has a noise spectrum 1/fα, where α ≤ 1. We can
now reverse the arguments of the previous section to con-
clude that the spin-propagator G(q, ω) ∼ 1/ωα for fre-
quencies ω � T/2z0 ,q1/β where β = 1−α. Fourier trans-
forming this result implies directly that G(q, t) ∼ 1/t1−α,
that is, the spin-density at wave-vector q decays alge-
braically with a power 1− α ≥ 0, where, in particular, if
α = 1, the mode does not decay completely even at in-
finite time. The inability of certain non-conserved quan-
tities to decay to equilibrium values is a defining char-
acteristic of many-body-localization, and it is reasonable
to posit, on the basis of this discussion, that when the
noise power law is precisely α = 1 (or, noise is 1/ω), the
system is at the verge of becoming many-body-localized.

A complimentary picture is obtained by looking at the
dynamical exponent 1/β = 1/(1−α) (at finite T ). In the



11

course of RG, when a cluster joins another cluster to form
a supercluster, its spin begins to precess around the di-
rection of the total spin. Further mergers into ever larger
clusters add new axes of precession with ever decreasing
frequencies, which leads to scrambling of the spin polar-
ization. The RG suggests that, for the disordered Heisen-
berg system, the time scale for the phase scrambling over
a length scale l scales as a power law tl ∼ l1/β . This im-
plies that for α < 1, it takes only polynomial time in the
distance to transport spin across this distance, while, for
α = 1, it becomes exponential (or worse) in the distance,
which is suggestive of MBL.

Since we do not observe such a case (with α = 1) in our
numerical simulations, we conclude that the disordered
Heisenberg spin chain is not localized. Nevertheless, we
note that as the disorder strength is increased, the noise
exponent α tends towards 1. Moreover, at low temper-
atures, the power law α = 1 is obtained for the purely
AF chain which flows towards the infinite-randomness
point—here the integrals of motion are exact since the
RSRG is precise in the low-energy limit.

VI. SIMULATIONS IN TWO-DIMENSIONS

Simulations in two-dimensions are performed analo-
gously to the one-dimensional case except that the num-
ber of neighbors of an effective spins can change over the
course of the RG. Maintaing this extended network in-
troduces a computational cost that restricts simulations
to smaller system-sizes in two dimensions; we consider
square systems of spins on a 50 × 50 lattice and ‘strips’
of spins on a 500× 6 lattice. The growth in the connec-
tivity of the network over RG steps also reduces the effi-
cacy of the RG because achieving a separation of scales
becomes less probable. In particular, at T = 0, when
singlet-formation is preferred, the clusters become highly
non-compact, extensive objects with a large number of
neighbors, and consequently the fidelity, which is the ra-
tio of maximum energy scale in the system compared
with the energy scales amongst the spins neighboring the
maximally-coupled spins, does not rise substantially over
the course of the RG procedure, even if the distribution of
couplings assumes a power law form (see Appendix J). At
high-temperatures, the RG is more robust since singlets
are entropically unfavorable, and clusters grow uniformly
keeping the number of neighbors relatively unchanged
over the course of the RG. In what follows, we restrict
ourselves to a discussion of the T = ∞ simulations on
the two-dimensional square and strip geometries.

For a spin network arranged in a square geometry, we
find that the structure factor exhibits a scaling collapse
in accordance with the generalized-diffusion form [S∞q (ω)
in Eq. (1)] with a dynamical exponent z ≈ 2; this is ac-
companied by a low-frequency 1/

√
ω tail in the finite-q

structure factor (see Appendix J). We note that the dy-
namical exponent z = 2 is also associated with regular
diffusion; the important difference here is that the diffu-

sive structure factor is flat at low frequencies. Since the
fidelity does not improve significantly over the course of
the RG for systems with square geometries, we cannot
conclude definitively on the nature of dynamics of such
systems.

From the point-of-view of experiments measuring flux
noise in SQUID systems, we consider the case of a two-
dimensional strip of spins (the width of the conducting
strip of the SQUID circuit is typically much smaller than
the length of the SQUID loop). In this case, the RSRG
finds that the structure factor possesses a 1/

√
ω power-

law frequency-dependent behavior which eventually, at
lower frequencies, gives way to an anomalous power-law
behavior, 1/ωα; α ≈ 0.70 (see Fig. 17). The reason
for this is self-evident; the clusters contributing below
a certain frequency are wider than the width of the spin
network and can be thought to be lined up in an effec-
tively one-dimensional array; thus, the inheritance of the
anomalous power-law behavior from one-dimension is un-
surprising.

VII. SUMMARY AND OUTLOOK

In this work, we extended the RSRG protocol with
rules for the renormalization of the couplings of a generic
probe of spin fluctuations. This allowed us to compute
noise spectrum measured by such a probe, and in partic-
ular, the dynamical structure factor Sq(ω). We find, for
one- and quasi-one-dimensional systems with exchange-
coupling magnitudes distributed according to a 1/|J | dis-
tribution, and a wide range of initial composition (pro-
portion) of F/AF bonds, that the RG converges at both
T = ∞ and T = 0 to non-universal strong-randomness
fixed points associated with an anomalous dynamical ex-
ponent z. This dynamical exponent is associated with
the spectral characteristics of the noise power α at low
frequencies: α = 1 − 1/z at T = ∞ and α = 1 − 1/2z
at T = 0. We also find a non-trivial scaling of the high
frequency end of the structure factor [see Eq. (1)] and
relate the power law of the frequency dependence in this
regime to the low frequency noise power α.

These findings were justified for both high and low
temperatures by postulating a scaling form of the prob-
ability distribution function PF (AF ) governing the distri-
bution of F(AF) bonds with a given coupling, and at en-
ergy scales where the RG has converged. Additionally, we
showed how an ansatz that generalizes the spin-diffusion
propagator, reproduces the complete form of the struc-
ture factor at high temperatures, from which we conclude
that the results obtained (including the presence of 1/ωα

noise) are universal and extend generally to systems ex-
hibiting anomalous diffusion. We explain that the failure
of this approach in the zero-temperature case occurs due
to the failure of linear-response theory for the random-
bond Heisenberg spin chain at this temperature: even
at finite wave-vectors, static susceptibility of the chain
diverges.
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From the point of view of interest in many-body-
localization physics, our work raises an important
question—is the phase we find non-localized but also non-
ergodic? (Such a phase was proposed in Ref. [40].) The
RSRG protocol creates a macroscopic number integrals
of motion (albeit increasingly non-local integrals) which
implies the breakdown of ergodicity. However, since
the RSRG protocol suggests a flow towards a strong-
randomness fixed point, and not infinite-randomness, the
RG protocol is not exact and neither are the integrals of
motion it creates. This does not exclude the possibil-
ity that integrals of motion do exist, and one needs to
devise a more elaborate form of the RSRG protocol to
correctly capture them. Thus, the status of ergodicity in
our model is unclear.

Irrespective of the resolution of this discussion, let us
note that the system is certainly not in a many-body-
localized phase. As was mentioned above, the 1/ωα

(α < 1) form of the finite-q structure factor implies that
all spin-waves decay in time as 1/t1−α. As long as α < 1
(strictly), we expect polarization in the system to relax
(to equilibrium). A complimentary picture is obtained
by looking at the dynamical exponent 1/β = 1/(1 − α)
(at finite T ) which governs the scaling between the time
t it takes for spin phase to get scrambled over a distance
l; t ∼ l1/β . As α → 1, the scaling changes from polyno-
mial to exponential (or worse) in distance, which again
suggests that the localization transition occurs at α = 1.
Since we never observe this value for α in the infinite-
temperature simulations (although, increasing disorder
strength D is seen to slowly drive the exponent α to-
wards 1), we conclude that the disordered Heisenberg
spin chain is not localized at finite temperatures.

Finally, we note that the noise generated by these
random-bond Heisenberg spin chains with a 1/|J | distri-
bution captures some interesting facets (as seen in Fig. 4
for the experimentally relevant case of equally propor-
tioned F/AF system, see also Appendix D) of exper-
iments observing flux noise in SQUIDs: i) the noise-
exponent decreases with increasing temperature; ii) the
magnitude of the noise is fairly temperature indepen-
dent over a large frequency range; and iii) the point
of constancy in the magnitude of noise spectrum (as a
function of temperature) is about 9 orders of magnitude
smaller than the microscopic energy scales. The caveat
is, of course, that the network of spins in SQUIDs is

two-dimensional and these simulations were performed
for spin chains—due to computational costs, we can-
not perform simulations on equally large two-dimensional
systems and are, consequently, limited in the frequency
range of the calculated noise. Nevertheless, the simu-
lations performed on elongated two-dimensional strips
of spins show, below a certain frequency, an anomalous
power-law frequency-dependence akin to that seen in one-
dimensional chains. We believe that this may be a rea-
sonable representation of the experimental setup.

In future work, we aim to extend our RSRG protocol to
systems with anisotropic dipolar couplings and (or) ran-
dom local magnetic fields that create an additional pre-
ferred axis amongst the spins; such couplings are known
to change the dynamics of system significantly [43, 48],
making it resemble the dynamics of disordered Ising
spins, which furthermore, are likely to be more amenable
to a RSRG analysis even in higher dimensions. Moreover,
in one-dimension, such models are known to exhibit the
many-body localization transition [10, 49] and will thus
allow us to further probe the connection of 1/ω noise with
the many-body-localization transition. It would also be
interesting to examine the presence or absence of 1/ωα

noise in other systems where anomalous dynamical ex-
ponents are observed; such as non-Fermi liquids [50, 51]
and Luttinger liquids [52].
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Appendix A: Calculation of Noise

To the zeroth-order in the perturbative parameter
∆/∆0 (∆ is the gap between successive energy levels of
the spin-pairs formed due to the neighbors of the spins in
the pair forming the maximum gap ∆0), the noise con-
tribution at every step of the RG is given by:

N(ω) = g2
∑

m′

∣∣∣
〈
s,m

∣∣∣ ~A
∣∣∣s− 1,m′

〉∣∣∣
2

δ(ω + ω↓)

+ g2
∑

m′

∣∣∣
〈
s,m

∣∣∣ ~A
∣∣∣s+ 1,m′

〉∣∣∣
2

δ(ω − ω↑) (A1)

where ~A = ~S− −
~S−.~S+

|~S+|2
~S+, g2 = (gA − gB)2/4 is the

geometrical factor proportional to the square of the dif-
ference of the coupling of the probe to the two spins A
and B being combined at the given RG step, and ω↑(
ω↓) is the energy difference between states of total angu-
lar momentum s and s + 1 (s − 1) formed from the two
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spins. We will equivalently refer to these as the frequen-
cies of the ‘up’ and ‘down’ transitions associated with
a state with total momentum s. m and m′ are the az-
imuthal quantum numbers associated with the states s
and s + 1 (or s − 1 in the second line). Note that there
is no sum for m: all −s < m < s contribute equivalently.
Moreover, at this step of the RG, we only choose the
magnitude s of the effective spin, and not its completely
quantum state.

The spectrum of two spins is readily given in terms
of the coupling strength J between the spins of size sA
and sB being combined; the energy for such a spin pair
combining into an effective spin of size s is given by
Es = J

2 (s(s+ 1)− sA(sA + 1)− sB(sB + 1)). The en-
ergy difference between states s and s ± 1 can be com-
puted readily from this result. It is important to note
that the sign of the Ferromagnetic and AntiFerromag-
netic coupling implies a certain ordering of these levels,
which changes the meaning of ω↑ and ω↓ accordingly.

~S− = ~SA− ~SB is a rank 1 spherical tensor operator (as
one can ascertain from its commutation relations with
the total spin angular momentum operator ~S+). There-
fore, it only leads to transitions between states s and
s ± 1, besides also having a matrix element that leaves

s unchanged. The projection of ~S− on to ~S+ (which is

subtracted from ~S− to yield ~A) precisely removes this
matrix element corresponding to transitions from s→ s;
this projection operator is a low-frequency component of
the two spins that must not be eliminated at the given
RG step.

The remaining aim of this sub-section
is the calculation of the matrix element∑
m′

〈
s,m

∣∣∣ ~A
∣∣∣s± 1,m′

〉〈
s± 1,m′

∣∣∣ ~A
∣∣∣s,m

〉
. By

Wigner-Eckart theorem, the matrix elements are related
to the Clebsch-Gordan coefficients as

〈s,m|Aq |s′,m′〉 = cs,s′ < s,m||s′,m′; 1, q > .

Thus, the up-transition rate is given by

M(s, ↑) = c2s,s+1

∑

m′,q

|〈s,m| |s+ 1,m′; 1, q〉|2 = c2s,s+1,

and similar expression for M(s, ↓). Wigner-Eckart does
not provide the values of the coefficients cs,s′ ; they can
be established, however in the following way. Con-
sider the matrix elements of A0, 〈s,m|A0 |s′,m′〉 =
cs,s′ < s,m||s′,m′; 1, 0 > and 〈s′,m′|A0 |s,m〉 = cs′,s <
s′,m′||s,m; 1, 0 > . They are obviously complex conju-
gates of each other. Thus,

cs,s′ = c∗s′,s
< s′,m′||s,m; 1, 0 >

< s,m||s′,m′; 1, 0 >
= c∗s′,s

2s′ + 1

2s+ 1
,

where the last equality follows from the properties of 3j

symbols. On the other hand,

M(s) = M(s, ↑) +M(s, ↓) = 2s1(s1 + 1) + 2s2(s2 + 1)

− s(s+ 1)− (s1(s1 + 1)− s2(s2 + 1))
2

s(s+ 1)
.

(A2)

These two relationships are sufficient to calculate all tran-
sition rates separately. For the purposes of Sec. IV B, it
suffices to note that, generically, the sum M(s) scales as
∼ s2, however, for s = s1 + s2 and s = s1 − s2, i.e.,
extremal states, as is the case in the T = 0 RG flow,
M(s = s1 + s2) = 4s1s2/(s1 + s2) and M(s = s1 − s2) =
4(s1 + 1)s2/(s1 − s2 + 1), implying, at T = 0, M(s) ∼ s.

Appendix B: Analytical argument for scaling of the
form factor at T =∞

In the main text, we argued that the probe form factor
F (qn0) ∼ 1/qn0 for qn0 � 1 in the infinite temperature
case. Below we provide a more detailed justification of
this result.

Let us first recall that the probe form factor F (qn0)
describes the scaling form of the squared difference of
couplings gA and gB , that is, (gA − gB)2/4, when these
individual couplings correspond to clusters whose size
is ∼ n0 (note that the probe couplings contain the q-
dependence). In this appendix, we show that this factor
is related to the variance in the distribution of probe cou-
plings which scales as 1/qn0 for qn0 � 1.

The general result for the effective coupling g+ of the
probe to a cluster formed by merging two clusters A and

B of spins ~SA and ~SB , coupled to the probe by strengths
gA and gB , is given by

g+ =
gA + gB

2
+
gA − gB

2

∣∣∣~SA
∣∣∣
2

−
∣∣∣~SB

∣∣∣
2

∣∣∣~S1 + ~S2

∣∣∣
2 . (B1)

This expression in Eq. (B1) is valid for quantum spins;
however, at the advanced stages of RG at T = ∞ we
can treat them as classical variables. Then by averaging
uniformly over spin directions, we can evaluate the av-
erage 〈g+〉SA,SB = (gA + gB)/2 and the variance of g+,

σ2(g+)SA,SB =
〈
g2

+

〉
SA,SB

− 〈g+〉2SA,SB = (gA − gB)2/4.

Here 〈...〉SA,SB implies averaging over spin orientations

of the 2 constituent spins ~SA, ~SB of a cluster; note that
gA and gB will themselves have a distribution of values
owing to the fact that they are themselves composed of
smaller spin clusters. In what follows, we will use the
notation 〈...〉 (without the subscripts) to imply the aver-
aging over all internal spins of a cluster. From the above,
we see that the noise factor F (q`) obtained when com-
bining two clusters of size ` with probe couplings gA and
gB (which depend on q) is given precisely by the variance
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σ2(g+). Thus, in order to find the noise factor F (q`), we
need to determine the distribution of g+.

The expression for 〈g+〉SA,SB implies that the probe
coupling to each cluster is approximately the average of
the probe couplings to individual spins. Note that spins
which form singlet pairs do not couple to the probe, and
are not counted in this sum. However, as argued before,
singlets are entropically unfavorable at T = ∞ and so
clusters are primarily arrays of contiguous spins. Conse-

quently, the | 〈g+〉 | ∼
∫ `

0
dx cos(qx)/`. In particular, for

q � 1/`, | 〈g+〉 | ≈ 1/q`.
Now we estimate the width 〈σ(g+)〉 =〈

(g2
A + g2

B − 2gAgB)/4
〉
. We will self-consistently

show that the factor 〈gAgB〉 can be dropped from this
sum if these clusters have size ` � 1/q. To this end,
we first note that the phase difference between gA and
gB is of the order of eiq` which is effectively random
for q` � 1. Thus, such clusters have uncorrelated
probe couplings and 〈gAgB〉 ≈ 〈gA〉 〈gB〉 ∼ 1/(ql)2;
the last relation is determined from the result of 〈g+〉.
Assuming that this term makes an unimportant con-
tribution (in the large ` limit) to the variance, we find
〈σ(g+)〉 = (

〈
g2
A

〉
+
〈
g2
B

〉
)/4. If we merge clusters with

similar lengths ` and similar values of
〈
g2
A

〉
≈
〈
g2
B

〉
,

the resulting average value
〈
σ2(g+)

〉
goes down by a

factor of 2; consequently,
〈
σ2(g+)

〉
∼ 1/` for ` � 1/q.

In particular, since the width of distribution begins to
grow only for ` � 1/q, σ2(g+) ∼ 1/q`. This scaling
self-consistently confirms our assumption to neglect
the cross term 〈gA〉 〈gB〉 ∼ 1/(ql)2 and completes the
argument.

Therefore, the probe form factor F (qn0), which is the
scaling form of the factor (gA − gB)2/4 when the size of
clusters A and B is∼ n0, scales as∼ 1/(qn0) for qn0 � 1,
as advertised in the main text.

Appendix C: q-dependent scaling of the Structure
factor

Figs. 5 and 6 detail the q−dependent behavior of the
structure factor S∞q (ω) at T = ∞ and S0

q (ω) at T = 0

respectively, at high (ω � q1/β) and low (ω � q1/β)
frequencies. The q−dependence is in accordance with
the results in the main text.

Appendix D: Comparison of T = 0 and T =∞ noise:

Fig. 7 shows a direct comparison of zero and infinite
temperature noise for single disorder realization. There
are three aspects of this plot that are of significance: i)
the magnitude of the noise does not vary much with tem-
perature, while the power laws change slightly; ii) (for the
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FIG. 5. (a) The T = ∞ dynamical structure factor S∞q (ω)
is plotted as a function of frequency for various q = 2π/l
(l ∈ [40, 800]), system size L = 15000. (b) S∞q (ω) ∼ 1/q for

ω � q1/β is evident from the scaling collapse at low frequen-
cies. (c)S∞q (ω) ∼ q2 for ω � q1/β is evident from the scaling
collapse at high frequencies.

case of a 50-50 mix of F/AF bonds) the low frequency
power law seems to increase with decreasing temperature,
and; iii) the noise magnitude seems to be fairly constant
at approximately ω = 10−8. A curious observation in
nearly all experiments is that the noise magnitude does
not change at approximately 1Hz, which is about a factor
of 10−9 smaller than the typical microscopic interaction
strength amongst the spins. In contrast, in our simula-
tions, the microscopic scale is eD ∼ 10, D = 3, and noise
magnitude is observed to be roughly constant at about
ω ≈ 10−9eD.

We note that the above comparison is based on the
assumption that the two-dimensional network of spins
producing flux noise in SQUIDs is likely more tightly
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FIG. 6. (a) The T = 0 dynamical structure factor S0
q (ω)

is plotted as a function of frequency for various q = 2π/l
(l ∈ [40, 800]), system size L = 15000. S0

q (ω) ∼ const. for ω �
q1/β is evident from the collapse at low frequencies (without

any scaling). (b) S0
q (ω) ∼ q2 for ω � q1/β is evident from the

scaling collapse at high frequencies.

confined in one direction (along the width of the con-
ducting strip) than the other (along the length of the
conducting strip), and that this implies that the behav-
ior of the spin-network mirrors that of one-dimensional
spins below a certain frequency scale.

Appendix E: Numerical checks / convergence of RG

Fig. 8 plots (a) bias, (b) noise frequency and (c) ‘fi-
delity’ is plotted against the RG step for a system with a
given set of initial conditions (bias, disorder strength, sys-
tem size, temperature). Although plotted for a specific
system, the following observations are fairly independent
of the various system parameters, including temperature.
The bias is seen to flow to a a stable value after about
90% of the initial spins have been eliminated. This value
is close to the 50% - 65% (η = 0 - 0.3) mark although it
has small variations which depend on the initial bias of
the system at T = 0, but not at T = ∞. The noise fre-
quency (of eliminated spin-pair) dips below microscopic
values only after these initial eliminations. These obser-
vations suggest that the RG converges and the (high- and
low-) frequency dependent noise observed at both ends of
the crossover (ω ∼ q1/β) is from the limit where the RG
has converged. The fidelity plotted is the log-averaged
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FIG. 7. The structure factors S∞q (ω) (T = ∞, blue) and
S0
q (ω) (T = 0, red) are plotted simultaneously, for initial bias
ηi = 0, disorder strength D = 3, system size L = 15000,
and q = 2π/160. The powers α′ and α are also indicated
for the two cases with the corresponding subscripts. They
approximately satisfy the respective scaling relations for zero
and infinite temperature cases.

(typical) estimate of the inverse of the perturbation pa-
rameter, that is, f = ∆0/∆, where ∆0 is the gap due
to the spin-pair being eliminated at the given RG step,
and ∆ is the maximum gap formed by the coupling of
one of these spins (in the spin-pair) to its neighbors. It is
seen to rise dramatically as the RG reaches convergence
indicating that the RG is fairly successful; since the fi-
delity is large but finite we conclude that the RG flows
to a strong-randomness fixed point, and not an infinite-
randomness point. In Fig. 9, the fidelity is plotted for
the infinite temperature RG simulation and is seen to
also perform quite well. Note that, at zero temperature,
the fidelity is best for the initially completely AF sys-
tem, and becomes progressively worse with the addition
of more F bonds.

Fig. 10 plots the distribution of the gap ∆ after 98% of
the spins were eliminated for the same system as above.
The power law form of the distribution guarantees that
the typical gaps are much smaller than the largest gap
in the system, which ensures that the RG works (and
increases the fidelity). The noise power law α and the
power law of the distribution of the gap is not the same
generally. For the purely AF case, the distribution is
D∆(∆) ∼ 1/∆, as is known from the analysis of the IRFP
in the AF system at T = 0. As the initial distribution
becomes more ferromagnetic, the exponent of the power
law approaches 0. The smaller exponent also marks a
reduction in the fidelity and the efficacy of the RG.

The power γ of the gap distribution P∆(∆) ∼ 1/∆γ

and the final bias ηf are plotted as a function of the initial
bias ηi of a 1/|J | distribution with disorder strength D =
3 in Fig. 11.
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FIG. 8. The average (a) bias, (b) noise frequency and (c)
‘fidelity’ is plotted against the RG step for a system of size
L = 10000. Initial bias ηi = 0.5, temperature T = 0, disorder
strength D = 1.

FIG. 9. The fidelity is plotted as a function of RG steps at
T = ∞ for a system of size L = 15000 and initial disorder
strength D = 1.

Appendix F: Relation between power laws of the
gap distribution and the noise exponent

The power laws of the gap distribution and the noise
exponent are related. This can be seen as follows. The
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FIG. 10. Distribution of the gap ∆ after 98% of the spins were
eliminated. The system has Initial bias ηi = 0.5, temperature
T = 0, disorder strength D = 1. The noise power law α and
the power law of the distribution of the gap are not the same.

FIG. 11. The power γ (red) of the gap distribution P∆(∆) ∼
1/∆γ and the final bias ηf (blue) are plotted as a function of
the initial bias ηi of a 1/|J | distribution with disorder strength
D = 3.

number of bonds Nt at a given maximum gap value ∆0

is given via the dynamical exponent z as Nt(∆0) ∼ ∆
1/z
0 .

Some of these bonds are F and some AF; we assume that
the proportion F/AF bonds at the maximum gap ∆0 is
pF/AF (∆0). We assume a power-law form of the distri-
bution of the F/AF bonds associated with gaps ∆ given

by QF/AF (∆,∆0) =
(1−γF/AF )

∆0

(
∆0

∆

)γF/AF
. In the regime

that the RG has converged, the exponents γF/AF and
proportions pF/AF become independent of the maximum
gap ∆0.

We now prove the relation 1/z = pF (1−γF )+pAF (1−
γAF ) as follows. The number of F/AF bonds elimi-
nated at every step of the RG is given by dNF/AF (∆0) =
Nt(∆0)QF/AF (∆0,∆0)d∆0. The sum of the eliminated
F/AF bonds gives the number of total eliminated bonds,
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which can alternatively be determined through the dy-
namical exponent as dNt(∆0) = 1

z
d∆0

∆0
. A compari-

son of the results obtained yields the aforementioned
relation. Note also that the fact that the propor-
tion of F/AF bonds becomes constant implies that
dNF (∆0)/dNAF (∆0) = pF /pAF . This further implies
that γF = γAF .

The above results can also be used to determined the
noise exponent via the usual relations α = 1 − 1/2z (at
T = 0) and α = 1 − 1/z (at T = ∞). These relations
are discussed in Sec. IV. In particular, for the case of the
disordered Heisenberg AF chain, we know that pF = 0,
pAF = 1, γAF = 1, and consequently, α = 1.

Appendix G: Extreme Value Statistics of the lowest
gap (at T = 0)
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FIG. 12. The distribution function of lowest gapped excita-
tion energies, PL(ε) is obtained for two cases corresponding
to different initial AF/F composition of the spin chain: (a)
ηi = 0.5, (b) ηi = 0, and system sizes L = 250 (yellow),
L = 500 (orange), L = 1000 (blue). Solid red line is the fit
according to the Fréchet distribution. See Appendix G for
more details.

We note that the relation 1/z = 1−γ (derived in Sec. F)
has been derived in previous works on random spin mod-
els assuming a Griffiths phase picture with separate, rare
localized excitations. [53, 54]. The consequence of hav-
ing an excitation spectrum (or the gap distribution) with
a power-law singularity is that lowest gapped excita-
tion above the ground state is distributed according to
a Fréchet distribution (which corresponds to the distri-
bution of the extremal values of a sample of i.i.d. ran-
dom variables with a power-law distribution). Specifi-

cally, Ref. [54] points out that the distribution of the
lowest gapped excitation energy ε in a system of size L is
given by GL(ε) = LzG(εLz), where the scaling function
G(u) = z−1u1/z exp(−u1/z) and z is the dynamical ex-
ponent, as defined before. We found that this result also
holds for the system we consider. Moreover, the dynam-
ical exponent found from this analysis is seen to match
the dynamical exponent found from our simulations of
the noise spectrum.

These results were verified as follows: the distribution
function GL(ε) was obtained by performing the RSRG
protocol (for T = 0) on a chain of length L until one final
bond remained; the lowest level splitting of this spin-pair
gives the lowest gap in the chain’s excitation spectrum.
We considered 20000 disorder realizations of chains of
length L = 250,500,1000, disorder strength D = 3 and
various initial composition of F/AF bonds. The scal-
ing hypothesis (relating GL to G) above is verified by
performing a scaling collapse by plotting GL(log(ε)) vs.
log(ε)− zlog(L/L0), where L0 = 1000 is chosen arbitrar-
ily, and verifying that the distribution is of the Frétchet
form (which also depends on z). The dynamical expo-
nent (determined by optimizing the scaling collapse) was
found to be z ≈ 4.3 ± 0.8 for ηi = 0.5 and z ≈ 2.6 ± 0.4
for ηi = 0. This yields, via the relation α = 1 − 1/2z,
α = 0.88 ± 0.05 for ηi = 0.5 and α = 0.8 ± 0.05 for
ηi = 0, which is in agreement with the results in Fig. 4
(c). These results are plotted in Fig. 12.

Appendix H: Distribution D(n) of cluster size at
T = 0

It was mentioned in the main text that the distribution
of clusters at T = 0 follows a form D(n) ∼ 1/n0 for
n . n0 and small for n & n0, where n0 is the typical
cluster size at any RG scale. Such a distribution was
shown to lead to the failure of linear response theory
at T = 0, primarily because it guarantees the presence
of clusters of small sizes (and especially, of the probe
wavelength 2π/q) at all energy scales of the RG; these
small clusters were found to give a divergent contribution
to the susceptibility of the system even at finite-q. In
Fig. 13 we justify this form of the distribution function
numerically.

Appendix I: Correlations between the coupling and
the spin size

It was argued in Ref. [28] that the RG procedure fails
because it generates exceedingly large spins. This conclu-
sion is incorrect; it is important to note that these larger
spins also couple much more weakly to their neighbors,
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FIG. 13. The distribution D(n) of the cluster sizes n at var-
ious (different colors) stages of the RG for L = 15000 spin
chain at T = 0, and initial bias ηi = 0.5. The features of
the result are not dependent on the specifics of the system
parameters. The important facet here is that D(n) has ap-
preciable weight at all stages of the RG in the n→ 0, while it
decays beyond a certain scale n0 which depends on the energy
scale at which the RG was terminated. This justifies the form
of the distribution we use in the main text to calculate the
T = 0 finite-q susceptibility of the spin chain.
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FIG. 14. Scatter-plot of the logarithm of the couplings log(J)
of effective spins of size s remaining after the RG procedure
has reached convergence operating on a L = 5000 spin chain
at T = ∞. The maximum coupling is seen to decrease with
the spin size s

FIG. 15. Various features of the simulations on two-
dimensional system of size 50 × 50 are shown. (a)
The noise spectrum for low frequencies has a power law
tail Sq(ω) ∼ 1/

√
ω (q = (π, π) here); (b) The distribu-

tion of gaps is fairly broad; (c) The fidelity f does not
rise over the course of RG; (d) Approximate scaling col-
lapse using the Generalized-diffusion ansatz using exponent
β = 0.55±0.05 for wave-vectors q = (2πn/L, 2πn/L) with n ∈
[2(blue), 4(red), 6(magenta), 8(cyan), 10(black), 12(green)].
and L = 50. The lower (upper) frequency power laws
are found to be: α ≈ 0.5 ± 0.05, α′ ≈ 1.75 ± 0.05; it is
unclear whether there is data for a sufficiently large range of
frequencies to extract the high-frequency power law reliably,
especially since it exhibits a drift to higher values as we go
to smaller wave-vectors.

as seen in Fig. 14, and that this balance precisely en-
sures that the RG can flow to a strong-randomess fixed
point with tractable scaling properties. The authors of
Ref. [28] perform RSRG by keeping the length of the
chain fixed and attaching new spins with arbitrary sizes
but also arbitrary coupling strengths which misses out
on these correlations. Moreover, they perform their RG
by eliminating the largest bond value J rather than the
larger gap ∆.

Appendix J: Simulations in two dimensions
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FIG. 16. The energy spectrum of a small 3 × 3 lattice spin
system (disorder strength D = 3) is calculated using exact
diagonalization (blue) and compared with the RG generated
spectrum (red).

The basic features of the results in 2D (at T =∞) are
outlined in Fig. 15. The simulations (square geometry)
were carried out for a 50 × 50 lattice of spins. The
fidelity does not improve markedly over the course of the
RG. However, the computed structure factor shows ap-
proximate scaling collapse according to the Generalized-
diffusion form of the structure factor with an inverse
dynamical exponent β ≈ 0.55 ± 0.05. Alternatively,
this implies a dynamical exponent z = 1/β ≈ 2 (which
agrees with Ref. [55], where RSRG was used to extract
z ≈ 2 from the distribution of the energy gap between
the ground state and the first excited state).

While the RG doesn’t successfully converge for large
systems with a square geometry, it still manages to re-
cover the full energy spectrum for sufficiently disordered,
small systems with reasonable success (see Fig. 16). To
simulate a two-dimension strip of spins, simulations were
carried out for a 500 × 6 lattice of spins. Below a cer-
tain frequency scale, clusters become of the size of the
width of the network, and the 1/ωα noise behavior of
one-dimensional systems with an anomalous exponent α
is recovered (see Fig. 17). For a disorder strength of
D = 3, α ≈ 0.7 was found.

Appendix K: Role of faraway resonances

Here we present an argument (based on a generaliza-
tion of the analysis in the supplementary of Ref. [56])
that suggests that once the system develops an dynam-
ical exponent z = 1/β > 1, faraway resonances can
be neglected. On the basis of the numerical evidence,
we assume a power-law distribution of gaps D(∆) ∼
1−γ
∆0

(
∆0

∆

)γ
. Let us examine the possibility that two far-

away spin-pairs, with local gaps separated by d∆ be-
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FIG. 17. (a) The finite-q structure factor Sq(ω) [q =
(2π/25, π)] as a function of frequency; (b) the fidelity f
and (c) the noise frequency are plotted as a function of the
RG steps for a two-dimensional strip of spins of lattice size
500 × 6, with D = 3 at T =∞. There are ∼ 50 clusters re-
maining when these are of the size of the width of the spin net-
work; these remaining clusters behave as a one-dimensional
network of effective spins and produce the anomalous 1/ωα

noise. Here we see that about 50 (red dashed lines) spins re-
main when the maximum frequency ω ∼ 2 × 10−2 and this
approximately agrees with the frequency below which 1/ωα

noise behavior is observed. Above this frequency, a ∼ 1/
√
ω

tail is observed as in the case of the square network of spins.

come resonant with one-another. The density of spin-
pairs separated by a local gap d∆ is ρ = D(∆0)d∆ =
(1 − γ)(d∆/∆0) and the typical distance between such
approximately-resonant spin-pairs is l = 1/ρ. We would
like to compare d∆0 to the effective coupling between
these spin-pairs. Since there is a fixed dynamical expo-
nent 1/β in our system, this effective interaction between
the spin-pairs is given by ∆int = l−1/β , where l is again
the typical distance found above.

For faraway resonances to be unimportant, we require
d∆ � ∆int(d∆) = const. (d∆)1/β . This condition is
always satisfied if β < 1, a condition which is fulfilled
in all our simulations. Thus, we expect resonances to
be unimportant, so long as the RG generates a power-
law distribution of gaps, and the dynamical exponent
z = 1/β > 1.
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FIG. 18. (a) The inverse participation ratio is finite [seen by
scaling with system sizes L = 500 (yellow), L = 1000 (blue)
and L = 2000 (red) ] and scales with frequency as IPR(ω) ∼ ω
(dashed line fit); (b) spin-wave peak seen in the structure
factor Sq(ω); (c) the peak occurs at frequency ωc(q) ∼ q2

(red line fit corresponds to q1.95); (d) the width (calculated
as inverse height of the peak) scales as Γ(q) ∼ q2 (red line fit
corresponds to q2.2)

Appendix L: Holstein-Primakoff method for T = 0

The RG seems to generally fail for a system that is pri-
marily ferromagnetic. This is indicated by consistently
poor fidelity (f ∼ 2) and a distribution of gaps that fails
to develop a singular form. Thus, we need an alterna-
tive method to understand the dynamics in the nearly
F spin chain. To do so, we analyze the purely F chain
by performing a Holstein-Primakoff expansion [57] on its
fully polarized ground state. The quadratic Hamiltonian
obtained (linearized in the fluctuations) is diagonalized

0 100 200 300 400 500

FIG. 19. An example localized spin-wave wave-function for
the disordered purely F chain of size L = 500.
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FIG. 20. (a) The inverse participation ratio decreases to zero
in the thermodynamic limit [seen by scaling with system sizes
20× 20 (yellow), 30× 30 (blue) and 40× 40 (red) ] ; (b) spin-
wave peak seen in the structure factor Sq(ω); (c) the peak
occurs at frequency ωc(q) ∼ q2 (red line fit corresponds to
q2.1); (d) the width (calculated as inverse height of the peak)
scales as Γ(q) ∼ q4 (red line fit corresponds to q3.95).

to calculate the structure factor. The simulations were
performed for systems of size L = 500, 1000, 2000 with
D = 3.

The ground state of a fully F spin chain is a classical
fully polarized state and the Hamiltonian governing sin-
gle spin-flip excitations is given by a model of particles
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FIG. 21. Infinite-temperature S∞q (ω) for classical spins of

magnitude
∣∣∣~S∣∣∣ = 1/2 is plotted (blue) and compared with

the quantum result (red) at infinite temperature. L = 15000,
D = 3, ηi = 0.

in random (Hartree-like) potentials and randomized tun-
neling terms. Thus, one may expect these excitations to
be localized. On the other hand, the failure of the RG
suggests that the system is self-averaging and may pos-
sess goldstone modes of a disorder-free ferromagnet with
a spectral peak at frequency ωc(q) ∼ q2. It should be
noted that the on-site potential and tunneling are exactly
correlated in this system, thus, localization is not imme-
diately guaranteed. The results in Fig. 18, 19 suggest
that the system exhibits a bit of both; spin-waves exist
with a central frequency ωc(q) ∼ q2, but they are heav-
ily damped with a decay rate Γ that scales in the same
way, Γ(q) ∼ q2. Thus, spin waves states are localized in
the sense that the inverse participation ratio IPR [given
by IPR =

∑
i n

2
i /(
∑
i ni)

2 ; ni is the spin wave density
at site i of the chain] is finite. If one interprets the fi-
nite IPR as a consequence of an exponentially localized
wave-function, then IPR ∼ 1/ξ, where ξ is the localiza-
tion length. Extracting the localization length from the
IPR yields the scaling ξ(ω) ∼ 1/ω; this is in agreement
with the fact that the RG finds a dynamical exponent
z = 1 in the limit of the fully F chain which yields a
scaling between the cluster size n and the frequency ω as
n(ω) ∼ 1/ω1/z.

We note that this ‘localized’ spin-wave behavior is
unique to one dimension. In two dimensions, an anal-
ogous Holstein-Primakoff analysis reveals that the spin
waves are sharp; the central frequency ωc ∼ q2 but the
damping scales as Γ ∼ q4 (see Fig. 20). Note that this
is in agreement with the analysis of disordered ferro-
magnets using an effective medium approximation dis-
cussed in Refs. [45, 46] (the authors focus on the three-
dimensional case, but their results are straightforwardly
extended to two dimensions). The simulations for the
two-dimensional case were performed for systems of lat-

tice sites 20 × 20, 30 × 30, 40 × 40 and with disorder
strength D = 3.
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FIG. 22. Comparison of the structure factor obtained for clas-
sical spin chains using direct integration of Bloch-equations
and RSRG rules. The direct simulation is computationally
hard to perform over very long time-scales, but the agree-
ment is very reasonable for the simulated frequencies.

Appendix M: Classical simulations for T =∞

The RG rules were derived using classical reasoning
and can be applied to classical vector spins. Fig. 21
plots (blue) the structure factor at infinite-temperature
obtained from such a calculation with classical Heisen-

berg spins of vector magnitude
∣∣∣~S
∣∣∣ = 1/2. The structure

factor is very similar to the quantum result (red). We
conclude that the anomalous dynamical exponent at in-
finite temperature, that gives rise to anomalous diffusion
is not a purely quantum phenomenon.

Appendix N: Comparison of classical RG with direct
dynamical simulation

The classical spin chain (size L = 1000) with ini-
tial coupling distribution P0(|J |) ∼ 1/|J | with |J | ∈
[10−3, 10−3e5] is simulated using the classical Bloch-
equations to obtain the structure factor. The result
is compared with the classical-RG simulation result in
Fig. 22. The simulations are for T =∞ (the initial spin
configuration is chosen entirely randomly).
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