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The isothermal compressibility of a general crystal is analyzed within classical density functional
theory. Our approach can be used for homogeneous and unstrained crystals containing an arbitrarily
high density of local defects. We start by coarse-graining the microscopic particle density and
then obtain the long wavelength limits of the correlation functions of elasticity theory and the
thermodynamic derivatives. We explicitly show that the long wavelength limit of the microscopic
density correlation function differs from the isothermal compressibility. We apply our theory to
crystals consisting of soft particles which can multiply occupy lattice sites (’cluster crystals’). The
multiple occupancy results in a strong local disorder over an extended range of temperatures. We
determine the cluster crystals’ isothermal compressibility, the fluctuations of the lattice occupation
numbers and their correlation functions, and the dispersion relations. We also discuss their low-
temperature phase diagram.

PACS numbers: 62.20.de, 46.25.-y

I. INTRODUCTION

In crystals, where translational invariance is sponta-
neously broken, strain enters as additional thermody-
namic variable in the free energy, describing the distor-
tion of the solid. The trace of the strain tensor is con-
nected to the change in density. In particular, in ideal
crystals, where all atoms can be unambiguously assigned
to lattice sites and all lattice sites are occupied, density
change is determined by the trace of the strain tensor.
In real crystals, point defects like interstitials and vacan-
cies are present, and density can change by both defor-
mation of the solid (captured by the strain), and diffu-
sion of defects1. Thus, the presence of defects opens the
question how density and strain fluctuations are defined
in real crystals. Here, no one-to-one mapping of atoms
to lattice positions is possible. Therefore, the displace-
ment field, whose symmetrized (in linear approximation)
gradient gives the strain, cannot be obtained from the
displacements of individual atoms from their lattice po-
sitions. Only recently microscopic definitions of strain
and density fluctuations in real crystals were derived
from the statistical mechanical description of real crys-
tals, overcoming this difficulty2. This work followed an
earlier suggestion by Szamel and Ernst3,4. Preliminary
Monte Carlo simulations and comparisons with older ap-
proaches, including to amorphous solids, indicated the
potential of the microscopic theory5.

An intriguing finding of the microscopic approach of
Ref. [2] concerns the coarse-grained density field δn(r, t)
which enters into the theory of crystal elasticity6. Even
for arbitrarily large wavelengths, particle density fluc-
tuations with wavevectors close to all (finite) recipro-
cal lattice vectors contribute to the coarse-grained den-
sity field. In this contribution, we discuss this at first
surprising finding within the framework of density func-
tional theory. This theory allows us to properly link mi-

croscopic and macroscopic density fluctuations in states
with broken translational symmetry in order to parallel
the coarse-graining of the free energy functional achieved
previously for e.g. homogeneous liquid crystals8.

Based on the microscopic definition of the coarse-
grained variables of elasticity theory, we can ad-
dress another intriguing question, originally raised by
Stillinger9–11. Namely, whether the structure factor is
an analytic function around zero wavevector and whether
its small wavevector limit coincides with the compress-
ibility? We find that due to the long-ranged displace-
ment correlations, the small wavevector limit of the cor-
relation function of the coarse-grained density field is
non-analytic and depends on the direction relative to
the crystal lattice. We derive these results from den-
sity functional theory and can thus put them on a firm
microscopic basis. Thus, we generalize earlier findings
obtained within the harmonic crystal approximation12.
Because of the non-analyticity, special care is required
when discussing the thermodynamic limit. From studies
on two-dimensional crystals it is known that defects en-
ter the expression for the isothermal compressibility in
a complicated fashion13. We generalize these results to
crystals of arbitrary symmetry. Correcting the appendix
of Ref. [2], we also derive relations between fluctuation
functions and thermodynamic derivatives. These results
suggest that the elastic constants of crystals with point
defects14 could be measured by microscopy techniques
applied to colloidal crystals15.

In order to test the theory, we apply it to so-called
‘cluster crystals’16,17 which consist of particles interact-
ing with a soft-core repulsion. The softness of the poten-
tial allows for multiple occupancy of individual lattice
sites by the particles and for fluctuations of the lattice
site occupation numbers. These fluctuations play the role
of mobile local defects. Indeed, the approximation which
considers these cluster crystals as ideal crystals (with a
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uniquely occupied lattice sites) is valid only at extremely
low temperatures18, and the different crystal structures
can only be understood by allowing for a distribution of
site occupation numbers19,20. For these crystals, we will
derive thermodynamic derivatives, correlation functions,
and dispersion relations, which were not accessible previ-
ously, and we will discuss their low temperature phases.

The paper is organized as follows: in Sect. II we first
recall definitions and results from Ref. [2] and then, in
Sect. III, we derive expressions for the fluctuations of
displacement and density fields in an unstressed reference
state. They are given by microscopic quantities defined in
terms of the direct correlation function of the crystal. To
facilitate application of these expressions, we also invert
these relations considering two sets of independent fluc-
tuations, coarse-grained density and displacement field or
defect density21 and displacement field. In Sect. IV we
derive the thermodynamic free energy, including the ther-
modynamic elastic susceptibilities, by coarse-graining the
microscopic classical density functional. As the first step,
we obtain the free energy functional containing the elas-
tic fields, which reduces to the thermodynamic one for
homogeneous fields. This is followed by the discussion
of thermodynamic derivatives. In Sect. V we discuss the
small wavevector limit of the coarse-grained density fluc-
tuation function and show that it differs from the isother-
mal compressibility κ. We also discuss scattering func-
tions and conclude that scattering experiments do not
allow to measure the compressibility in a crystal, in con-
trast to liquids and gases22. Finally, in Sect. VI we apply
our theory to cluster crystals. We show that a simple
mean-field density functional leads to surprisingly accu-
rate values of compressibilities and occupation number
fluctuations. Details of some of the calculations are pre-
sented in appendices.

II. COARSE-GRAINED FIELDS

Crystals exhibit spontaneously broken translational
symmetry (e.g. the average density is non-uniform) and
this, via the Goldstone theorem, leads to long-ranged
correlations. Specifically, the vector displacement field
u(r, t) possesses correlations which decay like the in-
verse distance. In ideal crystals, one can use the familiar
expression for the microscopic density of the displace-
ment field

∑
i ui(t)δ(r−Ri), involving the displacement

ui(t) = ri(t) − Ri of the instantaneous position of the
particle i, ri(t), from its lattice site Ri. However, in real
crystals, in which defects are present, this expression is
invalid3. In order to find the microscopic definition for
the displacement field u(r, t) and for the other fields of
elasticity theory, an alternative approach was developed
in Ref. [2].

Before we discuss the approach of Ref. [2], we need to
define precisely various fields used in the present paper.
First, we have microscopic densities, i.e. quantities that
are defined for and depend on an individual configuration

of the N -particle system. To distinguish these quantities
we will always explicitly state that they depend on time t
(like, e.g., in the standard definition of the displacement
field mentioned in the previous paragraph.) Another ex-
ample, which will be important in the following, is the
microscopic particle density ρ(r, t); it will be precisely de-
fined in Eq. (1) below. In crystals, in general the averages
of microscopic quantities will change on the spatial scale
of the crystalline cell. For example, the average density
in a crystal, n(r) = 〈ρ(r, t)〉, is non-uniform, with large
peaks near lattice sites’ positions. In contrast, the scalar
density, denoted δn(r) and the vector displacement field,
δu(r) used in the theory of elasticity vary only on much
larger scales; here the δ indicates a deviation from homo-
geneous thermal equilibrium. Thus, one of the goals of
Ref. [2] was to identify microscopic fields whose averages
correspond to the fields of elasticity theory. In the rest
of this paper we will call these fields microscopic coarse-
grained fields. Also, in the rest of the paper we will re-
fer to averages of microscopic quantities as macroscopic
fields. Especially, second moments, viz. covariances and
correlation functions, will be considered in the following
and will be connected to thermodynamic derivatives.

A. Microscopic particle density

The concepts of generalized elasticity theory1,23 indi-
cate that density fluctuations close to (all) reciprocal lat-
tice vectors are long-ranged24. Therefore, they all could
contribute to coarse-grained fields. The microscopic ap-
proach to find the displacement field in a real crystal
starts from the particle density field ρ(r, t) which depends
on the configuration of the N -particle system (consid-
ering, for simplicity, a one-component crystal of point
particles interacting with a spherically symmetric pair-
potential)

ρ(r, t) =

N∑

i=1

δ(r− ri(t)) (1)

where ri(t) are the particle positions, N is the number
of particles in the volume V ; later on we will use n0 to
denote the average density, n0 = N/V . Spatial Fourier
transformation gives fluctuations close to vectors g of the
reciprocal lattice

δρg(q, t) = ρ(g + q, t)− ngV δq,0 , (2)

where

ρ(k, t) =

∫
ddre−ik·rρ(r, t) =

N∑

i

e−ik·ri(t) , (3)

and

ng =
1

V
〈ρ(g, t)〉 =

1

V

N∑

i

〈e−ig·ri(t)〉 . (4)
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Here, the general wave vector k was divided up into recip-
rocal lattice vector g and wave vector q, which lies within
the first Brillouin zone; 〈 〉 brackets indicate canonical
averaging at fixed temperature T (averages are time in-
dependent due to time-translational invariance of equi-
librium states25). ng are the Bragg-peak amplitudes
(Debye-Waller factors) which serve as crystal order pa-
rameters. They quantify the spontaneous breaking of the
translational invariance (spatial homogeneity).

B. Coarse-graining microscopic density
fluctuations to elasticity fields

In Ref. [2] the following representation was established
for the microscopic density fluctuation in terms of micro-
scopic coarse-grained density and displacement fields

δρg(q, t) = −inggαδuα(q, t) + ng
δn(q, t)

n0
, (5)

with Greek indices denoting spatial directions; repeated
indices are summed over (Einstein summation convention
is used). Equation (5) is the crucial relation linking the
fields of macroscopic elasticity theory to the underlying
microscopic density fluctuations. It states that for wave
vectors q within the first Brillouin zone, the four coarse-
grained fields δn(q, t) and δu(q, t) determine the hydro-
dynamic contributions of the microscopic density field.
This is valid even close to Bragg-peaks at arbitrarily high
reciprocal lattice vectors g. Equation (5) was introduced
in Ref. [2]. It was deduced using the Zwanzig-Mori equa-
tions of motion for the microscopic density fluctuations
and its relation to older DFT approaches was discussed.
In the present contribution, we support it by considera-
tions of equilibrium correlations.

In ideal crystals without defects the coarse-grained
density and the divergence of the displacement field are
proportional1. In real crystals, mass transport can arise
from lattice distortions (described by the displacement
field) but also from defect motion, which occurs diffu-
sively over large distances. This additional hydrody-
namic mode is called point defect density. It enters by
the standard definition1:

δc(q, t) = −δn(q, t)− in0qαδuα(q, t) . (6)

In Ref. [2] it is shown that Eqs. (5) and (6) predict the
correct reversible dynamics of the defect density. Be-
cause many situations require theoretical expressions at
constant defect density21, we will use Eq. (6) repeatedly
in the following sections.

C. Relating the coarse-grained fields to
microscopic density fluctuations

Explicit expressions for the coarse-grained density and
displacement fields can be derived by inverting Eq. (5).

The inversion can be performed using the two summa-
tions

n0

N0

∑

g

n∗g, (7a)

N−1
αβ

∑

g

n∗ggβ . (7b)

and the relation
∑

g |ng|2g = 0. The normalization

constants are N0 =
∑

g |ng|2 and Nαβ =
∑

g |ng|2gαgβ .

Performing the sums over the reciprocal lattice in Eq. (5)
leads to the microscopic coarse-grained density

δn(q, t) =
n0

N0

∑

g

n∗g δρg(q, t) , (8)

and to the microscopic coarse-grained displacement field

δuα(q, t) = iN−1
αβ

∑

g

n∗g gβ δρg(q, t) . (9)

These expressions could be evaluated using information
obtained from computer simulations or from colloidal
experiments15.

Equations (8) and (9) express the coarse-grained fields
in terms of microscopic particle density (1). It is in-
triguing that contributions from all finite lattice vectors
g 6= 0 are present in the coarse-grained density. Even in
the limit of vanishing wave vector, q → 0, it is not suf-
ficient to measure particle density fluctuations close to
the center of the first Brillouin zone, in order to deter-
mine the thermodynamic density field in crystals. Fluc-
tuations from the regions around all lattice vectors con-
tribute and describe how macroscopic strain fluctuations
and defect density independently cause changes in the
hydrodynamic particle density.

III. RELATIONS INVOLVING CORRELATIONS
OF THE COARSE-GRAINED FIELDS

A. Correlation functions of the coarse-grained
fields

After recalling the relations between the fields of elas-
ticity theory and microscopic fluctuations2, we turn now
to the focus of our work, the correlation functions of the
coarse-grained fields and the thermodynamic derivatives
(including the isothermal compressibility). First, we will
obtain the correlation functions from classical density
functional theory (DFT)25–27. These correlation func-
tions will then be analyzed in the homogeneous case to
obtain the thermodynamic quantities.

Close to equilibrium, owing to the fluctuation dissipa-
tion theorem, only equilibrium correlation functions are
required in order to discuss the linear response to small
external fields28. In a homogeneous and unstrained crys-
tal, the equilibrium correlation functions of the micro-
scopic density fluctuations on the left hand side of Eq. (5)
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can be calculated within DFT. This enables us to obtain
the correlation functions of the coarse-grained fields in
Sects. III A1. and III A2. The fundamental Ornstein-
Zernike relation provides a connection between the den-
sity correlations and the inverse density-density correla-
tion matrix Jgg′(q)

V kBTδgg′′ =
∑

g′

〈δρ∗g(q, t) δρg′(q, t)〉 Jg′g′′(q) . (10)

Here, the periodicity of the two-point density correlation
function29 was used which implies that only density fluc-
tuations whose wavevectors differ by a vector of the re-
ciprocal lattice are correlated. The (infinite-dimensional)
Hermitian matrix Jgg′ is the double Fourier-transform of
the second functional derivative of the free energy with
respect to the macroscopic density, which includes as
non-trivial part the direct correlation function c(r1, r2).

Jgg′(q) = (11)

kBT

V

∫
ddr1

∫
ddr2e

ig·r1e−ig
′·r2eiq·r12

(
δ(r12)

n(r1)
−c(r1, r2)

)
.

The direct correlation function c(r1, r2) is one of the cen-
tral quantities of DFT26,27 and is obtained as second
functional derivative of the excess free energy Fex with
respect to the average density profile, kBT c(r1, r2) =
δ2Fex[n(r)]
δn(r1)δn(r2) . Given an (approximate) expression for the

free energy, Jgg′ can thus be taken as known. It con-
stitutes the only input for the ensuing theory. As one
consequence, in Sect. IV below only the quadratic ex-
pression of the free energy functional will play a role and
will be sufficient to evaluate the thermodynamic deriva-
tives required for the elastic response.

1. Including coarse-grained density

It is now conceptually straightforward albeit somewhat
tedious to derive the correlation functions of the coarse-
grained fields in terms of expressions containing the di-
rect correlation function. Using Eq. (5), one gets

〈δρ∗g(q, t)δρg′(q, t)〉 = (12)

n∗gng′

(
gαg
′
β〈δu∗α(q, t)δuβ(q, t)〉+ 〈δn

∗(q, t)δn(q, t)

n2
0

〉

+ igα〈δu∗α(q, t)
δn(q, t)

n0
〉 − i〈δn

∗(q, t)

n0
δuβ(q, t)〉g′β

)
,

Inserting this into Eq. (10) and with the help of the two
summations (7) and Eqs. (8) and (9), one obtains the
following set of equations

V kBT =
〈δn∗δn〉
n2

0

ν∗(q)− 〈δn
∗

n0
δuβ〉µβ(q), (13a)

0β =
〈δn∗δn〉
n2

0

µ∗β(q)− 〈δn
∗

n0
δuδ〉λ∗δβ(q), (13b)

0α = 〈δu∗αδuβ〉µβ(q)− 〈δu∗α
δn

n0
〉ν∗(q), (13c)

V kBTδαγ = 〈δu∗αδuβ〉λ∗βγ(q)− 〈δu∗α
δn

n0
〉µ∗γ(q). (13d)

Here, generalized (viz. q-dependent) constants of elastic-
ity, ν(q), µα(q), and λαβ(q), appear. We will show that
they enter into the equilibrium correlation functions of
the coarse-grained fields and reduce to thermodynamic
derivatives in the long-wavelength limit2. Using Eq. (11),
the q-dependent constants of elasticity can be expressed
in terms of integrals containing the crystal direct corre-
lation function.

ν(q) =
kBT

V

∫
ddr1

∫
ddr2n(r1)n(r2)e−iq·r12

×
(
δ(r12)

n(r1)
− c(r1, r2)

)
(14a)

≈ ν +O(q2), (14b)

µα(q) =
kBT

V

∫
ddr1

∫
ddr2c(r1, r2)

(
1− e−iq·r12

)

× n(r1)∇αn(r2) (14c)

≈ iµαβqβ +O(q2), (14d)

λαβ(q) =
kBT

V

∫
ddr1

∫
ddr2c(r1, r2)

(
1− e−iq·r12

)

×
(
∇αn(r1)

)(
∇βn(r2)

)
(14e)

≈ λαβγδqγqδ +O(q3). (14f)

The small wavevector limit and the index-symmetries
µαβ = µβα and λαβγδ = λβαγδ = λαβδγ = λγδαβ are
discussed in detail in Ref. [2]. Note that ν(q) is real
in general, while λαβ(q) is real only in crystals with in-
version symmetry. The explicit integrals are given in
Eqs. (27), (30) and (32) below, where also crucial steps
in their derivation are recalled. The connection of the
elastic coefficients to thermodynamic derivatives will be
established in Eqs. (39) and (43).

The obtained set of equations (13) is best presented in
matrix notation

VkBTδij = (15)
(

〈δn∗δn〉
n2
0

−〈 δn∗n0
δuβ〉

−〈δu∗α δnn0
〉 〈δu∗αδuβ〉

)

ik

(
ν(q) µ∗γ(q)
µβ(q) λ∗βγ(q)

)

kj

,

with Latin indices i = 0, α. The matrix of correlation
functions of the macroscopic variables is thus given by
the inverse of the matrix of the generalized constants of
elasticity
(
〈 δn∗δn

n2
0
〉 −〈 δn∗n0

δuβ〉
−〈δu∗α δnn0

〉 〈δu∗αδuβ〉

)
=V kBT

(
ν(q) µ∗β(q)

µα(q) λ∗αβ(q)

)−1

.

(16)
The single matrix elements corresponding to the
wavevector-dependent correlation functions are30

〈δn
∗δn

n2
0

〉 =V kBT

(
1

ν
+
µ∗α
ν

[
λ∗αβ −

µαµ
∗
β

ν

]−1µβ
ν

)
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= V kBT
(
ν − µ∗α(λ−1

αβ)∗µβ

)−1

= V kBTK
−1,

(17a)

〈δu∗αδuβ〉 = V kBT
(
λ∗αβ − µαν−1µ∗β

)−1
= V kBTH

−1
αβ

= V kBT
(

(λ−1
αβ)∗+(λ−1

αγ )∗µγK
−1µ∗δ(λ

−1
δβ )∗

)
,

(17b)

−〈δn
∗

n0
δuβ〉 = V kBT

(
−ν−1µ∗αH

−1
αβ

)

= V kBT
(
−K−1µ∗α(λ−1

αβ)∗
)
, (17c)

−〈δu∗α
δn

n0
〉 = V kBT

(
−H−1

αβ µβν
−1
)

= V kBT
(
−(λ−1

αβ)∗µβK
−1
)
. (17d)

The second line of each expression is a non-trivial alter-
native, which is here given for completeness; it is based
on the algebraic Woodbury identity.

We thus reached our first goal of expressing the cor-
relation functions of the coarse-grained variables, hydro-
dynamic density and displacement vector field, in terms
of integrals containing the functional derivative of the
free energy with respect to density, viz. the direct cor-
relation function. Let us note in passing that transla-
tional symmetry2 yields the expected q-divergences or
q-dependences of the correlation functions in the limit
q → 0. In particular, 〈δu∗αδuβ〉 ∝ 1/q2 follows from

λαβ(q) ∝ q2 and µα(q) ∝ q in this limit.

2. Including defect density

Although the relation between the constants of elas-
ticity and the fluctuations of the coarse-grained fields is
complete, it is worthwhile to consider a second set of vari-
ables. So far the displacement field uα appeared in two
different ways. It contributes to the coarse-grained den-
sity, but it also appears as broken symmetry variable. In
this section we introduce the point defect density c in lieu
of the coarse-grained density, and keep the displacement
field.

The correlation functions of the coarse-grained den-
sity and displacement field are easily transformed into
correlations between the fluctuations of the point defect
density and the displacement field using the definition
Eq. (6). The set of variables {δc(q), δuα(q)} may be
more appropriate to describe an experiment when few
defects are present and δc(q, t) can be measured easily.
It allows one to take the limit of vanishing defect den-
sity and thus it is a natural set of variables to be used
when defects are neglected. Thus, it correctly captures
the ideal crystal limit. Eq. (15) is transformed into

V kBTδij =

(
〈δc∗δc〉
n2
0

〈 δc∗n0
δuα〉

〈δu∗σ δcn0
〉 〈δu∗σδuα〉

)

ik

(
ν(q) n0Vδ(q)

n0V
∗
α (q) Λ∗αδ(q)

)

kj

.

(18)

The combination of the constants of elasticity appearing
here is directly connected to the hydrodynamic equation
of the momentum density expressed in terms of point
defect density and displacement field as hydrodynamic
variables2. There, the time derivative of the momentum
density couples to the displacement field via the negative
of

Λαβ(q) = λαβ(q)− iqαµβ(q) + iµ∗α(q)qβ + qαν(q)qβ .
(19)

The coupling to the point defect density is given by the
negative of

Vα(q) =
1

n0

(
µ∗α(q)− iqαν(q)

)
. (20)

The individual matrix elements of the correlation func-
tions in terms of ν(q), Vα(q), and Λαβ(q), and the limit
q → 0, may be determined according to the steps in
the previous paragraphs. As the results can be obtained
from Eqs. (17) by straightforward replacements, identi-
fied from comparing Eqs. (15) and (18), they will not be
repeated here.

B. Inverse relations

Equations (17) predict the fluctuations of the macro-
scopic coarse-grained density and displacement field
based on the generalized constants of elasticity obtained
from the direct correlation function and thus the free
energy. Experimentally, the inverse relations are of in-
terest: expressing the generalized constants of elasticity
of the crystal in terms of measurable correlation func-
tions. Two different sets of correlation functions can
be obtained from experiments. Either displacement field
and coarse-grained density fluctuations can be recorded,
or displacement field and defect density. For reference,
we provide the inverse relations for both cases in this
section.

1. Including coarse-grained density

The matrix equation (15) can be inverted in order to
find the elastic functions ν(q), µα(q), and λαβ(q) in
terms of measurable fluctuation functions. The inverse
relations read:
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ν(q)

V kBT
= 〈δn

∗δn

n2
0

〉−1 + 〈δn
∗δn

n2
0

〉−1〈δn
∗

n0
δuα〉

[
〈δu∗αδuβ〉 − 〈δu∗α

δn

n0
〉〈δn

∗δn

n2
0

〉−1〈δn
∗

n0
δuβ〉

]−1

〈δu∗β
δn

n0
〉〈δn

∗δn

n2
0

〉−1

=
(
〈δn
∗δn

n2
0

〉 − 〈δn
∗

n0
δuα〉〈δu∗αδuβ〉−1〈δu∗β

δn

n0
〉
)−1

= R−1, (21a)

λ∗αβ(q)

V kBT
=
(
〈δu∗αδuβ〉 − 〈δu∗α

δn

n0
〉〈δn

∗δn

n2
0

〉−1〈δn
∗

n0
δuβ〉

)−1

= S−1
αβ

= 〈δu∗αδuβ〉−1 + 〈δu∗αδuγ〉−1〈δu∗γ
δn

n0
〉R−1〈δn

∗

n0
δuδ〉〈δu∗δδuβ〉−1, (21b)

µα(q)

V kBT
= S−1

αβ 〈δu∗β
δn

n0
〉〈δn

∗δn

n2
0

〉−1

= 〈δu∗αδuβ〉−1〈δu∗β
δn

n0
〉R−1. (21c)

We thus reached our second goal to derive relations which
determine the generalized elasticity constants λαβ(q),
µα(q), and ν(q) from measurements of correlation func-
tions.

2. Including defect density

Replacing the total density with the defect density us-
ing Eq. (6), the generalized constants of elasticity can
be connected to fluctuation functions which can be mea-
sured at constant (possibly vanishing) defect density.
The comparison of the matrices in Eqs. (15) and (18)
indicates that only straightforward replacements are re-
quired in Eqs. (21), so that the explicit results need
not be given here. The dynamical matrix Λαβ(q) de-
termines the wave equation of the momentum density,
and its eigenvalues give the (acoustic) phonon dispersion
relations. The analogue of Eq. (21b) shows that for its
determination, displacement and defect density fluctua-
tions need to be measured in general.

IV. FREE ENERGY AND THERMODYNAMIC
RELATIONS

In order to obtain the thermodynamics derivatives, a
consideration of the free energy appears useful in cases
where the connection to the small wavevector limit of
the correlation functions is not established or under
debate9–11. In this section, we will coarse-grain the free
energy functional of density functional theory in order to
derive the thermodynamic derivatives. This purely equi-
librium statistical mechanics approach supplements the
dynamical one based on projection operator formalism
in Ref. [2]. Importantly, the wavevector dependent cor-
relation functions of the coarse-grained fields of elasticity
theory and the thermodynamic elastic free energy of real
(viz. defect containing) crystals are then obtained from
a single microscopic starting point.

A. Coarse-grained free energy functional with
elastic fields

The second order change in free energy ∆F due to a
deviation δρ(r) in the average density distribution from
the periodic crystalline equilibrium density n(r) is25,27,31

∆F=
kBT

2

∫ ∫
ddr1d

dr2

(δ(r12)

n(r1)
−c(r1, r2)

)
δρ(r1)δρ(r2),

(22)

where c(r1, r2) is the direct correlation function of a peri-
odic crystal. Note that this quadratic functional contains
the direct correlation function as single input and thus
the identical information as used in the correlation func-
tions approach of the previous Sect. II.

1. Including coarse-grained density

We start from the representation of the microscopic
density fluctuation in terms of displacement field and
coarse-grained density, Eq. (5). We assume that an anal-
ogous equation holds also for the averaged (macroscopic)
densities. In this way we get a change of the average den-
sity due to non-vanishing displacement field and average
coarse-grained density,

δρ(r) = −δu(r) · ∇n(r) + n(r)
δn(r)

n0
, (23)

We shall emphasize that while δρ(r) varies on the spatial
scale of the crystalline lattice, the coarse-grained density
varies far more smoothly and contains wavevector con-
tributions only from the first Brillouin zone:

δn(r) =

∫

1st BZ

ddq

(2π)d
eiq·r δn(q) .

Using Eq. (23) we obtain the following expression for
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the product of density changes

δρ(r1)δρ(r2) =δuα(r1)δuβ(r2)∇αn(r1)∇βn(r2)︸ ︷︷ ︸
(1.)

+
n(r1)n(r2)δn(r1)δn(r2)

n2
0︸ ︷︷ ︸

(2.)

−δuα(r1)∇αn(r1)
n(r2)δn(r2)

n0︸ ︷︷ ︸
(3.)

−n(r1)δn(r1)

n0
δuα(r2)∇αn(r2)

︸ ︷︷ ︸
(4.)

. (24)

In the following, we substitute the four parts of Eq. (24)
into Eq. (22). We denote the resulting expressions ∆F(i.),
where i = 1, ..., 4. We then re-write these expressions
using the LMB32W33 equation

∇αn(r)

n(r)
=

∫
ddr′c(r, r′)∇αn(r′). (25)

Our subsequent calculation is analogous to that of
Masters34 and is equivalent to the discussion of the sur-
face tension in [35]. We will in detail describe the calcu-
lation originating from the first part of Eq. (24), which
leads to the elastic tensor λ, and then summarize calcu-
lations originating from the other parts.

In the expression for ∆F(1.) one expands δuβ(r2)
around r1, which is valid for a short range (in r12) di-
rect correlation function. The zero order term vanishes,
because of (25) and the first order term does not con-
tribute due to the symmetry c(r1, r2) = c(r2, r1). Since
the hydrodynamic variable δu(r) is slowly varying, one
obtains an expression which is quadratic in ∇δu(r) as
leading contribution

∆F(1.) =
kBT

2

∫ ∫
ddr1d

dr2

(δ(r12)

n(r1)
− c(r1, r2)

)
δuα(r1)δuβ(r2)∇αn(r1)∇βn(r2) (26)

=
kBT

2

∫∫
ddr1d

dr2∇αn(r1)c(r1, r2)∇βn(r2)δuα(r1)

×
(
δuβ(r1)−δuβ(r1)+∇γδuβ(r1)r12,γ︸ ︷︷ ︸

=0 symmetry

−1

2
∇γ∇δδuβ(r1)r12,γr12,δ

)

=
−1

2

∫∫
ddr1d

dr2

[
kBT

2
∇αn(r1)c(r1, r2)∇βn(r2)r12,γr12,δ

]
δuα(r1)∇γ∇δδuβ(r1)

=
1

2

∫
ddrλαβγδ∇γδuα(r)∇δδuβ(r),

λαβγδ =
kBT

2V

∫ ∫
ddr1d

dr2∇αn(r1)c(r1, r2)∇βn(r2)r12,γr12,δ . (27)

In the last line of Eq. (26) the separation of spatial scales
was used in order to replace the slowly varying local elas-
tic coefficient given by the contents of the square bracket
on the third line of Eq. (26) by the macroscopic con-
stant of elasticity λαβγδ. The same reasoning and using
LMBW (25) gave for the first order term that it vanishes:

0 =

∫∫
ddr1d

dr2∇αn(r1)c(r1, r2)∇βn(r2)r12,γ =

∫
ddr1∇αn(r1)

∇βn(r1)

n(r1)
r1γ −

∫
ddr2∇βn(r2)

∇αn(r2)

n(r2)
r2γ

We emphasize that the expression (27) agrees with the
one obtained in the framework of hydrodynamic equa-
tions of motion2, which was reproduced in Eq. (14f).

For the second term of the free energy, δn(r2) is ex-
panded around r1 and, as hydrodynamic variable, as-

sumed to be slowly varying

∆F(2.) =
kBT

2

∫ ∫
ddr1d

dr2
δn(r1)δn(r2)

n2
0

× [n(r1)δ(r12)−n(r1)c(r1, r2)n(r2)],
(28)

=
1

2

∫
ddr ν

(δn(r)

n0

)2

. (29)

With

ν =
kBT

V

∫∫
ddr1d

dr2

(
n(r1)δ(r12)−n(r1)c(r1, r2)n(r2)

)
.

(30)

The third and fourth part yield with the same arguments

∆F(3.+4.) = −
∫
ddr µαβ

δn(r)

n0
∇βδuα(r), (31)



8

µαβ=
kBT

V

∫
ddr1

∫
ddr2n(r1)∇αn(r2)r12,βc(r1, r2)

(32)

Summarizing, we obtain the following expression for
the free energy change

∆F =
1

2

∫
ddr ν

(δn(r)

n0

)2

+ Cnαβγδuαβ(r)uγδ(r)

−
∫
ddrµαβ

δn(r)

n0
uαβ(r) (33)

Expression (33) involves the symmetrized linear strain
tensor uαβ(r) = 1

2 (∇αδuβ(r)+∇βδuα(r)) and the Voigt-
symmetric elastic constants Cnαβγδ = λαγβδ + λβγαδ −
λαβγδ. Both combinations reflect the rotational sym-
metry as only symmetric combinations of strain enter
into the elastic energy and the tensor of elastic con-
stants obeys a number of symmetry relations. Their
proof2 is based upon the rotational analog of the LMBW
equation35

r1×∇(1) lnn(r1) =

∫
ddr2c(r1, r2)

(
r2×∇(2)n(r2)

)
.

(34)

We thus arrived at our third goal, to derive the general
elastic free energy functional of real crystals containing
the coarse-grained macroscopic fields. Let us add that
the above expression for the free energy also determines
the constant C0 = 0 in Eqs. (89), (90), and (92) of
Ref. [2], which could not be determined from the hydro-
dynamic equations considered there.

2. Including defect density

The free energy in terms of the defect density δc(r)
and the displacement field δu(r) is obtained from Fourier
transforming ansatz (5) and Eq. (6) into real space:

δρ(r, t) = −∇ · [n(r)δu(r, t)]− n(r)

n0
δc(r, t) . (35)

Following the steps of the previous section one arrives at
the coarse-grained free energy including the defect den-
sity:

∆F =
1

2

∫
ddrν

(δc(r)

n0

)2

+ 2
(
νδαβ + µαβ

)δc(r)

n0
uαβ(r)

+
(
Cnαβγδ+νδαβδγδ+µαβδγδ+δαβµγδ

)
uαβ(r)uγδ(r).

(36)

This gives the relation between the elastic coefficients at
given defect density Cc in terms of the corresponding
coefficients at given total density, Cn, namely: Ccαβγδ =
Cnαβγδ+νδαβδγδ+µαβδγδ+δαβµγδ.

3. Gaussian probability distribution function

The harmonic free energy Eq. (33) can be written in
a more compact form with the help of the 4 × 4-matrix
of elastic coefficients introduced in Eq. (15). Fourier-
transformation leads to

∆F=
1

2

∫
ddq

(2π)d
(37)

(
δn∗(q)
n0

, δu∗α(q)
)( ν −iµγδqδ

iµαβqβ Cnαβγδqβqδ

)(
δn(q)
n0

δuγ(q)

)

This free energy functional is a superposition of inde-
pendent terms each containing the square of the Fourier
transformed coarse-grained fields at one specific wavevec-
tor. Often one connects such quadratic free energy
functionals with a probability distribution for fluctua-
tions of the coarse-grained fields1; P [δn(q), δu(q)] ∝
exp {−∆F/kBT}. In the present case, this would yield
the wavevector-dependent correlation functions (15) as
statement of the equipartition theorem resulting from
this Gaussian approximation.

B. The thermodynamic elastic free energy

The thermodynamic free energy corresponds to homo-
geneous fluctuations, viz. the coarse-grained fields eval-
uated at q = 0. It can handily be obtained from the
explicit free energy functional in Eq. (33). The result
shall be given using the Voigt notation36 (in three dimen-
sions), because this form appears convenient for explicit
model calculations later on. Quantities in Voigt notation
carry lower Latin indices 1 ≤ i ≤ 6, where ui denotes
the independent elements of the symmetric strain ten-
sors uαβ . For 1 ≤ i ≤ 3 the relation ui = uα,β holds
with (α, β) = {(1, 1); (2, 2); (3, 3)}, while for 4 ≤ i ≤ 6,
ui = 2uα,β holds with (α, β) = {(2, 3); (1, 3); (1, 2)}. For
spatially constant fluctuations (to be indicated by sub-
script q = 0 where otherwise unclear), one obtains in
obvious notation as a quadratic form:

∆F =
V

2

(
δn
n0
, ui

)( ν −µj
−µi Cnij

)(
δn
n0

uj

)
(38)

The thermodynamic free energy is a quadratic form given
by a 7 × 7-matrix of elastic coefficients, where in Voigt
notation the elastic matrix is Cij = Cαβγδ for 1 ≤ i, j ≤ 6
with the index correspondences given above.

1. Connection to elastic coefficients and variances

Thermodynamic derivatives can now easily be evalu-
ated and lead to the parameters already introduced in
Eq. (14). They follow from the Gibbs fundamental form
of the free energy density f = F/V ≈ ∆F/V , where the
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quadratic expression (38) suffices in order to obtain the
second order derivatives of interest.

∂2f

∂n2

∣∣∣
uαβ

=
∂µ

∂n

∣∣∣
uαβ

= ν/n2
0, (39a)

∂2f

∂n∂uαβ
=

∂µ

∂uαβ

∣∣∣
n

=
∂hαβ
∂n

∣∣∣
uγδ

= −µαβ/n0, (39b)

∂2f

∂uαβ∂uγδ

∣∣∣
n

=
∂hαβ
∂uγδ

∣∣∣
n

= Cnαβγδ =λαγβδ+λβγαδ−λαβγδ.
(39c)

These relations identify the elastic parameters of our
approach as thermodynamic derivatives. They already
use the familiar intensive variables, chemical potential µ
and stress tensor hαβ in order to familiarize with later
relations1,5. These variables will be introduced and dis-
cussed in Sect. IV C below. Let us note that these cal-
culations supplement the derivation of the thermody-
namic relations in Ref. [2] (recalled in Eq. (14)), where
the equivalence of the hydrodynamic equations was used.
The thermodynamic free energy thus takes the form:

∆F =
V

2

(
δn
n0
, ui

)
(
n2

0
∂µ
∂n n0

∂µ
∂uj

n0
∂hi
∂n

∂hi
∂uj

)(
δn
n0

uj

)
(40)

Where, in Voigt notation the stresses correspond to hi =
hαβ for 1 ≤ i ≤ 6.

This compact expression is a convenient starting point
for evaluating the thermodynamic covariances and sus-
ceptibilities which enter elasticity theory. The isothermal
compressibility and the defect density susceptibility will
be obtained in the next Sect. IV C. In order to prepare
for this, first the second moments of the fluctuations of
the thermodynamic variables shall be obtained. These
are connected to the thermodynamic derivatives using
the thermodynamic formalism. Because the inverse of
the Jacobian matrix is equal to the Jacobian matrix of
the inverse function one obtains from Eq. (39)

(
ν −µj
−µi Cnij

)−1

=

(
n2

0
∂µ
∂n n0

∂µ
∂uj

n0
∂hi
∂n

∂hi
∂uj

)−1

(41)

=

(
1
n2
0

∂n
∂µ

1
n0

∂uj
∂µ

1
n0

∂n
∂hi

∂uj
∂hi

)

=
1

V kBT

(
〈δnδn〉
n2
0
〈 δnn0

uj〉
〈ui δnn0

〉 〈uiuj〉

)∣∣∣
q=0

In the last step the fluctuation-dissipation-theorem is
used23. The variance of the total coarse-grained den-
sity variation is thus obtained from a simple matrix
inversion30:

〈δnδn
n2

0

〉
∣∣∣
q=0

= V kBT
(1

ν
+
µi
ν

[
Cnij −

µiµj
ν

]−1µj
ν

)
(42)

= V kBT
(
ν − µi(Cnij)−1µj

)−1

= V kBT
(
ν−µαβ

[
Cnαβγδ

]−1

µγδ

)−1

,

where the second line follows from a Woodbury identity,
and the usual notation is used instead of the Voigt one
in the last line; see the textbook by Wallace40 and the
Appendix A for the proper interpretation of the inverse
fourth-rank tensor.

We thus derived the second moment of the particle
number fluctuations from DFT. We started from the
same free energy functional as was used in the deriva-
tion of the wavevector-dependent correlation functions
summarized in Eq. (17). Thus, in Sect. V, both results
can be compared in the long-wavelength limit.

2. Including defect density

In a similar manner an expression for the defect den-
sity fluctuation can be obtained. Starting from the free
energy functional in Eq. (36) and considering homoge-
neous variations (viz. at q = 0), one recognizes that the
relevant thermodynamic derivatives are now given by

∂2f

∂c2

∣∣∣
uαβ

= −∂µ
∂c

∣∣∣
uαβ

= ν/n2
0, (43a)

∂2f

∂c∂uαβ
= − ∂µ

∂uαβ

∣∣∣
c

=
∂σαβ
∂c

∣∣∣
uαβ

= (νδαβ + µαβ) /n0 = µcαβ/n0, (43b)

∂2f

∂uαβ∂uγδ

∣∣∣
c
=Ccαβγδ=Cnαβγδ+µαβδγδ+δαβµγδ+νδαβδγδ,

(43c)

where the stress tensor σαβ was introduced, which will
be discussed in in Sect. IV C below. Also the abbrevi-
ation µcαβ was introduced. Thus, using the fluctuation
dissipation theorem again, the matrix of total thermody-
namic variations is given by

(
〈δcδc〉
n2
0
〈 δcn0

uj〉
〈ui δcn0

〉 〈uiuj〉

)∣∣∣
q=0

= V kBT

(
−1
n2
0

∂c
∂µ − 1

n0

∂uj
∂µ

1
n0

∂c
∂σi

∂uj
∂σi

)

= V kBT

(
ν µcj
µci Ccij

)−1

(44)

Ccij and µci are the tensors from Eq. (43c) and Eq. (43b)
in Voigt notation. This leads to the correlation of the
defect density fluctuations

〈 δcδc

V kBTn2
0

〉
∣∣∣
q=0

=
(1

ν
+
µci
ν

[
Cnij −

µiµj
ν

]−1µcj
ν

)

=
(
ν − µci (Ccij)−1µcj

)−1

(45)

=
(
ν − µcαβ(Ccαβγδ)

−1µcγδ

)−1

.

As in Eq. (42), the second line followed from a Woodbury
identity, and the usual notation is used instead of the
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Voigt one in the last line. This covariance of the number
of point defects, will be connected to a compressibility-
like expression κc below.

C. The isothermal compressibility of crystals

In this section the general expression for the compress-
ibility of an single-component crystal of arbitrary space
group symmetry and containing an arbitrarily high den-
sity of local defects is derived from a thermodynamic con-
sideration, details are given in Appendix A. The situa-
tion described is one in which no pre-stress is applied to
the crystal in equilibrium.

The definition of the isothermal compressibility of a
fluid reads

κ = − 1

V

∂V

∂p

∣∣∣
N
, (46)

where p is the pressure. For a crystal, the question arises
how this has to be generalized to describe the additional
degrees of freedom. The infinitesimal change of the free
energy of a crystal at constant temperature (dT = 0)

dF = −pdV + µdN + hαβdUαβ , (47)

includes a term with a stress tensor hαβ at constant
volume V and particle number N times an extensive
strain tensor Uαβ = V uαβ . The contribution to the work
done is δW =

∫
hαβδuαβdV with the symmetrized linear

strain tensor uαβ = 1
2 (∇αuβ +∇βuα). The chemical po-

tential is denoted by µ, and the particle density will be
denoted n. While this ’first law of thermodynamics’ for a
crystal is familiar from textbooks1, the coupling of strain
and density fluctuations complicates the interpretation of
the stress tensor hαβ , which calls for a discussion before
addressing the compressibility. Taking a canonical N -
particle system and straining it infinitesimally37,38 leads
to the stress tensor tαβ = 1

V
∂F
∂uαβ

at fixed T and N . (It

can be also obtained from averaging the Irving-Kirkwood
microscopic stress tensor.) Because the volume V varies
in this procedure, the two stress tensors differ by a scalar
term:5,21 tαβ = hαβ − (p− hγδuγδ) δαβ . The compress-
ibility for a periodic crystal shall be understood as the
derivative at constant h-stress tensor, because it then
measures the change in particle density with chemical
potential,

κ = − 1

V

∂V

∂p

∣∣∣
N,hαβ

=
1

n2
0

∂n

∂µ

∣∣∣
hαβ

, (48)

where we used Maxwell and Gibbs-Duhem relations de-
scribed in Appendix A. They lead to the Gibbs funda-
mental form of the free energy density f = F/V which
was already anticipated in Eqs. (39), namely:

df = µdn+ hαβduαβ . (49)

Also, the calculations for determining κ have already
been done. Equations. (41) and (42) immediately give

the isothermal compressibility as variance of the total
density fluctuations:

κ =
1

V kBT
〈δnδn
n2

0

〉
∣∣∣
q=0

. (50)

1. Including density

While the result for κ in terms of the elastic coefficients
(viz. Eqs. (42) and (50)) is useful for explicit evaluations,
and will be used in Sect. VI below, a relation connecting
it to thermodynamic derivatives is desirable and would
take the form expected in the thermodynamic formalism.
Using the relations (39) in order to replace the elastic
coefficients in Eq. (42), we find

κ =
1

n2
0

(∂µ
∂n

∣∣∣
uαβ
− ∂hαβ

∂n

∣∣∣
uαβ

( ∂hγδ
∂uαβ

∣∣∣
n

)−1 ∂hγδ
∂n

∣∣∣
uαβ

)−1

.

(51)

This expression for the isothermal compressibility of a
general crystal generalizes results obtained for high sym-
metry crystals13,39. Hence, together with Eqs. (50) and
(42) and Sect. III A, we achieved our main goal to es-
tablish the general connection between the isothermal
compressibility of non-ideal crystals and the correlation
functions of the fields of elasticity theory. The connec-
tion is derived from microscopic DFT. See Appendix A
for an alternative formulation of Eq. (51) derived within
the thermodynamic formalism, and corresponding to the
first line of Eq. (42). (Eq. (51) corresponds to the second
line of Eq. (42).)

If the coupling between strain and density fluctuations
in the result for the isothermal compressibility in Eq. (50)
is neglected, the second term vanishes and the compress-

ibility κ is given by κ−1 = ν = n2
0
∂µ
∂n

∣∣∣
uαβ

, which plays

the role of the inverse bulk modulus at constant strain.
While in regular solids, the coupling between strain and

density in the free energy, µ = ∂2f
∂n∂u , cannot be neglected

and this approximation fails, see Sect. VI for a system
where it holds well. In order to dissect the contributions
to the compressibility in detail for more regular crystals,
transforming to defect density is required.

2. Including defect density

If one considers the set of independent variables with
the defect density c instead of the coarse-grained density
n with Eq. (6) simplifying to

dn = −n0duαα − dc , (52)

the manipulations leading from Eq. (50) to Eq. (51) have
to be adapted. The compressibility is given now in terms
of derivatives at constant defect density2. The stress ten-
sor σαβ (with σαβ = hαβ − n0µδαβ) and the chemical
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potential µ now are functions of the strain tensor and
the defect density combining to the Gibbs fundamental
form of the free energy density5,21 df = −µdc+σαβduαβ .
The relevant thermodynamic derivatives are given by
Eqs. (43) (see Eq. (36) for the free energy density), which
need to be used in order to replace the elastic coefficients
in Eq. (42). This leads to:

κ = −
(
n2

0

∂µ

∂c

∣∣∣
uαβ

)−1

+

(
δαβ −

(
n0
∂µ

∂c

∣∣∣
uαβ

)−1
∂µ

∂uαβ

∣∣∣
c

)

×
(
∂σγδ
∂uαβ

∣∣∣
c
− ∂σγδ

∂c

∣∣∣
uαβ

(
∂µ

∂c

∣∣∣
uαβ

)−1
∂µ

∂uαβ

∣∣∣
c

)−1

×
(
δγδ +

1

n0

∂σγδ
∂c

∣∣∣
uαβ

(
∂µ

∂c

∣∣∣
uαβ

)−1
)

= −
(
n2

0

∂µ

∂c

∣∣∣
uαβ

+

(
n2

0

∂µ

∂c

∣∣∣
uαβ

δαβ + n0
∂σαβ
∂c

∣∣∣
uαβ

)

×
[
∂σαβ
∂uγδ

∣∣∣
c
− n2

0

∂µ

∂c

∣∣∣
uαβ

δαβδγδ

−n0
∂σαβ
∂c

∣∣∣
uγδ

δγδ − n0
∂σγδ
∂c

∣∣∣
uγδ

δαβ

]−1

×
(
n2

0

∂µ

∂c

∣∣∣
uγδ

δγδ + n0
∂σγδ
∂c

∣∣∣
uαβ

))−1

. (53)

An interesting limit is now the vanishing of the cou-
pling between the defect density and the strain field,
∂2f

∂c∂uαβ
= 0; see Eq. (43b). This yields two indepen-

dent contributions to the compressibility which shall be
denoted κ0 in this approximation

κ0 = ν−1 + (Ccαβγδ)
−1δαβδγδ = ν−1 +

3∑

i,j=1

(Ccij)
−1.

(54)

The first contribution ν−1 is due to the fluctuations of the
defect density, whereas the second one (Ccαβγδ)

−1δαβδγδ
is due to independent fluctuations of the strain tensor,
which agrees with the known result for a perfect crystal
without external strain40.

3. Shape and defect density change

It is instructive to consider the various contributions
to the compressibility in more detail. For non-ideal crys-
tals, volume changes not only through variations in the
lattice constants. Also, the defect density can change,
e.g. the total number of lattice sites can reduce and new
interstitials occur. Reflecting this, Eq. (52) allows one
to decompose the compressibility into two parts, a strain
part and a defect part:

κ =
1

n2
0

∂n

∂µ

∣∣∣
hαβ

=
−1

n0

∂uαα
∂µ

∣∣∣
hαβ
− 1

n2
0

∂c

∂µ

∣∣∣
hαβ

(55)

The first term can be found in the Jacobian matrix of
Eq. (41). With the formulas of block matrix inversion
one obtains

1

n0

∂uαα
∂µ

∣∣∣
hαβ

= κ(Cnααγδ)
−1µγδ (56)

Note the difference between the strain part of the com-
pressibility and the second term of Eq. (54). The latter is
the compressibility with fixed defect density, which cap-
tures the lattice distortion in an ideal crystal. By con-
trast, the strain part of the compressibility in Eq. (56)
describes changes without this constraint.

For anisotropic crystals, a change in hydrostatic
pressure may cause a distortion of the shape (see
e.g. Ref. [41]), which means that the derivative of the
strain tensor uαβ with respect to the pressure need not
be diagonal. Using Eq. (A3), one finds:

∂uαβ
∂p

∣∣∣
hαβ

= κn0
∂uαβ
∂n

∣∣∣
hαβ

= −κn0(
∂hαβ
∂uγδ

∣∣∣
n
)−1 ∂hγδ

∂n

∣∣∣
uζη

= κ (Cnαβγδ)
−1µγδ (57)

This thermodynamic derivation provides a tensorial gen-
eralization of Eq. (56). It also shows:

∂uαβ
∂p

∣∣∣
hαβ

=
1

n0

∂uαβ
∂µ

∣∣∣
hαβ

(58)

Equation (57) completes the discussion of the first row
of the Jacobian matrix of Eq. (41). The symmetry of the

matrix leads to the Maxwell relation
∂uαβ
∂µ

∣∣∣
hαβ

= ∂n
∂hαβ

∣∣∣
µ
.

D. The isothermal defect density susceptibility

Varying the chemical potential changes not only the
average density but also the defect density. The deriva-
tive of the defect density with respect to µ can be ob-
tained analogously to Eq. (50), and a thermodynamic
susceptibility akin to the compressibility can be defined

κc =
−1

n2
0

∂c

∂µ

∣∣∣
σαβ

= 〈 δcδc

V kBTn2
0

〉
∣∣∣
q=0

(59)

The explicit result for κc in terms of the elastic coeffi-
cients is given in Eq. (45) and in terms of the derivatives
from Eq. (43) is given here:

κc =
1

n2
0

(
− ∂µ
∂c

∣∣∣
uαβ
− ∂σαβ

∂c

∣∣∣
uαβ

( ∂σγδ
∂uαβ

∣∣∣
c

)−1 ∂σγδ
∂c

∣∣∣
uαβ

)−1

(60)

Connecting the isothermal defect density susceptibility
to derivatives of the density appears useful in order to
obtain it e.g. from computer simulations. Starting from
the definition of κc in Eq. (59), the Eq. (52) leads to

−1

n2
0

∂c

∂µ

∣∣∣
σαβ

=
−1

n2
0

∂c

∂n

∂n

∂µ

∣∣∣
σαβ

+
−1

n2
0

∂c

∂uαβ

∂uαβ
∂µ

∣∣∣
σαβ
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=
1

n2
0

∂n

∂µ

∣∣∣
σαβ

+
1

n0

∂uαα
∂µ

∣∣∣
σαβ

(61)

The first term on the right hand side is a thermody-
namic susceptibility at constant σ-stress tensor, which
bears similarity to the isothermal compressibility:

κσ =
1

n2
0

∂n

∂µ

∣∣∣
σαβ

(62)

Yet, Appendix B will show that this specific susceptibility
vanishes in the limit of an ideal crystal, and thus does not
play the role of a compressibility in solids. The second
term can be reformulated using Eq. (44), and the result
can be rearranged to give:

κσ = κc
(

1− ∂σγδ
∂c

∣∣∣
uαβ

(∂σαα
∂uγδ

∣∣∣
c

)−1)
(63)

= κc(1− µcγδ(Ccγδαα)−1) = κc(1−
3∑

j=1

µci (C
c
ij)
−1),

where in the last equality the thermodynamic derivatives
from Eq. (43) were used, and the result transferred in
Voigt notation. The difference between κc and κσ, which
both are derivatives at constant σ-stress tensor, vanishes
in cases where strain and defect density fluctuations do
not couple (viz. µc = 0). In the general case, density and
(the negative of the) defect density vary differently with
chemical potential at fixed σ.

V. SMALL WAVEVECTOR LIMIT OF THE
STRUCTURAL FUNCTIONS

So far we considered correlation functions and the
isothermal compressibility of crystals. In this section we
bridge the gap between the density correlation function
and the compressibility, and point out the subtle differ-
ence between the two expressions. In the second part of
this chapter the so called generalized structure factor is
discussed.

In order to understand the connection to the compress-
ibility, the q-dependence in the limit q → 0 of the corre-
lation function of the coarse-grained density (17a) needs
to be discussed in detail

〈 δn∗δn

V kBTn2
0

〉 = ν−1(q) + ν−1(q)µ∗α(q)

×
(
λαγ(q)− µα(q)ν−1(q)µ∗γ(q)

)−1

µγ(q)ν−1(q)

q→0
=

1

ν
+
µαβqβ
ν

[
(λαγεφ −

µαεµγφ
ν

)qεqφ

]−1 µγδqδ
ν

.

(64)

Here we used the known small-wave vector expansions of
the elastic coefficients, which were defined in Eqs. (14).
They follow from DFT relations expressing translational
and rotational symmetry2. Noting that only the sym-
metrized combinations in α ↔ γ and ε ↔ φ of the term

in square brackets are relevant, and with the help of
Eqs. (39) this expression can be further simplified to

〈 δn∗δn

V kBTn2
0

〉 q→0
= (65)

1

ν
+
µαβqβ
ν

[
(Cnαεγφ−

µαεµγφ
ν

)qεqφ

]−1µγδqδ
ν

.

This expression would agree with the thermodynamic
one (50), if the factors of qβqδ canceled qεqφ. That the
limit q → 0 is not that simple can be seen even for highly
symmetric crystals. For a cubic crystal, the correlation
function yields different results in the small q limit (65)
depending on the direction of q relative to the unit cell.
And for the hypothetical model of an isotropic crystal,
the small q limit (65) is direction independent, but dif-
fers from the thermodynamic value from (50). The latter
simplified case, allows to identify the origin of the discrep-
ancy and will be studied in detail in the next section.

A. Perfect crystal embedded in a matrix

To study the difference in more detail, it is, as a first
simplification, more convenient to look at the simpler
problem of a perfect crystal. In this section we also use
the more familiar expressions of elasticity theory. The
connection to the terms used so far is given in Appendix
B. For a perfect crystal the correlations of the displace-
ment field is given by the (inverse) of the dynamical ma-
trix Dαβ(q) (for particles with mass m)

〈δu∗αδuβ〉 =
V kBT

mn0
D−1
αβ (q). (66)

The coarse-grained density fluctuation for a perfect
crystal is δn(q, t) = −in0qαδuα(q, t) and the dynam-
ical matrix is related with the elastic constants1 via
Dαγ(q)Cαβγδqβqδ/(mn0). Thus for the coarse-grained
density correlation function we get

〈 δn∗δn

V kBTn2
0

〉 =
1

mn0
qαD

−1
αβ (q)qβ

q→0
= qα(Cαεβφqεqφ)−1qβ

(67)

which shows the same problem in the limit q → 0 as
arises in Eq. (65), when compared to the thermodynamic
compressibility of an ideal crystal40 κic = (C−1

αβγδ)δαβδγδ
(contraction of the inverse of the matrix of elastic con-
stants). For an isotropic crystal the elastic tensor sim-
plifies to the two Lamé coefficients Cαβγδ = λδαβδγδ +
µ(δαγδβδ + δαδδβγ); see Appendix C (Note, that for no-
tational simplicity the superscript ‘c’ is dropped in this
subsection, and that the symbol µ stands for the second
Lamé in the present discussion of isotropic solids only.).
Thus, the compressibility is (κic)−1 = λ + 2

3µ, whereas
the correlation function yields λ+2µ (which corresponds
to the longitudinal speed of sound).
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To show the origin of this difference we consider an
isotropic (ideal) solid for which the so called fundamen-
tal solution of elasticity is known. Other symmetries with
known solutions are hexagonal42 and pentagonal43. The
corresponding problem in two dimensions can be found
in [44]. We consider a three dimensional sphere with
volume VB embedded in a spherical matrix V of the
same isotropic material. The radius RB of the embedded
sphere is increased RB → RB + ∆r and the surrounding
matrix is compressed. To determine the displacement
field and the elastic energy of such a deformation one
has to solve the equation of elastostatic theory, which is
the vanishing of the divergence of the stress tensor, or in
terms of displacement field

∇βCαβγδ∇γuδ = 0. (68)

The solution is a sphere with increased volume VB+∆VB .
The only non-vanishing displacement field is (homoge-
neous dilatation)

δur =

{
∆r r

RB
r < RB

∆r
(
RB
r

)2
r > RB

(69)

This yields for the total elastic energy

E =
VB
2

(∆VB
VB

)2[
(λ+

2

3
µ) +

4

3
µ
(

1− VB
V

)]
. (70)

The first part is due to the stretched sphere and the sec-
ond contribution is from the surrounding matrix. Thus,
depending on the ratio VB

V the relevant combination of

elastic constants changes from λ + 2
3µ for (VBV → 1) to

λ + 2µ for (VBV → 0). In the limit of vanishing shear
modulus µ the difference vanishes. Thus, for a fluid it
doesn’t matter if one determines the volume fluctuations
of a small sphere in surrounding fluid (of the same kind)
or if one looks at the global fluctuations of the whole
system.

It is worthwhile to note that the same ratio between
these two combinations of Lamé coefficients appears in
a related context. In Eshelby’s study45 of an inclusion
in a matrix of elastic material, the so called constrained
strain uCαβ is given by the stress-free strain uTαβ

uCαα =
λ+ 2

3µ

λ+ 2µ
uTαα. (71)

This calculation has recently been extended to atomistic
inclusions46, which could be used to test approximations
in the present DFT approach. An analogous problem is
a polar fluid in a dielectric medium25,47,48. There, the
susceptibilities show a directional dependence due to the
dipolar interaction, and a different combination of dielec-
tric constants is relevant depending on the surrounding
medium.

B. Generalized Structure Factor

The relations between the compressibility and the cor-
relations of the density fluctuations in a crystal are dif-
ferent from that in a fluid. A difference can be seen in
the elements of the generalized structure factor which
contribute to the compressibility.

We recall that the generalized structure factor is de-
fined by29

Sg(k) =
1

V

∫
ddr1

∫
ddr2 〈δρ(r1)δρ(r2)〉 e−ig·R e−ik·∆r

=
1

V
〈δρ(g/2 + k)δρ(g/2− k)〉 , (72)

(with R = (r1 + r2)/2 and ∆r = r1 − r2) and its S0(k)
element is measured in a scattering experiment1,36 at
wavevector k.

In a liquid, where translational invariance dictates
that only S0(k) is non-vanishing and isotropic, its
connection25,26 to the compressibility is well known
S0(k → 0) → n2

0kBTκ. To convince oneself that such
a connection does not hold in a crystal, the definition of
the coarse-grained density Eq. (8) can be used to derive
〈
δn∗δn

n2
0

〉
=

1

N 2
0

∑

g,g′

ng′〈δρ∗(g′ + q)δρ(g + q)〉n∗g

=
(2π)d

N 2
0

∑

g,g′

ng′

∑

g̃

Sg̃(
g̃

2
− g− q)δ(g − g′ − g̃)n∗g

=
(2π)d

N 2
0

∑

g,g′

ng′Sg−g′

(
−g + g′

2
− q

)
n∗g,

(73)

where the left hand side becomes κ for q to
zero in the fluid case. Clearly, every element of
〈δρ∗(g′ + q)δρ(g + q)〉 is involved, not just the one with
vanishing reciprocal lattice vector g = g′ = 0. Also
the correlation of coarse-grained density fluctuations is
given by a combination of generalized structure factors
Sg−g′(−(g + g′)/2 − q) in the limit q → 0 and not just
by Sĝ=0(q → 0) as for a fluid. Although the possibility
that the right-hand side of the last equation is indeed
the compressibility cannot be ruled out, it seems rather
unlikely.

VI. AN EXAMPLE: CLUSTER CRYSTALS

To test the theory presented in the preceding sections,
single component crystals of Bravais symmetry formed
by spherical particles provide the closest cases. Large
densities of local defects are desirable since the strength
of the theory is its ability to account for the coupling
of strain and defects densities. Additionally, a good ap-
proximate DFT functional should be available. Recently,
cluster crystals made from soft particles were discovered
which satisfy these criteria and are thus ideally suited for
testing the theory.
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A. Model and approximate density functional
theory

We consider a system of spherically symmetric par-
ticles interacting via a purely repulsive, bounded pair
potential. Following earlier studies16,17, we use a gener-
alized exponential model of exponent four (GEM-4),

Φ(r) = ε e−( rσ )4 . (74)

The GEM-4-system shows several interesting properties.
The finite upper bound of the potential allows cluster
formation, i.e. the occupation of one lattice site by sev-
eral particles. The GEM-4-system crystallizes in the fcc
and bcc phases, and at low temperatures it undergoes
isostructural phase transitions between fcc phases with
integer occupation numbers per lattice site. At higher
temperatures hopping of the particles between the lat-
tice sites is possible and leads to a continuous, average
occupation number. For the average density distribution
of the cluster crystal the following ansatz is chosen17

ρ(r) = nc

(α
π

) 3
2
∑

R

e−α(r−R)2 (75)

with the occupation number nc, the inverse width of the
(Gaussian) density distribution around a single lattice
site α and the lattice vectors R. With this ansatz and
an appropriate free energy functional one can get the pa-
rameters nc, and α for given temperatures, and average
densities through minimization of the functional. Then,
the equilibrium state can be found by a direct compari-
son of the free energies of each phase. For the description
of the phase-diagram of the GEM-4, Mladek and cowork-
ers found that a liquid-like mean-field approximation is
appropriate18 which leads to the simple expression for
the direct correlation function c(r1, r2)

c(r1, r2) ≡ c(r) = −βΦ(r) ,with r = |r2 − r1|. (76)

This results in the following free energy functional

F [ρ] = Fid[ρ] + Fex[ρ], (77)

Fid[ρ] =
1

β

∫
d3r[ρ(r) ln[ρ(r)Λ3]− ρ(r)],

Fex[ρ] =
1

2

∫
d3r1ρ(r1)

∫
d3r2Φ(r1, r2)ρ(r2).

Here Λ denotes the thermal de Broglie wavelength. By
subtracting the free energy of the fluid from the crystal
one, the parameter Λ can be eliminated without changing
the position of the minimum of the crystal free energy
functional. Similarly, dividing by the average density n0

does not change the free energy functional minimum, but
leads to a convenient expression

f̃

(
nc
n0σ3

, ασ2,
kBT

n0σ3ε

)
=

∆f

n0σ3

=
kBT

n0σ3ε

(
ln

nc
n0σ3

+
3

2
ln {ασ

2

eπ
}
)

+
1

2

∑

g 6=0

e−
g2

2αΦg,

(78)

with the Fourier transformed potential Φg. As we alluded
to earlier, the free energy functional (78) is to be mini-
mized with respect to nc and α. The resulting, normal-
ized free energy only depends on the single (dimension-
less) thermodynamic parameter kBT

n0σ3ε . Thus, the fluid-
bcc and the fcc-bcc phase transitions lie on straight lines
drawn from the origin of the T − n0 phase diagram. It
should be noted that the free energy functional (78) is
minimized by the ratio nc

n0σ3 instead of nc itself. Numer-

ical minimization shows that nc
n0σ3 varies only by about

±3% in the whole solid phase, i.e. the system changes its
density mainly due to changes in the occupation number
and not due to changes in the lattice constant.18

B. Compressibility and occupation number
covariance
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FIG. 1: Compressibilities of the GEM-4 system in units of
[n2

0εσ
3]−1 versus the reduced thermodynamic variable kBT

εn0σ3 .

While κ is taken at fixed stress hαβ , κc is taken at fixed stress
σαβ , and κ0 is the approximation neglecting the strain-density
coupling introduced in Eq. (54). The approximation κ ≈ 1/ν
to neglect the strain-defect density coupling holds within the
line thickness; see Fig.4.

After minimizing the free energy and obtaining the av-
erage density profile, the elastic coefficients from Eq. 14,
which are relevant for the compressibilities, can be cal-
culated by straightforward integrations in the reciprocal
space. The thermodynamic derivatives then follow from
the relations in Sect. IV C. Figure 1 shows three com-
pressibility like quantities in all stable phases obtained
from the mean-field DFT functional (78). The compress-
ibility κ is taken at fixed stress hαβ and describes the den-
sity change with chemical potential µ. The susceptibility
κc is taken at fixed stress σαβ and captures the defect
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density change with µ. The quantities κ0 and 1/ν are
approximations neglecting the strain-density and strain-
defect density coupling, respectively. In reduced units,
the thermodynamic derivatives change little throughout
the complete stable fcc phase. In the bcc crystal, de-
fect fluctuations grow appreciably with increasing tem-
perature. The fluid is less compressible than the solids,
as follows from the familiar expression of the isother-
mal compressibility25, κfluid = 1/ν = (∂n/∂µ)/n2

0. The
neglect of the coupling between strain and defect den-
sity qualitatively fails in the crystal phases. The full
compressibility κ differs strongly from the approximation
κ0, where both fields are assumed uncorrelated. Thus,
widely made approximation40 which identifies κ and κ0

fails for cluster crystals. The very close agreement be-
tween κ and 1/ν, on the other hand, indicates that the
coupling between strain and density fluctuations is neg-
ligible, i.e. µαβ ≈ 0; see Sect. IV C 1. Cluster crys-
tals predominantly accommodate density changes by in-
creasing the occupation numbers while keeping the lat-
tice constants almost fixed17. Equation (57) allows to
quantify the contribution of the lattice straining to the
compressibility. The value of −∂uαα∂p |h is lower than

2 · 10−4κ in magnitude and can even be negative. With
the approximation µαβ ≈ 0, the coefficient µcαβ becomes
µcαβ ≈ νδαβ and the formulas for κc and κσ simplify to

κc ≈ ν−1 + δαβ(Cnαβγδ)
−1δγδ and κσ ≈ κ ≈ ν−1. Density

changes with chemical potential similarly at fixed h and
σ stress tensors. This is in strong contrast to the ideal
crystal where κσ equals κc and both vanish.
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FIG. 2: The bulk modulus B = 1
κ

in dimensionless units for

three different temperatures versus n0σ
3. The three points

are MC simulation results16.

For a comparison with Monte Carlo (MC) simulations
the compressibility κ from Eq. (50) is identified as inverse
bulk modulus B obtained in Ref. [16]. Figure 2 shows this
bulk modulus for three temperatures versus the average
density. The deviation of the theoretical predictions from
the simulation data by about 15% is in the same range
as the deviation of the calculated fcc-bcc transitions from

the simulated16 ones; this error is roughly 10%.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

8 10 12 14 16 18 20 22

p
(n
)

occupancy n

bcc, n0σ3 = 6.5
bcc, n0σ3 = 7.5
fcc, n0σ3 = 8.5
fcc, n0σ3 = 9

FIG. 3: Probability distribution functions for the occupation
numbers in GEM-4 cluster crystals of fcc and bcc structure
from MC simulations17. Gaussian distributions with the vari-
ances calculated from Eq. (80) and the mean value nc ob-
tained through minimization of Eq. (78) (lines) are compared
with the MC data (symbols). Complete parameters are given
in table I.

The cluster crystal is an interesting model in the con-
text of defect density fluctuations. The role of the defect
density is taken by the occupation number nc which ob-
viously is an averaged number; it takes real values, while
a single lattice site can only be occupied with an integer
number of particles. There has to be a distribution in
occupation numbers with the mean value nc and stan-
dard deviation

√
< ∆n2

c > which should be connected
with 〈δcδc〉. ∆nc is the occupation number fluctuation
for each lattice site, so the density δc(r) has to be inte-
grated over one primitive cell to become equivalent. To
simplify, we assume that the correlation in occupation
number/defect density fluctuation vanishes after the first
Wigner-Seitz-cell, i.e. the occupation number fluctuation
of each lattice site is independent. With N/nc the num-
ber of lattice sites

V

∫
d3r〈δc(r)δc(0)〉 =

N

nc
〈∆n2

c〉 (79)

This can be rewritten using the compressibility κc from
Eq. 59:

〈∆n2
c〉 = κcn2

0kBT

(
nc
n0

)
(80)

Assuming a Gaussian distribution, there is a good match
of the results for the fcc lattice with MC simulations17, as
seen in Fig. 3. Table I collects the values of the averages
of the occupation numbers obtained from the mean-field
functional (78) and of their variances obtained through
Eq. (80). Also the percentage deviations from the pa-
rameters obtained from the Gaussian fits to the MC data
are shown. The averages agree within 1% for both lat-
tices and the variances agree for the fcc lattice within
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10%, which is the same magnitude as for the Bulk mod-
ulus. For the bcc lattice bigger differences between the
theoretical and the simulated17 occupation number dis-
tributions are observed for reasons unclear at present.
The variances of defect fluctuations in bcc and fcc crys-
tals are more different in the simulations than predicted
theoretically. √

〈∆n2
c〉 nc

kBT/ε n0σ
3 MC theory ∆[%] MC theory ∆[%]

bcc 1 6.5 1.76 1.32 33.3 13.34 13.24 0.76
1.1 7.5 1.66 1.37 21.2 15.31 15.25 0.39

fcc 1.1 8.5 1.23 1.31 6.5 17.48 17.49 0.06
1 9 1.12 1.24 10.7 18.25 18.44 1.04

TABLE I: Variances and averages of the occupation numbers
in cluster crystals with fcc and bcc structure at selected state
points. The MC results are obtained from Gaussian fits to
Monte Carlo simulation data17; the complete distributions are
compared in Fig. 3. The theoretical results for the averages
follow from the mean-field DFT functional (78) and for the
variances from (80).

C. Dispersion relations and macroscopic density
correlation function

The correlation functions for the coarse-grained fields
can be obtained from the q-dependent elastic coefficients
according to Eq. (17). They follow from the density pro-
file obtained by minimizing the DFT free energy func-
tional. The top panel in Fig. 4 shows the dispersion
relations obtained from diagonalizing the dynamic ma-
trix appearing in the wave-equation of the momentum
density2: Dαβ(q) = Λαβ(q)/(mn0) with particle mass
m, and Λ given in Eq. (19). A typical state with fcc
lattice is considered. The eigenfrequencies ω of Dαβ ex-
hibit the familiar longitudinal and (up to two) transversal
acoustic branches depending on the q-directions followed
in the first Brillouin zone. Remarkably, the high degree
of disorder contained in the broad distributions of oc-
cupation numbers does not weaken the solid overly; the
dispersion relations exhibit the shapes familiar from ideal
solids and assume magnitudes comparable to the values
obtained from potential expansions at T = 0 assuming
ideality18.

While the direction-dependence of the dispersion rela-
tions is familiar, the concomitant direction dependence
of the density correlation functions had not been estab-
lished. The lower panel in Fig. 4 shows the density cor-
relation function 〈δn∗(q)δn(q)〉 from Eq. (67) and ν(q)
from Eq. (14a). The latter is the q-dependent generaliza-
tion of the thermodynamic derivative ν = n2

0(∂µ/∂n)uαβ
from Eq. (39). Both functions almost completely agree
for small wavevectors because of the extremely weak cou-
pling between density and strain in cluster crystals; the
coefficient ∂2f/∂n∂uαβ = µαβ = µ0δαβ from Eq. (39b),
which is diagonal in fcc lattices, is very small: µ0/ν ≈
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FIG. 4: Top panel: Phonon dispersion relation for a cluster
crystal with fcc structure along four symmetry lines in the
first Brillouin zone; the state at kBT/ε = 1.1 and n0σ

3 = 8.5
is also included in Figs. 2 and 3 and Table I.
Bottom panel: The q-dependent density correlation func-
tion from Eq. (64) and its dominating part for small q given
by ν−1(q) (blue). Insets: The difference of both quanti-
ties ∆(q) = 〈δn2(q)〉σ3/V − ν−1(q)kBTn

2
0 in a small range

around q = 0 for the same symmetry lines. The different
limits ∆(q→ 0) depending on direction are apparent.

2 · 10−4. Both functions start deviating for wavevec-
tors approaching the Brillouin zone boundary. Because
ν(q) possesses a regular small q expansion given in Eq.
(14b), the non-analyticity of the density correlation func-
tion can be brought out by considering the difference
∆(q) = 〈δn2(q)〉σ3/V − ν−1(q)kBTn

2
0. This ∆ is small

for small wavevectors because the small factor µ0 enters
quadratically. Yet, it clearly shows different limits for
q→ 0 resulting from the direction dependence discussed
in context with Eq. (65). The insets in Fig. 4 show the
curves obtained from taking the limit q→ 0 along high-
symmetry directions in the first Brillouin zone of an fcc
cluster crystal. The directions go from the center Γ of
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the Brillouin zone along direction [120] (given by Miller
indices36) to the point W, along [010] to X, along [111] to
L, and along [110] to K. Along each of these directions,
the density correlation function 〈δn∗(q)δn(q)〉 takes a
different limit for q → 0. The very small magnitude of
the differences results from the small value of µ0/ν spe-
cific to cluster crystals; the differences are numerically
reliable.

D. Discussion of low temperature phase transitions

Figure 1 shows only little variation of κcn2
0, especially

in the low temperature/high density range. Because nc
n0

also varies little, the variance of the occupation number
fluctuations, 〈∆n2

c〉, is nearly independent of the density
and scales mainly with the temperature. This points to
an internal inconsistency of the mean-field description at
low temperatures. The width of the occupation num-
ber distributions vanishes for T → 0, yet, non-integer
average occupation numbers can occur. The failure to
find integer occupations clearly indicates the break-down
of mean-field theory for low temperatures. Simulations
show that the phase diagram of the GEM-4-system ex-
hibits fcc phases where the occupation numbers take in-
teger values at low temperatures19,20. Phase coexistence
regions lie between them; see Fig. 5 showing simulations
from Ref. [19]. At critical temperatures each coexistence
region vanishes, and the homogeneous fcc phase with
a distribution of occupations becomes stable. The MC
simulations19 suggest that these critical temperatures are
nearly identical for each phase coexistence, i.e they are
nearly independent of the density. The mean field den-
sity functional approach only describes the homogeneous
distributed phase and misses the coexistence regions at
low temperatures. Potential energy minimization at zero
temperature gives homogeneous integer occupations and
rationalizes their coexistences18.

Still, the knowledge of the occupation number fluc-
tuations in the homogeneous phase allows to establish
a criterion when the homogeneous phase is not consis-
tent. We suggest that there is a threshold of the occupa-
tion number variance 〈∆n2

c〉 where the hopping between
the lattice sites becomes strong enough to lift the (zero
temperature) restriction of integer occupation numbers.
Consequently, for temperatures below this value, we ex-
pect the mean field density functional (78) to break down
and integer occupation phases to become stable, as holds
at zero temperature. Figure 5 shows that the estimate of
the occupation number deviation

√
〈∆n2

c〉 = 0.3 gives an
order of magnitude estimate of the critical temperatures.

The adequacy of the suggested criterion and the sta-
bility of the estimate can be studied in a little more de-
tail. Figure 6 shows the occupation number fluctuation
for several phases with integer occupations as function
of temperature. Here integer occupation numbers were
enforced by hand before minimizing the functional in
Eq. (78) by varying α only. The critical temperatures
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FIG. 5: Low-temperature phase diagram of the GEM-4 sys-
tem as determined in MC simulations19; red data points con-
nected by lines as guides to the eye indicate the coexistence
regions. Pure fcc phases with integer site-occupations (de-
noted fccn with n = 2, 3, . . .) survive only at extremely low
temperatures. Mean-field DFT provides a good estimates of
the critical temperatures for a reasonable numerical value of
the occupation number variance,

√
〈∆n2

c〉 = 0.3 (blue line).

observed in simulations are well compatible with an oc-
cupation number variation of

√
〈∆n2

c〉 ≈ 0.25, which ap-
pears a rather reasonable value for enabling hopping to
smear out the occupation numbers on different lattice
sites. Moreover, varying the value of this criterion moves
the estimates of the critical temperatures only little. For
different integer occupations, they differ only slightly.
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FIG. 6: The occupation number fluctuation
√
< ∆n2

c > (stan-
dard deviation) versus the temperature in units of ε/kB . The
standard deviation is a function of temperature and density.
It is plotted for several integer occupied states. The densities
are chosen with the approximation nc/n0 ≈ 2, which differs
by about two per cent from the optimal DFT-value. The
red dotted line denotes the point of the curve at the critical
temperature kBTc/ε = 0.471 which is obtained from [N]pT
simulations20, the blue line the estimate of Fig. 5.
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VII. CONCLUSIONS AND OUTLOOK

We derived the thermodynamic expression for the
isothermal compressibility κ in a general single-
component crystal of arbitrary space group symmetry,
which may contain any high concentration of local de-
fects, and discussed its connection to the small wavevec-
tor limit of the density correlation function. The corre-
lation functions of coarse grained fields of macroscopic
elasticity theory were calculated within the framework
of density functional theory, allowing for a finite den-
sity of defects. Explicit expressions for the complete
set of coefficients in the phenomenological free energy in
terms of the direct correlation function of density func-
tional theory were obtained. The correlation function
of the coarse-grained density field does not, in general,
determine the compressibility. For the case of an ideal
isotropic solid, we could identify the origin of the discrep-
ancy from a calculation in macroscopic elasticity theory.
It arises from the long-ranged strain fluctuations which
decay like 1/r3 and thereby cause boundary effects to
enter the elastic energy. While in systems with sponta-
neously broken symmetry, anomalous longitudinal corre-
lations exist in general49 (besides the familiar symmetry
restoring fluctuations23), the present observation appears
more related to long-ranged dipolar correlations in polar
fluids50. There, the dielectric tensor in response to the
vacuum electric field depends on the shape of the ma-
terial and on the boundary conditions. It can be con-
nected to a well-defined isotropic dielectric constant only
via shape/ boundary-effect dependent distribution func-
tions. To work out a corresponding relation for arbi-
trary symmetries and sample shapes of crystalline solids
is left for future work. Crystals also contain topological
defects1, which destroy the long-ranged order and affect
the macroscopic elasticity39,51. They have been consid-
ered within DFT52, which could be used in future ex-
tensions of the present approach. Also the nonlinearities
of elasticity theory, which become important for larger
deformations53, require future extensions of the approach
in Ref. [2] based on nonlinear generalizations of projec-
tion operator techniques54.

We applied the theory to the elasticity of cluster crys-
tals made by soft particles. In these crystals, the fluctuat-
ing occupation numbers of lattice sites play the role of lo-
cal defects and strongly affect the stable phases and their
material responses. Therefore, cluster crystals appear
an ideal system to test our theory. The obtained com-
pressibilities and occupation number distributions com-
pare well with data obtained in Monte Carlo simulations.
Mean-field theory breaks down at low temperatures. Yet,
the theory can be used in order to identify the temper-
ature range where mean-field theory breaks down. This
provides rather reasonable and stable estimates for the
critical temperatures, below which the zero-temperature
phases with integer occupation numbers are stable.
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Appendix A: Thermodynamic manipulations

As a consequence of (47) a Gibbs-Duhem relation can
be derived

−V dp+Ndµ+ Uαβdhαβ = 0. (A1)

It states that the pressure obeys p = p(µ, hαβ), which
can be used to simplify the total differential of the free
energy density per volume f = F/V = µn− p+ uαβhαβ .
It is a proper density because the free energy F is a ho-
mogeneous function of its extensive variables. As a first
result, from the Gibbs-Duhem relation (A1), the total
differential of f given in Eq. (49) follows. Also Eq. (A1)
yields for an isothermal change with dhαβ = 0

Ndµ = V dp, (A2)

which can be used for

1

N

∂N

∂µ

∣∣∣
V,hαβ

=
1

V

∂N

∂p

∣∣∣
V,hαβ

=
∂n

∂p

∣∣∣
V,hαβ

= −n0

V

∂V

∂p

∣∣∣
N,hαβ

= n0κ. (A3)

This verifies Eq. (48) as the compressibility at constant
stress tensor hαβ .

1. Alternative formula for κ and κc

The discussion of the quadratic terms in the free en-
ergy can be related to more standard thermodynamic
considerations, which provides additional support for our
results. To find an alternative formula for the compress-
ibility at constant strain hαβ , we start with Eq. (A3) and
assume a relation u(h, µ)

κ =
1

n2
0

∂n

∂µ

∣∣∣
hαβ

=
1

n2
0

∂n

∂µ

∣∣∣
uαβ

+
1

n2
0

∂n

∂uαβ

∣∣∣
µ

∂uαβ
∂µ

∣∣∣
hαβ

(A4)

The last derivative is at constant hαβ . With

0 = dhαβ =
∂hγδ
∂uαβ

∣∣∣
µ
duαβ +

∂hγδ
∂µ

dµ (A5)
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it can be written as

∂uαβ
∂µ

∣∣∣
hαβ

= −
(
∂hγδ
∂uαβ

∣∣∣
µ

)−1
∂hγδ
∂µ

∣∣∣
uαβ

. (A6)

which leads to the alternative formula

κ =
1

n2
0

∂n

∂µ

∣∣∣
uαβ
− 1

n2
0

∂n

∂uαβ

∣∣∣
µ

(
∂hγδ
∂uαβ

∣∣∣
µ

)−1
∂hγδ
∂µ

∣∣∣
uαβ

.

(A7)
The inverse of

∂2f

∂uαβuγδ
= Cαβγδ

is defined by40

CαβγδC
−1
γδµν =

1

2
(δαµδβν + δανδβµ). (A8)

The unusual definition for the ”unit matrix” is a con-
sequence from the symmetrisation of the strain tensor,
uαβ = 1

2 (∇αuβ +∇βuα), and holds for all second order
derivatives with respect to uαβ .

The thermodynamic derivatives can be expressed
through the elastic coefficients ν, µαβ , Cαβγδ as follows:
The first term of the compressibility is basically the only
non-vanishing term in the fluid limit

1

n2
0

∂n

∂µ

∣∣∣
uαβ

=
(
n2

0

∂µ

∂n

∣∣∣
uαβ

)−1

= ν−1. (A9)

For the second term the chemical potential µ is expressed
as a function of density and strain tensor µ(n, uαβ)

dµ =
∂µ

∂n

∣∣∣
uαβ

dn+
∂µ

∂uαβ

∣∣∣
n
duαβ (A10)

which yields

∂n

∂uαβ

∣∣∣
µ

= −
(∂µ
∂n

∣∣∣
uαβ

)−1 ∂µ

∂uαβ

∣∣∣
n

= n0ν
−1µαβ . (A11)

The last two terms are

∂hγδ
∂uαβ

∣∣∣
µ

=
∂hγδ
∂uαβ

∣∣∣
n

+
∂hγδ
∂n

∣∣∣
uαβ

∂n

∂uαβ

∣∣∣
µ

= Cnαβγδ − µαβν−1µγδ, (A12)

∂hγδ
∂µ

∣∣∣
uαβ

=
∂hγδ
∂n

∣∣∣
uαβ

(∂µ
∂n

∣∣∣
uαβ

)−1

= −n0ν
−1µγδ. (A13)

Now the alternative formula (A7) can be expressed with
ν, µαβ , and Cnαβγδ, which yields Eq. (42).

The same procedure can be applied to κc, which leads
to

κc = − 1

n2
0

∂c

∂µ

∣∣∣
uαβ

+
1

n2
0

∂c

∂uαβ

∣∣∣
µ

(
∂σγδ
∂uαβ

∣∣∣
µ

)−1
∂σγδ
∂µ

∣∣∣
uαβ

,

(A14)

which is an alternative to Eq. (60). The following con-
nection to the elastic constants

− 1

n2
0

∂c

∂µ

∣∣∣
uαβ

= ν−1, (A15)

∂c

∂uαβ

∣∣∣
µ

= −
(∂µ
∂c

∣∣∣
uαβ

)−1 ∂µ

∂uαβ

∣∣∣
c

= −n0ν
−1µcαβ ,

(A16)

∂σγδ
∂uαβ

∣∣∣
µ

= Ccαβγδ − µcαβν−1µcγδ

= Cnαβγδ − µαβν−1µγδ =
∂hγδ
∂uαβ

∣∣∣
µ

(A17)

∂σγδ
∂µ

∣∣∣
uαβ

= −n0ν
−1µcαβ , (A18)

can be used, to reproduce Eq. (45). Eq. (A17) repre-
sents the elastic constants at constant chemical potential
discussed in Ref. [1].

Appendix B: Elasticity

With the expressions of Sect. III B 2, the Eq. (66) reads

〈δu∗αδuβ〉 = V kBTΛ−1
αβ(q). (B1)

This follows from Eq. (18) with Vα(q) = 0, or µcαβ =
νδαβ +µαβ = 0 in the low q-limit, for a crystal with van-
ishing coupling between strain and defects. If we assume
the crystal to be ideal, viz. defect free, then addition-
ally the defect density correlations 〈δcδc〉 and with it κc

should be zero. This implies that ν(q)−1 vanishes, as
follows from Eq. (18). The correlations of the coarse-
grained density Eq. (17a) then become

〈 δn∗δn

V kBTn2
0

〉 = qαΛ−1
αβ(q)qβ = qα(Cαεβφqεqφ)−1qβ , (B2)

where we used the small q expansion of the constants of
elasticity and took care of the proper symmetric combi-
nation as discussed in [2]. The elastic constants Cαβγδ of
(ideal) elasticity theory correspond to Ccαβγδ in Eq. (43c).
In this ideal crystal approximation, the compressibility
becomes

κ = δαβ(Cαβγδ)
−1δγδ =

3∑

i,j=1

(Cij)
−1 (B3)

Note, that the limit κc = 0 and Eq. (63) also imply κσ =
0, while κ has a finite limit, showing the difference arising
from the different constant stress tensors.

The elastostatic theory is contained in the static limit
of the hydrodynamic equations of motion, see Eqs. (87)
in Ref. [2]. Without point defects the only non-vanishing
equation is (87c), which then reads

qβCαβγδqδuγ = 0. (B4)

But this is just the Fourier-transformed equation of elas-
tostatics (68).
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Appendix C: Isotropic solids

Often, it is useful to simplify the tensorial expressions
of elasticity theory and to consider an isotropic solid1.
Appendix C connects to these discussions and points out
different possibilities to define bulk moduli.
For isotropic solids, a tensor of elastic coefficients Cαβγδ
is determined by two Lamé coefficients: Cαβγδ =
λδαβδγδ+µ(δαγδβδ+δαδδβγ) and µαβ simplifies to µ0δαβ .
(Note that we follow standard practice1,28 in calling the
second Lamé coefficient µ even though we used this letter
for other quantities already.) In the isotropic case, the
compressibility from Eqs. (42) and (50) becomes

κiso =
(
ν − (µ0)2

Bn

)−1

(C1)

with a bulk modulus at fixed total density

(Bn)−1 = δαβ(Cnαβδγ)−1δδγ = (λn +
2

3
µn)−1. (C2)

This is the same as in Ref. [1]. There, a bulk modulus
at constant stress tensor hαβ has been defined, which is
equal to the inverse of the strain part of the compress-
ibility given in Eq. (57), (Bh,Ref.[1])−1 = −∂uαα∂p

∣∣
hαβ

. In

general it differs from κiso because of the second term
in Eq. (55). The limit of an ideal crystal is attained for
µ0 + ν = 0 and ν → ∞, so that λn − ν → λc, while the
second Lamé coefficient remains unaffected.
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