

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Magnetization of underdoped YBa_{2}Cu_{3}O_{y} above the irreversibility field

Jing Fei Yu, B. J. Ramshaw, I. Kokanović, K. A. Modic, N. Harrison, James Day, Ruixing Liang, W. N. Hardy, D. A. Bonn, A. McCollam, S. R. Julian, and J. R. Cooper Phys. Rev. B **92**, 180509 — Published 23 November 2015 DOI: 10.1103/PhysRevB.92.180509 2

3

5

6

7

8

9

10

11

12

Magnetization of underdoped $YBa_2Cu_3O_y$ above the irreversibility field

Jing Fei Yu,^{1,*} B. J. Ramshaw,² I. Kokanović,^{3,4} K. A. Modic,² N. Harrison,² James Day,⁵ Ruixing

Liang,^{5,6} W. N. Hardy,^{5,6} D. A. Bonn,^{5,6} A. McCollam,⁷ S. R. Julian,^{1,6} and J. R. Cooper³

¹Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7, Canada

²Los Alamos National Laboratory, Mail Stop E536, Los Alamos, New Mexico, 87545, USA

³Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom

⁴Department of Physics, Faculty of Science, University of Zagreb, P.O. Box 331, Zagreb, Croatia

⁵Department of Physics and Astronomy, University of British Columbia,

Vancouver, British Columbia, V6T 1Z1, Canada

⁶Canadian Institute for Advanced Research, 180 Dundas St.W, Toronto, Ontario, M5S 1Z8, Canada

⁷High Field Magnet Laboratory (HFML-EMFL), Radboud University, 6525 ED Nijmegen, the Netherlands

(Dated: November 2, 2015)

Torque magnetization measurements on YBa₂Cu₃O_y (YBCO) at doping y = 6.67(p = 0.12), in DC fields (B) up to 33 T and temperatures down to 4.5 K, show that weak diamagnetism persists above the extrapolated irreversibility field $H_{irr}(T = 0) \approx 24$ T. The differential susceptibility dM/dB, however, is more rapidly suppressed for $B \gtrsim 16$ T than expected from the properties of the low field superconducting state, and saturates at a low value for fields $B \gtrsim 24$ T. In addition, torque measurements on a p = 0.11 YBCO crystal in pulsed field up to 65 T and temperatures down to 8 K show similar behaviour, with no additional features at higher fields. We offer two candidate scenarios to explain these observations: (a) superconductivity survives but is heavily suppressed at high field by competition with CDW order; (b) static superconductivity disappears near 24 T and is followed by a region of fluctuating superconductivity, which causes dM/dB to saturate at high field. The diamagnetic signal observed above 50 T for the p = 0.11 crystal at 40 K and below may be caused by changes in the normal state susceptibility rather than bulk or fluctuating superconductivity. There will be orbital (Landau) diamagnetism from electron pockets and possibly a reduction in spin susceptibility caused by the stronger 3D ordered CDW.

PACS numbers: 74.72.Gh, 74.25.Ha, 74.25.Op, 74.25.Bt

14 17 18 19 temperature plane where quantum oscillations are seen⁴. 20 Many experimental efforts have been made to address 21 $_{22}$ this issue⁵⁻⁸. Diamagnetism has consistently been reported using torque magnetometry at high fields in many 23 families of cuprates and it is argued that this observation ₂₅ shows the persistence of Cooper pairs above $H_{\rm irr}^{5}$. For $YBa_2Cu_3O_u$, resistivity measurements have established 26 $H_{\rm irr}(T = 0)$ to be below 30 T for fields along the c-₂₈ axis for dopings between p = 0.11 (OII) and p = 0.12 $_{29}$ (OVIII)⁹. Moreover, X-ray¹⁰⁻¹², NMR¹³, and sound ve-³⁰ locity measurements¹⁴ have demonstrated the existence ³¹ of static charge density wave (CDW) order that competes with superconductivity: Ref. 12 shows a distinct long 32 ³³ range 3D order that emerges at high field and continues ³⁴ to grow at 28 T for an OVIII crystal, consistent with that ³⁵ first observed in NMR studies¹³. The CDW is strongest $_{36}$ and the suppression of H_{c2} is largest at p = 0.125 for YBCO^{11,15}. 37

Recent thermal conductivity measurements by Grissonnanche *et al.*⁷ show a sharp transition precisely at ${}_{69} \tau$ per unit volume V at an angle θ from field B is the extrapolated $H_{\rm irr}(T=0) \simeq 22$ T for OII YBCO. They have interpreted this feature (henceforth referred to as H_K) as a signature of H_{c2} , arguing that the end of the rapid rise in thermal conductivity at 22 T reflects a H_{c2} matrix H_{c2} and H_{c2} arguing that the end of H_{c2} matrix $H_$

The possible existence of bulk superconductivity as $T \to 0$ K above the irreversibility field $(H_{irr})^1$ in the $T \to 0$ K above the irreversibility field $(H_{irr})^1$ in the $T \to 0$ K above the irreversibility field $(H_{irr})^1$ in the $T \to 0$ K above the irreversibility field $(H_{irr})^1$ in the $T \to 0$ K above the irreversibility field $(H_{irr})^1$ in the $T \to 0$ K above the irreversibility field $(H_{irr})^1$ in the $T \to 0$ K above the irreversibility field $(H_{irr})^1$ in the $T \to 0$ K above the irreversibility field $(H_{irr})^1$ in the $T \to 0$ K above the irreversibility field $(H_{irr})^1$ in the $T \to 0$ K above the irreversibility for our understanding of the $T \to 0$ whether Cooper pairs persist in the region of the field- $T \to 0$ K above $H_{irr}(T)$, but they extrapolate to the same value $T \to 0$ K above $H_{irr}(T)$, but they extrapolate to the same value $T \to 0$ K above $H_{irr}(T)$, but they extrapolate to the same value $T \to 0$ K above $H_{irr}(T)$. In contrast, torque measurements by F. $T \to 0$ K above $H_{irr}(T)$ is a consistently been re- $T \to 0$ K above $H_{irr}(T)$ is the same doping suggested $T \to 0$ K above $H_{irr}(T)$. The debate is thus still open.

> To resolve this problem, we conducted torque mag-53 ⁵⁴ netometry measurements of magnetization (M) on two $_{55}$ p=0.12 (OVIII, $T_c=65$ K) crystals in DC fields $_{56}$ and one p=0.11 (OII, $T_c=60$ K) crystal in pulsed 57 fields. The crystals were mounted on piezoresistive can-⁵⁸ tilevers and placed on a rotating platform, with the CuO₂ ⁵⁹ planes parallel to the surface of the lever. DC field 60 sweeps, first from 0 to 10 T and later from 0 to 33 T, ⁶¹ were performed with the *c*-axis of the OVIII crystal at $_{62}$ a small angle θ from the field. The magnetoresistance 63 of the levers was eliminated by subtracting data from ⁶⁴ the complementary angle $(-\theta)$ (see Supplementary In-65 formation for raw data). Similar procedures were used ⁶⁶ for the OII crystal in pulsed magnetic fields up to 65 67 T. For strongly anisotropic superconductors, where out-⁶⁸ of-plane screening currents can be neglected, the torque

13

FIG. 1. (Color online) Black dots: high temperature anisotropic susceptibility $\chi_D(T)$ of the OVIII crystal at 10 T. Blue solid line: fit to this data above 120 K using Eq. 1. The parameters A = 11.09 A/m/T, $T_F = 680 \text{ K}$ are taken from Ref. 17, while the fit gives $\chi^{VV} = 5.84 \text{ A/m/T}$, $T^* = 330 \text{ K}$ and $\chi^R(0) = 1.26 \text{ A/m/T}$; *Red dashed line*: Linear fit with $\chi(T) = 1.22 \times 10^{-2} \times (T + 948)$, following Ref. 6 but with different parameters. Note that 1×10^{-4} emu/mol= 9.73 A/m/T.

⁷⁴ c-axis. This is a good approximation when $M_c \gg \chi_D B$ ⁷⁵ or when the superconducting gap and M_c are both small. A key challenge with magnetization measurements in 76 ⁷⁷ the cuprates is the separation of the normal state from 78 the superconducting contributions, because supercon-⁷⁹ ducting fluctuations are thought to contribute to $\chi(T)$ $_{so}$ even at temperatures far above T_c^{18} , while χ^{normal} is tem-²¹ perature dependent to well below T_c . We follow the pros² cedure outlined in Refs.17 and 18 and interpret $\chi_D(T)$ in ⁸³ the normal state of underdoped YBCO as arising from ⁸⁴ the pseudogap and *q*-factor anisotropy, plus a superconducting fluctuation term that sets in below 120 K. 85 ⁸⁶ Neglecting isotropic Curie and core susceptibility terms, ⁸⁷ which do not contribute to τ , the total normal state con-⁸⁸ tribution to $\chi_D(T)$ is¹⁷:

$$\chi_D^{normal}(T) = \chi_D^{PG}(T) + \chi_D^{VV} + \chi_D^R(T) \tag{1}$$

⁸⁹ where χ_D^{VV} is the *T*-independent Van Vleck suscepti-⁹⁰ bility, $\chi_D^{PG}(T)$ is the pseudogap contribution assum-¹⁰⁹ along the crystalline *c*-axis. For the OVIII crystal, at ⁹¹ ing a V-shaped density of states (DOS)¹⁹, and $\chi_D^R(T)$ ¹¹⁰ T = 103 K, we see that M_c is almost zero. At 58 K, just $_{92}$ is thought to arise from an electron pocket or Fermi ¹¹¹ below T_c , we see significant diamagnetism that gradually ⁹³ arcs in the region 0.0184 . Specifically,¹¹² tends to about <math>-130 A/m at high field. Fig. 2(a) shows ⁹⁴ $\chi_D^{PG} = A (1 - y^{-1} \ln [\cosh(y)])$, where $A = N_0 \mu_B^2$, y =¹¹³ that the crystal remains weakly diamagnetic down to 4.5 ⁹⁵ $E_g/2k_BT$, $E_g = k_BT^*$ and T^* is the pseudogap tempera-¹⁶⁴ K in fields up to 33 T. Similar behaviour was found for ⁹⁶ ture, and $\chi_D^R(T) = \chi^R(0) [1 - \exp(-T_F/T)]$ where T_F is ¹⁷⁵ the OII crystal in pulsed fields. As shown in Fig. 3(a), ¹⁷⁶ the Dimension of the bin back of the Dimension of the bin back of the Dimension of the bin back of the bin back of the Dimension of the Dimens ⁹⁷ the Fermi temperature. The fit is shown in Fig. 1, along ¹¹⁶ M_c is still diamagnetic at the highest field $B_z = 63$ T, $_{98}$ with a linear model for the normal state χ used in Ref. ⁹⁹ 6. Both fits agree well with the data for $T \ge 120$ K. Our ¹¹⁸ results differ from those of F. Yu *et al.*⁶: our normal ¹⁰⁰ background is almost twice as small as that of the linear ¹¹⁹ state susceptibility is larger than theirs by approximately ¹⁰¹ fit at T = 0 K. Subtraction of the background magne-¹²⁰ 8 A/m/T, and after background subtraction, at 10 K 103 the linear model would (about 160 A/m at 30 T). 104

105 ¹⁰⁶ selected temperatures for the OVIII and OII crystals, ¹²⁵ uncertainty in $\chi_D(0)$ corresponds to ± 32 A/m in M_c at ¹⁰⁷ obtained by subtracting $M_{BG} = \chi_{BG}B$, where χ_{BG} is ¹²⁸ 33 T and ± 61 A/m at 63 T. ¹⁰⁸ the blue line in Fig. 1, and B_z is the field projected ¹²⁸

FIG. 2. (Color online) (a) Magnetization (M_c) of the OVIII crystal vs B_z , the field parallel to the *c*-axis. Here $M_c(T, H) =$ $M_{obs}(T,H) - M_{BG}(T,H)$, where $M_{BG} = \chi_D B$ and χ_D is the blue line in Fig. 1. Dashed line: M_{BG} at 4.5 K. Diamagnetism is present even at our highest field of 33 T. (b) Differential susceptibility dM/dB of the OVIII crystal vs B_z at selected temperatures. The lines are guides to the eye. We call the characteristic field at which dM/dB departs from linearity H_d . Red: calculated mean field dM/dB near H_{c2} with $\kappa = 50$, with $\kappa = 41$ (*purple*) and with $\kappa = 150$ (*blue*).

 $_{\rm 117}$ but has a small value – about -90 A/m at 8 K. Our tization using this non-linear model should thus give a 121 and 20 T we find M_c to be up to four times larger(See significantly weaker diamagnetic signal at $T \rightarrow 0$ K than ¹²² Supplementary Information for details on the calibration ¹²³ procedure), at 30 T we find about -200 A/m for OII and In Figs. 2(a) and 3(a), we show M_c vs B_z curves at ¹²⁴ OVIII rather than their value of -75 A/m. Our estimated

Although the weak diamagnetic signal persists to

FIG. 3. (Color online) (a) Magnetization (M_c) of the OII crystal measured in pulsed magnetic field up to $B_z = 63$ T, where $M_c = M_{obs} - M_{BG}$, $M_{BG} = \chi_D B$ and χ_D is the blue line in Fig. 1. For clarity only the falling-field sweeps are shown. Diamagnetism is present though extremely weak at high field (inset). The small offset in M_c between the $T \leq 40$ K and $T \geq 50$ K curves may be due to the transition to long-range CDW order near 40 K in high fields as observed in both sound velocity¹⁴ and NMR¹³. (b) Differential susceptibility for the OII crystal in pulsed field. dM/dB is seen to be small and constant up to the highest field of 63 T. Blue: calculated mean field dM/dB near H_{c2} with $\kappa = 50$.

129 higher fields, we are able to see a signature in our differen-¹³⁰ tial susceptibility dM/dB at fields comparable to H_K (22) ¹³¹ T) found by thermal conductivity⁷. In each curve of Fig. $_{132}$ 2(b) and 3(b), dM/dB decreases linearly, up to a field ¹³³ we call $H_d(T)$, before saturating to a small but non-zero ¹³⁴ value. At the lowest temperatures for both OVIII and ¹³⁵ OII crystals, we find $H_d \approx 24$ T, which is close to the ¹³⁶ extrapolated $H_{\rm irr}(T=0)$. This is consistent with the ¹³⁷ feature at H_K found by thermal conductivity⁷, though ¹³⁸ unlike H_K , H_d does not correspond to a sharp transi- $_{\rm 139}$ tion. H_d varies very little with temperature for T<10140 K, a result that is consistent with the findings of Ref. $_{141}$ 7, though the *T*-dependence at high temperatures is not 142 consistent with that found by Refs. 6 and 16. Surpris-¹⁴³ ingly, we do not observe in any of our crystals the broad 145 peak in dM/dB reported by Ref. 6.

In highly anisotropic type-II superconductors, the 146 magnetization calculated using mean field (MF) 147 Ginzburg-Landau (GL) theory for an s-wave supercon-148 ductor, which we use in the absence of a *d*-wave theory, 149 yields logarithmic behaviour at low field (in cgs units), $-4\pi M = \alpha \phi_0 / (8\pi \lambda^2) \ln(\beta H_{c2}/H)$ for $0.02 < H/H_{c2} <$ 152 0.3, where α and β are numbers of order 1, ϕ_0 is the ¹⁵³ flux quantum for Cooper pairs and λ is the London pen-154 etration depth²⁰. μ SR at low fields has shown a \sqrt{H} 155 field dependence²¹ for $\lambda(T = 0)$, but results of tun-¹⁵⁶ nelling experiments on Bi-2212 imply thermally induced pair breaking near the nodes²², indicating a weaker field 157 ¹⁵⁸ dependence at higher T. Thus, for simplicity, we assume a negligible field dependence of λ . We also assume²⁰ $\alpha = 0.77$ and $\beta = 1.44$ for $0.02 < H/H_{c2} < 0.3$, in 160 ¹⁶¹ reasonable agreement with later works^{23,24}, and we fit 162 the low field magnetization and obtain an estimate of ¹⁶³ $H_{c2}(T)$, shown in Fig. 5. Since our GL values of H_{c2} 164 join smoothly to H_d , it is possible to interpret H_d as the 165 low temperature GL type H_{c2} .

When $H/H_{c2} > 0.3$, and again using cgs units for an 166 s-wave superconductor, the magnetization is expected 167 ¹⁶⁸ to obey $4\pi M = (H - H_{c2})/[(2\kappa^2 - 1)\beta_A]$, where κ ¹⁶⁹ is the GL parameter and $\beta_A = 1.16$ is the Abrikosov parameter^{25,26}. Figs. 2(b) and 3(b) show that for B > 28 $_{171}$ T. dM/dB has the mean field property of saturating to-¹⁷² ward a constant value, but this is very small and requires $_{173} \kappa \simeq 150$, a value far greater than $\kappa = 50$ given Ref. 174 7. This means that our high field dM/dB is nearly ten 175 times smaller than would be expected. This may be due ¹⁷⁶ to the field dependent charge density wave (CDW) order within the vortex liquid region 11,12 . The CDW competes 177 178 with superconductivity and is partially suppressed at low 179 field. As increasing field suppresses superconductivity, ¹⁸⁰ the CDW order is gradually restored¹⁴. The presence ¹⁸¹ of a relatively strong CDW would increase λ and thus ¹⁸² increase κ , as illustrated in Fig. 4. A linear region in ¹⁸³ $M_c(B)$ can also be seen in Fig. 2(a), for T = 20 K and ₁₈₄ T = 16 K and $B \leq 17$ T, with $\kappa = 41$, and in Fig. 3(a), 185 for T = 20 K and $B \leq 17$ T, with $\kappa = 50$. These linear 186 regions are not present above 20 K, where $M_c(B)$ is likely 187 to be smeared out by thermal fluctuations. As shown in 188 Fig. 4, for the OVIII crystal, low field M_c extrapolates 189 to zero around 24 T, consistent with our GL type H_{c2} . ¹⁹⁰ This is the first time that clear linear behaviour, with the ¹⁹¹ expected values of κ , has been observed in hole-doped 192 cuprates.

¹⁹³ The value of $H_{c2}(0) \approx H_d \approx 24$ T obtained from these ¹⁹⁴ GL analyses may refer to a low field, unreconstructed ¹⁹⁵ Fermi surface. For fields greater than 24 T, we may be ¹⁹⁶ observing MF behaviour of weak superconductivity aris-¹⁹⁷ ing from the small electron pockets^{4,27} resulting from the ¹⁹⁸ appearance of CDW order. The GL type theory we ap-¹⁹⁹ plied assumes *s*-wave superconductivity and we cannot ²⁰⁰ rule out possible *d*-wave effects on the determination of ²⁰¹ H_{c2} . An obvious possibility is the Volovik effect whereby ²⁰² the Cooper pairs near the nodes on the Fermi surface are ²⁰³ broken up, and consequently, λ and κ would increase.

⁴ Alternatively, the diamagnetism that we observe above

FIG. 4. Magnetization data of the OVIII crystal at 16 K. The blue dashed line shows the MF behaviour near H_{c2} for an s-wave superconductor with $\kappa = 41$. The stronger (3D) CDW sets in above 15 T for OVIII YBCO. At higher fields the data are consistent with $\kappa = 145$ (solid line).

²⁰⁵ 24 T could be caused by superconducting fluctuations. ²⁰⁶ The OII data in the insert to Fig. 3(a) show that it $_{207}$ is ~ -100 A/m between 35 and 63 T. This is 5 times ²⁰⁸ smaller and falls more quickly with field than predicted $_{209}$ by theory²⁸ for a 2D *s*-wave superconductor at low tem-210 peratures and high fields. This is a robust statement ²¹¹ because in the clean limit all parameters in the theoreti-²¹² cal expression²⁸ for $M_c(B)$ above H_{c2} are known. Nernst ²¹³ data²⁹ for OVIII crystal show saturation near 30 T to the ²¹⁴ negative value expected for an electron pocket. This does ²¹⁵ not necessarily rule out bulk superconductivity above 30 T because in the presence for a CDW, the vortex core 216 entropy – which dominates the Nernst effect – could be 217 reduced. However at a qualitative level, the Nernst data 218 between 24 and 30 T may be more consistent with su-219 perconducting fluctuations. Since torque magnetization 220 is sensitive to superconducting fluctuations while thermal 221 conductivity sees only the normal quasi-particles which 222 ²²³ are the only source of entropy, this may explain why we $_{224}$ do not observe the sharp transition at H_K seen in Ref. 7 225

Finally, the diamagnetism of -90 A/m observed at 63 226 T might arise from orbital (Landau) diamagnetism of the 227 electron pockets³⁰ possibly combined with a suppression 228 of spin susceptibility³¹ associated with the stronger (3D) 229 CDW order that sets in above 15 T^{12} . The change re-²³¹ quired would be 1.36 A/m/T in $\chi_D(0)$. This is consistent with the significant decrease in diamagnetism between 40 $_{233}$ and 50 K shown in the inset of Fig. 3(a), the region where the 3D CDW seen at high fields goes away¹². 234

235 236 237 238 or the MF behaviour expected for a *d*-wave supercon- 275 dation project (No. 6216) and the Croatian Research ²³⁹ ductor just below H_{c2} as $T \rightarrow 0$ K. Therefore the linear ²⁷⁶ Council, MZOS NEWFELPRO project No. 19. We $_{240}$ H dependence of dM/dB we observe below H_d might $_{277}$ thank HFML-RU, a member of the European Magnetic 241 be a fundamental property of a *d*-wave superconductor. 278 Field Laboratory. The work at LANL was funded by the ²⁴² In other words, because of Volovik-type pair breaking ²⁷⁹ Department of Energy Basic Energy Sciences program $_{243}$ effects, the MF transition at H_{c2} could have a disconti- $_{280}$ 'Science at 100 T'. The NHMFL facility is funded by the ²⁴⁴ nuity in d^2M/dB^2 , rather than in dM/dB, which is the ²⁸¹ Department of Energy, the State of Florida, and the NSF ²⁴⁵ standard MF result for the second order transition in a ²⁸² under cooperative agreement DMR-1157490.

²⁴⁶ conventional *s*-wave superconductor.

(Color online) H_d for both OII and OVIII FIG. 5. crystals show similar temperature dependences. Exponential fits to $H_{\rm irr}$ of OII(23.2 exp(-T/13.5))) and OVIII(23.7 exp(-T/20.5)) give extrapolated values $H_{\rm irr}(0) =$ 23.2 and 23.7 T. These values are close to the low temperature H_d for both crystals. Note that H_{c2} from GL fits (see main text) connects smoothly to H_d .

In summary, we observe diamagnetism in OVIII YBCO 247 $_{\rm 248}$ at fields up to 33 T and OII YBCO at fields up to 65 T 249 using torque magnetometry. The analysis uses a differ-²⁵⁰ ent model for the high temperature normal state suscep-²⁵¹ tibility that gives a smaller correction at low tempera-252 ture compared with earlier models. We also find that $_{253} dM/dB$ departs from a linear lower field behaviour at ²⁵⁴ fields $H_d \approx H_{\rm irr}(0) \approx 24$ T, and approaches a constant ²⁵⁵ value at higher fields. We propose two candidate sce-²⁵⁶ narios: a competing order scenario where a fully-fledged 257 CDW at high field mostly suppresses the superconduc-²⁵⁸ tivity so that the diamagnetism at high field could be 259 attributed to bulk superconductivity; or a fluctuation $_{260}$ picture in which for $H > H_d$, the system crosses over ²⁶¹ to superconducting fluctuation behaviour. The diamag-²⁶² netism at 65 T for the OII crystal could arise from the ²⁶³ orbital susceptibility of carrier pockets and a reduction in $_{264}$ spin susceptibility associated with the stronger 3D CDW $_{265}$ order. It would be of interest to develop *d*-wave expres-266 sions for the MF magnetization and for the fluctuation ²⁶⁷ contribution in the low temperature, high field regime, ²⁶⁸ for comparison with our data. This could settle the de-269 bate over the existence of the high field vortex liquid 270 region.

We thank G. Grissonnanche for useful discussions. 271 The above discussion highlights the importance of 272 This work was generously supported by NSERC and CIcompeting CDW and superconductivity instabilities^{11,32}. 273 FAR of Canada, Canada Research Chair, EPSRC (UK) Little is known about the size of the CDW energy gap, 274 under Grant No. EP/K016709/1, Croatian Science Foun-

- email: jfeiyu@physics.utoronto.ca 283
- For ease of comparison with Refs. 7 and 6, we use the same 284
- units (Tesla) and notation (e.g. H_{irr} and H_{c2}) throughout 285 this paper. 286
- 2 S. Banerjee, S. Zhang, and M. Randeria, Nature Commu-287 335 nications 4, 1700 (2013). 288
- 3 M. R. Norman and A. H. MacDonald, Physical Review B 289 **54**, 4239 (1996). 290
- 4 N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, 291 J.-B. Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, 292
- and L. Taillefer, Nature 447, 565 (2007). 293 $\mathbf{5}$ L. Li, Y. Wang, S. Komiya, S. Ono, Y. Ando, G. D. Gu, 342
- 294 and N. P. Ong, Physical Review B 81, 054510 (2010). 295 6
- F. Yu, M. Hirschberger, T. Loew, G. Li, B. J. Lawson, 344 296 T. Asaba, J. B. Kemper, T. Liang, J. Porras, G. S. Boe- 345 297
- binger, J. Singleton, B. Keimer, L. Li, and N. P. Ong, 346 298 arXiv:1402.7371. 200 347
- 7 G. Grissonnanche, O. Cvr-Choinière, F. Laliberté, S. René 348 300 de Cotret, A. Juneau-Fecteau, S. Dufour-Beauséiour, M.- 349 301
- E. Delage, D. Leboeuf, J. Chang, B. J. Ramshaw, D. A. 350 302
- Bonn, W. N. Hardy, R. Liang, S. Adachi, N. E. Hussey, 351 303
- B. Vignolle, C. Proust, M. Sutherland, S. Krämer, J.-H. 352 304 Park, D. Graf, N. Doiron-Leyraud, and L. Taillefer, Na- 353 305
- ture Communications 5, 3280 (2014). 306 S. C. Riggs, O. Vafek, J. B. Kemper, J. B. Betts, 355 307
- A. Migliori, F. F. Balakirev, W. N. Hardy, R. Liang, D. A. 356 308 Bonn, and G. S. Boebinger, Nature Physics 7, 332 (2011). 357 309
- B. J. Ramshaw, J. Day, B. Vignolle, D. LeBoeuf, 358
- 310 P. Dosanjh, C. Proust, L. Taillefer, R. Liang, W. N. Hardy, 359 311 and D. A. Bonn, Physical Review B 86, 174501 (2012). 312
- G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-313
- Canosa, C. Mazzoli, N. B. Brookes, G. M. De Luca, 362 314
- A. Frano, D. G. Hawthorn, F. He, T. Loew, M. M. Sala, 363 315
- D. C. Peets, M. Salluzzo, E. Schierle, R. Sutarto, G. A. 364 316 Sawatzky, E. Weschke, B. Keimer, and L. Braicovich, Sci-
- 317 ence 337, 821 (2012). 318
- J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, 319 J. Larsen, J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy, 368 320 A. Watenphul, M. V. Zimmermann, E. M. Forgan, and 321
- S. M. Hayden, Nature Physics 8, 871 (2012). 322
- S. Gerber, H. Jang, H. Nojiri, S. Matsuzawa, H. Yasumura, 371 323 D. A. Bonn, R. Liang, W. N. Hardy, Z. Islam, A. Mehta, 372 324
- S. Song, M. Sikorski, D. Stefanescu, Y. Feng, S. A. Kivel-373 325
- son, T. P. Devereaux, Z. X. Shen, C. C. Kao, W. S. Lee, 374 326
- D. Zhu, and J. S. Lee, arXiv:1506.07910. 327
- 13T. Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, 376 328 P. L. Kuhns, A. P. Reves, R. Liang, W. N. Hardy, D. A. 377 329
- Bonn, and M.-H. Julien, Nature Communications 4, 2113 378 330

(2013).331

332

333

334

336

337

338

339

340

341

361

365

366

375

- 14D. LeBoeuf, S. Krämer, W. N. Hardy, R. Liang, D. A. Bonn, and C. Proust, Nature Physics 9, 79 (2013).
- 15M. Hücker, N. B. Christensen, A. T. Holmes, E. Blackburn, E. M. Forgan, R. Liang, D. A. Bonn, W. N. Hardy, O. Gutowski, M. V. Zimmermann, S. M. Hayden, and J. Chang, Physical Review B **90**, 054514 (2014).
- 16C. Marcenat, A. Demuer, K. Beauvois, B. Michon, A. Grockowiak, R. Liang, W. Hardy, D. A. Bonn, and T. Klein, Nature Communications 6, 7927 (2015).
- 17 I. Kokanović, J. R. Cooper, and K. Iida, Europhysics Letters 98, 57011 (2012).
- 18I. Kokanović, D. J. Hills, M. L. Sutherland, R. Liang, and 343 J. R. Cooper, Physical Review B 88, 060505 (2013).
 - 19J. W. Loram, K. A. Mirza, J. R. Cooper, and J. L. Tallon, Journal of Physics and Chemistry of Solids 59, 2091 (1998).
 - 20Z. Hao and J. R. Clem, Physical Review Letters 67, 2371 (1991).
 - 21J. E. Sonier, S. A. Sabok-Savr, F. D. Callaghan, C. V. Kaiser, V. Pacradouni, J. H. Brewer, S. L. Stubbs, W. N. Hardy, D. A. Bonn, R. Liang, and W. A. Atkinson, Physical Review B 76, 134518 (2007).
- 22T. M. Benseman, J. R. Cooper, and G. Balakrishnan, 354 arXiv:1503.00335.
 - 23W. V. Pogosov, K. I. Kugel, A. L. Rakhmanov, and E. H. Brandt, Physical Review B 64, 064517 (2001).
 - S. Bosma, S. Weyeneth, R. Puzniak, A. Erb, A. Schilling, and H. Keller, Physical Review B 84, 024514 (2011).
- 25M. Tinkham, Introduction to Superconductivity, 2nd ed. 360 (Dover, Mineola, New York, 1996).
 - 26Z. Hao and J. R. Clem, Physical Review B 43, 7622 (1991).
 - 27D. LeBoeuf, N. Doiron-Leyraud, J. Levallois, R. Daou, J.-
 - B. Bonnemaison, N. E. Hussey, L. Balicas, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, S. Adachi, C. Proust, and L. Taillefer, Nature 450, 533 (2007).
- 28V. M. Galitski and A. I. Larkin, Physical Review B 63, 367 174506 (2001).
- 29 J. Chang, N. Doiron-Leyraud, F. Laliberté, R. Daou, 369 D. LeBoeuf, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. 370 Hardy, C. Proust, I. Sheikin, K. Behnia, and L. Taillefer, Physical Review B 84, 014507 (2011).
 - C. Schlenker, S. S. P. Parkin, and H. Guyot, Journal of Magnetism and Magnetic Materials 54-57, 1313 (1986).
 - D. C. Johnston, Physical Review Letters 52, 2049 (1984).
 - 32L. E. Hayward, A. J. Achkar, D. G. Hawthorn, R. G. Melko, and S. Sachdev, Physical Review B 90, 094515 (2014)