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We demonstrate that the zero-temperature superconducting phase diagram of underdoped
cuprates can be quantitatively understood in the strong binding limit, using only the experimental
spectral function of the “normal” pseudo-gap phase without any free parameter. In the prototypical
(La1−xSrx)2CuO4, a kinetics-driven d-wave superconductivity is obtained above the critical dop-
ing δc ∼ 5.2%, below which complete loss of superfluidity results from local quantum fluctuation
involving local p-wave pairs. Near the critical doping, a enormous mass enhancement of the local
pairs is found responsible for the observed rapid decrease of phase stiffness. Finally, a striking mass
divergence is predicted at δc that dictates the occurrence of the observed quantum critical point
and the abrupt suppression of the Nernst effects in the nearby region.

PACS numbers: 74.72.-h, 74.20.Mn, 74.40.Kb, 74.20.Rp

Considering the enormous amount of research activi-
ties devoted to the problem of high-Tc superconductivity,
it is hardly an exaggeration to regard it as one of today’s
most important unsolved problems in physics. Specif-
ically in the underdoped region of cuprates, it is now
commonly accepted that the low carrier density in the
system necessarily leads to strong phase fluctuation of
the superconducting order parameter1,2 due to its conju-
gate nature to the number fluctuation. Consequently, the
transition temperature Tc is suppressed significantly be-
low the pairing energy scale that controls all essential as-
pects of the standard theory of superconductivity3. The
crucial role of phase fluctuation2,4,5 has recently gained
strong support from various experiments6–9 in both the
low-temperature superconducting state and the ‘normal
state’ above the transition temperature Tc, and is likely
tied closely to many of the exotic properties2,10–14 in this
region.

Nonetheless, besides this general understanding, sev-
eral key issues remain puzzling in the underdoped re-
gion. In spite of an uneventful evolution of the one-
particle spectral function13, the superfluid density re-
duces dramatically near the observed quantum critical
point (QCP)15 (at the critical doping δc ∼ 5.2% for
doped La2CuO4), below which superconductivity ceases
to exist even at zero temperature. The current consider-
ation of phase fluctuation2 would only indicate a softer
phase at lower carrier density, but offers no explanation
for the complete suppression of superconductivity at zero
temperature at δ < δc. Particularly in La2CuO4, δc is
quite far away from the antiferromagnetic (AF) phase
boundary, rendering the common consideration of com-
peting order unsatisfactory. This vanishing of supercon-
ductivity below δc, the nature of the QCP, the dramatic
reduction of superfluid density nearby, and the control-
ling factor of the value of δc, all remain challenging to
our basic understanding.

Perhaps the most puzzling observation is the sudden
suppression of the observed Nernst effect at T > Tc
around the same critical doping δc

16. This indicates

that not only the long-range phase coherence, but also
the shorter-range phase coherence is lost near the QCP,
a phenomenon unexplainable via simple fluctuation sce-
nario, for example due to low dimensionality.

In this letter, we demonstrate that these puzzles can
be quantitatively understood in the strong binding limit
of local pairs of doped holes. We obtain the zero-
temperature underdoped phase diagram with no need for
any free parameter, other than the experimental one-
particle spectral function of the pseudo-gap “normal”
state. A kinetics-driven d-wave condensate is found at
δ > δc, with a largely enhanced bosonic mass, m∗ >
40me. In great contrast, ground states consisting of fluc-
tuating p-wave pairs are found at δ < δc, incapable of
sustaining a condensate. At δ = δc, a mass divergence
results from the degeneracy of local d- and p-wave sym-
metry, dictating the presence of the QCP. Correspond-
ingly, near the QCP δ ≥ δc, the diverging mass explains
the puzzling dramatic reduction of phase stiffness in both
long range and shorter range. Our study provides a novel
yet simple paradigm to the behavior of local pairs in un-
derdoped cuprates, and is expected to inspire new set of
experimental confirmation, as well as re-interpretation of
existing experimental observations.

Conceptually, a phase-fluctuation dominant supercon-
ductivity hosts relatively negligible amplitude fluctuation
of the order parameter at low energy/temperature. This
implies that the effective low-energy Hamiltonian for the
charge and pairing channels must have integrated out
all pair-breaking processes to conserve the amplitude of
the order parameter, for example, as in the x-y model17.
The higher-energy pairing scale should then manifest it-
self only through a strong “pair-preserving” constraint of
the low-energy Hamiltonian. This is in perfect analogy to
the replacement of repulsion U of the Hubbard model by
a “no double occupancy” constraint in its lower energy
counterparts, say the t-J model. Consequently, a new
paradigm for the low-energy physics emerges at T ≤ Tc,
which differs completely from the emphasis of amplitude
fluctuation in the standard theories. In this new phys-
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FIG. 1: (Color online) Doping dependent band dispersion
obtained from experiment26,27 [dots in (a)], Eq.(1) [lines in
(a)], and the t-J model28 (b), with chemical potential at zero.
(c) Corresponding τ , τ ′ and τ ′′ in the hole picture. (d) Doping
dependence of the effective mass of holes m∗h in the major
directions indicated by the arrows in the inset.

ical regime, the detail of the pairing mechanisms (AF
correlation5,18–21, spin-fluctuation22, or formation of bi-
polaron23) are no longer essential. Instead, the physics is
now dominated by the effective kinetic energy that con-
trols the phase coherence. Since only one energy scale is
essential in this regime, the low-energy physics should be
universal and simple.

Below, we proceed to 1) obtain the effective kinetics of
the doped holes from the experimental one-particle spec-
tral function in the “normal state” pseudogap phase, 2)
derive the effective motion of tightly-bound pairs of holes
under the pair-preserving constraint, and 3) solve the re-
sulting bosonic problem to address the physical issues
quantitatively without any free parameter.

1) Effective kinetics The dots in Fig. 1(a) gives the dis-
persion of the main features in the experimental spectral
functions of the ”normal state” of (La1−xSrx)2CuO4 in
the pseudogap phase, obtained by angular-resolved pho-
toemission spectroscopy (ARPES)26,27. One notices im-
mediately that the dispersion is strongly doping (δ) de-
pendent, especially near (π,0). Judging from the close
resemblance to the published t-J model solutions28 in
Fig. 1(b), this strong band renormalization likely origi-
nates from the competition between the bare kinetic en-
ergy and the AF interaction.29 The effective kinetics of
carriers can then be captured by the irreducible kinetic
kernel τ ≡ G−1L −G−1 (in matrix notation and in the hole
picture) through the measured one-particle propagator
G and a reference non-propagating Green’s function GL,
defined with a single pole at the central energy of the
band. The real part of the off-site elements of τ thus
controls the propagation of the carriers, just like the ef-
fective hopping matrix elements. The imaginary part of
τ gives the decay of carriers and becomes large at ω > 0.3
eV where the spectral function is broad and quasiparticle
description no longer applies. Since only the average mo-
tion at long time scale is of significance in this study, we

will drop the imaginary part and represent the average
kinetics via

H =
∑
ii′

τii′c
†
i ci′ + h.c. (1)

for simplicity24. In this case, τii′ is equivalent to those
from a tight-binding fit of the experimental dispersion.

Note that this Hamiltonian is only meant to cap-
ture the average effective kinetics of the fully renormal-
ized one-particle propagator. It does not contain infor-
mation of the pairing interaction that connects to the
high-energy sector. The use of Hamiltonian representa-
tion here is merely for better clarity of the underlying
physics24. Furthermore, τ is to be distinguished from
the “bare” hopping parameter t commonly used in the
Hubbard or t-J model, as τ have fully absorbed the ef-
fects of interactions and constraints. Finally, the actual
carriers do not need to be quasi-particles, and their ”dif-
fusive” nature near (π,0) can be included by keeping the
full τ in the study24,25, and all our physical conclusions
below would remain.

The resulting doping dependent first, second and third
neighbor kernels, τ1, τ ′ and τ ′′, are shown in Figure 1(c),
and correspond to dispersion curves [lines in Fig. 1(a)]
comparable to the experimental ones. Interestingly, as
δ decreases, τ ′′ is found to increase steadily approaching
the value of τ ′, and then exceeds τ ′ right at δc! This is
apparently not a coincidence, and reveals an important
clue to the nature of the QCP to be discussed below.
Due to the strong AF correlation, the fully dressed τ1
is negligibly small at the underdoped regime and will
be dropped from our further analysis. As a reference,
Fig. 1(d) also shows a weakly doping dependent effective
mass of the doped holes, m∗h, for δ > 5.2% in three major
directions, consistent with the current lore30.

2) Motion of Tightly-Bound Pairs Since it is unlikely
that doped holes can doubly occupy the same site in a
weakly doped AF Mott insulator, it is reasonable to as-
sume that under a strong binding, pairs mostly consist
of nearest neighboring holes. It is thus convenient to

employ a bosonic representation of pairs, b†ij = c†i↑c
†
j↓, lo-

cated at neighboring site i and j with opposite spin. Such
a real-space hole pair can result from numerous high-
energy mechanisms5,20,21,23, and is to be distinguished
from the real-space singlet pair of electrons in RVB-like
constructions31.

Now, consider the motion of a single pair of holes
(blue and red filled diamonds) located in the fermion lat-
tice in Fig. 2(a). Under the pair-preserving constraint,
only three potential destinations (empty diamonds) for
each hole are allowed, two via second neighbor hopping,
τ ′, one via third neighbor hopping, τ ′′. Converting to
the lattice of bond-centered pairs in Fig. 2(b), one finds
a checkerboard lattice consisting of two nonequivalent
sites, each connecting to four first neighboring sites via
τ ′, but to only two second neighboring sites via τ ′′. This
pivoting motion of the paired holes can then be repre-
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FIG. 2: (Color online) Illustration of kinetic processes of a
pair of holes (filled diamond) to its six allowed destinations
(open diamonds) under the “pair-preserving” constraint (a),
through τ ′ (solid lines) and τ ′′ (dashed lines). The same is
equivalently represented by ellipsoids denoting a pair and its
allowed six neighbors (b). The yellow area denotes the ‘ex-
tended hardcore constraint’ that excludes other pairs.

sented by

Hb =
∑
ii′j

τii′b
†
ijbi′j + h.c. (2)

The same motion was previously derived via a rigor-
ous separation of many-body Hilbert subspace of paired
holes32. Optionally, one can also include both the real
and imaginary part of τ via the equation of motion,
or the ladder diagrams24,25. Although, inclusion of the
imaginary part of τ introduces broadening of the bosonic
propagator at higher energy, but has little effect on the
condensation taking place at low energy.

Note that the hole pairs b’s are under a strong ‘ex-

tended hardcore constraint’: b†ijb
†
i′j′ = 0 if i = i′ or

j = j′. This is inherited from the Pauli exclusion prin-
ciple of the original fermion operators and that double
occupancy of electrons are not allowed in the low-energy
sector. Indicated by the yellow area in Fig. 2(b), this
constraint forbids occupation by another pair at any of
the six potential hopping destinations of a pair. It can
be considered as an infinite short-range repulsion that
determines the bare scattering length between pairs, and
is responsible for stabilizing the bosonic system against
phase separation33.

3) Results We diagonalize Eq.(2) first without the ex-
tended hardcore constraint, using a unit cell containing
four sites shown in Fig. 2(b). This choice explicitly allows
one s-, two p-, and one d-wave superposition within the
unit cell, and equates the doping level per unit cell in this
lattice and that in the standard fermion lattice. Fig. 3(c)
illustrates the resulting band structure in the supercon-
ducting phase at doping δ = 15% > δc. It shows that
at low enough temperature a Bose-Einstein condensate
(BEC) would take place at a single minimum at momen-
tum q = 0, with a pure d-wave symmetry (red color).
As in standard dilute bosonic systems, one thus expects
a d-wave superfluid with finite stiffness, once a scatter-
ing length (derived primarily from the extended hardcore
constraint) is switched on.

The local d-wave structure of the pair is better il-
lustrated in real space via the corresponding Wan-
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FIG. 3: (Color online) The band dispersion of the hole pairs
without the extended hardcore constraint, at δ < δc(a), δ =
δc(b), and δ > δc(c). (d) and (f) illustrates the dominant
kinetic process and the Wannier function corresponding to the
lowest band in (a) and (c) respectively. (e) Strongly enhanced
effective mass of the pairs m∗ and the mass of the holes, m∗h.

nier function in Fig. 3(f), computed from the Fourier
transform of the Bloch functions of the lowest band.
The low-energy pairs has clear d-wave symmetry with
nodes along the (π, π) directions of the standard
Fermion lattice, in perfect agreement with the experi-
mental observations.13,34,35 (Notice in Fig. 2(a) that our
fermionic lattice is rotated by 45◦ from the usual conven-
tion.)

We stress that our resulting local d-wave symme-
try is completely driven by the fully screened kinetic
energy.36,37 It originates from the dominance of positive
τ ′ of the local pair, which prefers energetically opposite
sign of the wave function across first neighbors, thus fa-
voring a d-wave symmetry [see Fig. 3(f)]. In comparison,
the positive τ ′′ favors opposite sign across the second
neighbors, thus p-wave symmetry [see Fig. 3(d)]. There-
fore, τ ′ and τ ′′ compete by lowering the band energy of
d- and p-bands, respectively.

This explains the long-standing puzzle of lack of su-
perconductivity at lower doping (δ < δc). Since in this
region τ ′′ > τ ′ [c.f. Fig. 1(c)], Fig. 3(a) shows that local
p-wave pair has lower energy than d-wave pairs. Further-
more, in the checkerboard lattice in Fig. 2(b), the parity
of p-states dictates a line of degeneracy (green flat band
in Fig. 3) from (0,0) to (π,π). The pairs can therefore
populate any arbitrary state along this line without ever
forming a BEC. The system is thus composed of incoher-
ent p-wave pairs, an effect of quantum phase fluctuation
beyond the original consideration of thermal phase fluc-
tuation2.

The competition between d-wave and p-wave also offers
a natural explanation of the dramatic phase softness and
the low superfluid density of the underdoped cuprates.
Indeed, even near the optimal doping (δ ≈ 15%), the
comparable value of τ ′′ and τ ′ leads to a large effective
mass of the pair m∗ = (h̄2/l2)d2εk/dk

2 ≈ 12m∗h ≈ 59me
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FIG. 4: (Color online) Experimental supports of predicted
mass divergence via (a) non-linear doping dependence of in-
verse penetration depth and (b) non-linear correlation be-
tween inverse penetration depth and transition temperature
Tc.

(l being the lattice constant). This gives a rather long

penetration depth λ =
√

m∗c2

4πe2ns
≈ 7000Å (taking ns ∼ δ

per unit cell), in reasonable agreement with the exper-
imental value38. Furthermore, as δ decrease toward δc,
τ ′′ grows to the value of τ ′, reducing the separation of
the d-band and the p-band, and in turn flattening the
d-band. The effective mass of the d band thus increases
significantly (Fig. 3(e)), consequently giving rise to the
observed very small phase stiffness.

This analysis reveals the simple yet exotic nature of the
observed QCP at the end of the underdoped supercon-
ductivity region δc = 5.2%: It is dictated by the diverg-
ing effective mass of the local pairs [Fig. 3(e)]. At this
point τ ′ = τ ′′ and the d-wave and p-wave pairs become
locally degenerate and the d-band is thus completely flat,
as shown in Fig. 3(b). Since the effective mass now di-
verges, the pairs can no longer propagate and align the
phase to develop a condensate. In essence, it is the per-
fect quantum interference between τ ′ and τ ′′ that renders
the local pairs immobile, and in turn disables the phase
coherence of superconductivity.

This result also explains nicely the puzzling dramatic
suppression of diamagnetic response39 and Nernst sig-
nal16 near δc. Indeed, within phase fluctuation scenario,
a divergent mass might be the only way to completely
suppress the shorter-range coherence responsible for a
strong diamagnetic response.

Our predicted mass divergence near QCP is actu-
ally strongly supported by experimental measurements
of penetration depth λ of the underdoped YBa2Cu3Oy

samples. Figure 4(a) shows that over the entire under-
doped region, the measured λ−240 deviates significantly
from the simple λ−2 ∝ δ relationship to be expected
with a constant effective mass. On the other hand, our
theory with large doping-dependent effective mass repro-
duces very nicely the experimental observation. A even
more direct evidence is provided by the recent measure-
ment on the extremely underdoped YBa2Cu3Oy samples
near the QCP7. The observed relationship between low-
temperature λ−2 and Tc in Fig. 4(b) shows a strong non-
linear dependence. In fact, the same behavior has also
been observed via mutual inductance41. The zero slope
at λ→ 0 can be interpreted as an indirect evidence of the

mass divergence, and our theory reproduces very nicely
the experimental observation42.

Our analysis has wide scope of implications in the elec-
tronic structure of the underdoped cuprates that deserve
further investigations. As δ decreases toward δc, the di-
verging mass makes perfect sense to the observed dra-
matic enhancement of the isotope effect43, as coupling
to the slower lattice degree of freedoms is more effec-
tively for heavier pairs. Similarly, together with mass
enhancement, the proximity to the incoherent local p-
wave [c.f.:Fig. 3(c)] allows the observed increase of resid-
ual specific heat44. Given their finite amplitude along the
d-wave nodal directions [c.f.:Fig. 3(d)(f)], the enhanced
fluctuation to local p-wave pairs also can explain the re-
cently observed pseudogap along the nodal direction45

in heavily underdoped samples. At δ < δc, the infinite
degeneracy of the incoherent p-wave along the antinodal
directions [c.f.:Fig. 3(a)], with their infinite mass and un-
usually enhanced scattering, gives a new paradigm to the
insulating46 glassy47 electronic structure and the non-
fermi-liquid transport48 Our result suggests that the sys-
tem is glassy not only in the spin channel, but also in
the charge and pairing channel as well. Obviously, our
theory is consistent with the observed charge 2e quanta
across the superconducting-insulating transition49, which
raised the serious issue ”How can a system of charge 2e
bosons be insulating? If it is just Anderson localization,
how can δc not present strong sensitivity to disorder?”
Our result provides a long-sought disorder-insensitive al-
ternative paradigm. Finally, it is curious to notice, across
δc, the same 45◦ rotation in the directions of the domi-
nant hopping, the nodal structure of local pairs, and the
observed stripe correlation50.

In conclusion, we demonstrate that all the key features
of superconductivity in the underdoped cuprates can be
described quantitatively in the strong binding limit, with-
out use of any free parameter. The d-wave symmetry is
found to originate from the renormalized kinetic energy,
and the observed superconductivity can be understood
as a superfluid of a dilute real-space hole pairs. Our
result explains the lack of superconductivity at δ < δc
due to quantum fluctuation associated with incoherent
local p-wave pairs. In the underdoped regime, a large
effective mass enhancement of the hole pairs is found re-
sponsible for the observed weak phase stiffness. Finally,
the observed δ = 5.2% QCP is found dictated by the
divergence of the effective mass of the hole pairs, which
also make sense the dramatic reduction of diamagnetic
response (the Nernst effect) near the QCP. These suc-
cesses support strongly a simple description of bosonic
condensate for the underdoped cuprates and enable fur-
ther reconciliation of seemingly contradicting experimen-
tal conclusions in the field.

We acknowledge useful discussions with Maxim Kho-
das and Chris Homes, and comments from Alexei Tsvelik
and Weiguo Yin. This work was supported by the U.S.
Department of Energy, Office of Basic Energy Science,
under Contract No. DE-AC02-98CH10886.
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