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We predict that guiding center (GC) diffusion yields a linear and non-saturating (transverse)
magnetoresistance in 3D metals. Our theory is semi-classical and applies in the regime where the
transport time is much greater than the cyclotron period, and for weak disorder potentials which
are slowly varying on a length scale much greater than the cyclotron radius. Under these conditions,
orbits with small momenta along magnetic field B are squeezed and dominate the transverse conduc-
tivity. When disorder potentials are stronger than the Debye frequency, linear magnetoresistance is
predicted to survive up to room temperature and beyond. We argue that magnetoresistance from
GC diffusion explains the recently observed giant linear magnetoresistance in 3D Dirac materials.

Magnetoresistance provides a powerful means with
which to probe the scattering history of particles in
a magnetic field. Departure from the conventional
paradigm - quadratic magneto-resistance at low fields,
saturating at high fields [1] - signals anomalous particle
scattering behavior. One particularly appealing regime
is non-saturating and linear magnetoresistance (LMR),
which has a long standing history [2–5] given its poten-
tially disruptive technological impact [6].

Very few theories predict LMR in a closed single com-
ponent Fermi surface. A well known example is Ref. [7],
which showed that Dirac metals in the extreme quantum
limit (when only the n = 0 Landau level is occupied)
exhibit LMR in the presence of screened Coulomb im-
purities. Another mechanism yielding quasi-linear MR
arises from inhomogeneity [8–10]. However, significant
LMR in these requires strong inhomogeneity [10]. Con-
temporary proposals that extend the above treatments,
have also found LMR under similar requirements [11, 12].

Recently, giant LMR that lie outside the above two
paradigms [see (i) and (ii) below] was reported in the
newly discovered class of three-dimensional Dirac mate-
rials (3DDM) [13–17]. LMR in 3DDM exhibit puzzling
features including (i) its occurrence when multiple Lan-
dau levels are occupied far from the extreme quantum
limit, and (ii) arising in weakly disordered, high mobil-
ity samples. Further, LMR manifests consistently over a
variety of 3DDM experiments, including in TiBiSSe [13],
Cd3As2 [14, 15], Na3Bi[16], and TaAs [17], where chemi-
cal potential µ typically lies 0.1 eV above the Dirac point,
hinting at a single underlying explanation.

Here we propose a semi-classical mechanism for LMR
in metals, wherein charge transport is dominated by
guiding center (GC) motion. Importantly, this mecha-
nism naturally gives giant LMR under (i) and (ii) above,
explaining the puzzling behavior [13–17]. The main re-
quirement is that the disorder potential is smoothly vary-
ing on a scale, ξ, which is large as compared to the cy-
clotron radius, rc. The main features of GC magnetore-
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FIG. 1: a) Magnetoresistance can be dominated by guiding
center (GC) motion when disorder correlation lengths ξ � rc.
Here rc is the cyclotron radius. This regime is characterized
by slow GC motion, vgc = ∇rV (r) × ẑ/B, accompanied by
fast cyclotron orbits, vcycl. GC diffusion in this environment
givers rise to LMR. b) Electrons perform closed orbits of the
Fermi surface, with GC motion classified into two types, kz <
k∗z (red), and kz > k∗z (blue); critical k∗z (green). c) For
kz < k∗z , electrons are squeezed in z yielding mean free paths
` ≈ ξ and in-plane Dxx ∼ vgcξ ∝ 1/B. d) In contrast, kz >
k∗z electrons exhibit unconstrained z motion yielding in-plane
Dxx ∼ v2gcξ/vz ∝ 1/B2 (see text).

sistance are exposed by writing the transverse resistivity
as

ρxx =
σxx

σ2
xx + σ2

xy

=
G
σxy

, G =
tanθH

1 + [tanθH ]2
, (1)

where σxx and σxy are the transverse (x-y plane) conduc-
tivity and Hall conductivities respectively, and tanθH =
σxy/σxx is the Hall angle. Using the familiar σxy = ne/B
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with n the density, and e the carrier charge, we have

ρxx =
BG
ne

. (2)

As we argue below, in the regime of ωcτtr � 1 and ξ �
rc, GC diffusion gives a Hall angle, and therefore G, that
is independent of magnetic field magnitude, leading to
LMR in Eq. (2). Here ωc is the cyclotron frequency, τtr
is the transport time, and the magnetic field B = Bẑ.

Guiding center magnetoresistance can be understood
as follows. In semi-classically large B fields (ωcτtr � 1),
electrons exhibit in-plane trajectories r⊥(t) characterized
by slow guiding center motion R(t) accompanied by fast
cyclotron orbits rcycl(t). The latter, characterized by rc,
depends on intrinsic material properties and B; whereas
the former depends on the potential profile sampled by
the electron over one cycle which can yield unusual tra-
jectories [18]. A unique situation arises for slowly varying
disorder potentials V (r). In this regime ξ � rc (see Fig.
1a), electron trajectories are dominated by guiding cen-
ter motion which follows the local disorder landscape at
R, with velocity vgc = [∇RV (R)]× ẑ/B.

Guiding center diffusion is characterized by diffusion
constant Dgc

xx ∼ v2gcτ . The central question is: what is τ?
First, it is important to note this picture is not valid in
strictly 2D, because GCs form closed orbits along equipo-
tential lines. Hence it is crucial to include motion in the z
direction which restores diffusive motion. There are two
classes of electron motion depending on their kz value
with respect to k∗z (Fig. 1b). For kz > k∗z , electrons
possess kinetic energy in the z direction exceeding the
typical potential fluctuation. As a result, the electron
moves freely across many potential fluctuations shown in
Fig. 1d. Within time τ> ≈ ξ/vz, the GC senses a differ-
ent local electric field and changes direction. As a result,
Dgc
xx(kz > k∗z) ∼ v2gcτ> ∝ 1/B2. Using σxy = ne/B and

Eq. (1), we recover the standard saturated magnetoresis-
tance.

On the other hand, electrons with kz < k∗z are typ-
ically squeezed by a local potential barrier. As shown
in Fig. 1c, they must travel sideways by a distance ξ
to get around the barrier. In this case, τ< ≈ ξ/vgc
and Dgc

xx ∼ vgcξ ∼ 1/B; LMR follows immediately from
Eq. (1) and (2). Paradoxically for large B, it is the elec-
trons squeezed in the z direction which dominate trans-
port in the x-y plane, leading to LMR. The importance of
squeezed electrons was pointed out by Ref. [19, 20] in the
context of magneto-transport of Boltzmann gases. We
adapt their reasoning to the case of a degenerate Fermi
sea and present a more quantitative treatment below.

We emphasize that our mechanism for LMR does not
have anything to do with the Dirac spectrum per se. Nev-
ertheless, 3D Dirac semi-metals provide an ideal venue
that satisfy the conditions required for LMR. First, the
high mobility of 3DDM (η >∼ few × 104cm2/Vs) allows
the regime where electrons undergoes many cyclotron or-

bits before scattering, ωcτtr = Bη � 1, to be achieved
at relatively low magnetic fields. Second, the relatively
small chemical potential µ ∼ 100 meV but large Fermi
velocity vF ∼ 1−10×108 cm/s [15], give small cyclotron
radius rc ∼ µ/evFB = 10 − 100 nm at 1 T. Third,
large dielectric constants of κ ∼ 40 [21, 22] effectively
screen Coulomb impurities to yield weak and slowly vary-
ing disorder potentials, with large correlation lengths,
ξ ∼ 20 − 60 nm [22]. As a result, ξ � rc at relatively
low B >∼ 1 T, allowing GC to dominate the x-y plane
(transverse) magnetoresistance.

We note parenthetically that our regime of interest is
distinct from multi-component systems e.g., charge com-
pensated systems which can be ultra-sensitive to mag-
netic field [23, 24]. Instead we are interested in LMR
in 3DDM [13–17] which were observed in the metallic
regime with carriers in a single band [14].

We begin by considering the diffusive motion of
charged particles in a magnetic field, B = Bẑ, and a
slowly varying and weak disorder potential V (r). While
formally interested in 3DDM, our analysis below is gen-
eral; we will only specify 3DDM as needed to com-
pare to recent experiments. Disorder is characterized
by 〈V (r)V (r′)〉 = V 2

0 F(|r − r′|/ξ), where 〈O〉 denotes
disorder averaging, and ξ the correlation length. F is
a dimensionless function that vanishes for |r − r′| � ξ.
Lastly, we will be interested in weak disorder strength
eV0 < µ seen in 3DDM experiments [13–17], and recent
estimates [22].
Equations of motion - The motion of particles on the

Fermi surface with chemical potential µ can be described
by the semi-classical equations of motion

mv̇⊥ = −e∇rV (r) + ev⊥ ×B, (3a)

mv̇z = −e∂zV (r), (3b)

where m is the cyclotron mass, v⊥(kz, µ) = (vx, vy), and
vz(kz, µ) are velocities transverse to the magnetic field
and along the magnetic field respectively. We note that
throughout our analysis below, these quantities depend
on momentum along the field, kz, and µ. For e.g., ve-
locity is captured via group velocity vk = h̄−1∂εk/∂k so
that the x-y plane speed for Dirac particles is |v⊥| = v0 =
vF
√

1− k2z/k2F , and m = µ/v2F [25], where vF is Fermi
velocity, and kF the Fermi wave vector; εk is the particle
dispersion. For brevity, we will drop explicit mention of
kz dependence, bringing it up when necessary. Lastly,
we note parenthetically that Berry phase related terms
do not contribute to the transverse magnetoresistance
behavior that we are interested in here [26].

The trajectories of charged particles, r(t), in crossed
B and V (r) can be complex, since they involve transport
processes spanning multiple time scales (e.g., cyclotron
period, guiding center scattering time, and transport
time). However, in semi-classically strong fields (ωcτtr �
1), and for a slowly varying potential so that correlation
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length is larger than cyclotron radius (ξ � rc), its motion
is conveniently captured via r(t) = R(t) + rcycl(t). Here
R(t) is the slow moving 3D guiding center coordinate,
whereas rcycl(t) describes fast cyclotron motion lying in
the x-y plane.

This reasoning yields the following ansatz for velocity
in the r⊥ = (rx, ry) plane v⊥ as [18]

ṽ⊥(t) = v0e
iωct + ṽgc(t), ṽgc =

iẼ(r̃⊥)

B
, (4)

where ωc = eB/m, and used complex notation Ox +
iOy = Õ for vectors in the x-y plane. The latter part
of Eq. (4) was obtained by substituting the ansatz into
Eq. (3a) and setting mv̇gc = 0 for slowly varying V (r̃).
Eq. (4) is valid for |mv̇gc| � |eE(r̃⊥)|. Estimating E ≈
V0/ξ, we obtain the condition

ξ2 � eV0
ω2
cm

= r2c
eV0
µ
, where rc =

v0
ωc
. (5)

Since we are interested in weak disorder eV0 < µ, the
above condition is satisfied within our regime of validity,
ξ � rc.

Motion in z can be understood in the following way.
First, we note that for ξ � rc and ωcτtr � 1, the po-
tential the electron feels is determined by 〈r(t)〉1 cycle =
R(t). Next, for vgc � vz electrons, the GC moves slowly
in the x-y plane as compared with z. As a result, inte-
grating Eq. (3b) yields energy conservation

m

2

{
v2z [R(t)]−v2z [R(0)]

}
= −e

{
V [R(t)]−V [R(0)]

}
, (6)

where we have set ∇r⊥V (r)·∂tr⊥ = 0. This is valid when
|∇r⊥V (r) · ∂tr⊥| � |vz∂zV (r)|. Estimating |∂tr⊥| ≈ vgc
and using disorder that is isotropic, yields the original
condition vgc � vz.

Guiding Center Transport - The separation of time
scales between slow GC motion, and fast cyclotron mo-
tion enables us to write the velocity correlator as

〈v⊥(t)v⊥(0)〉 ≈ 〈vgc(t)vgc(0)〉+ v20e
iωct−t/τtr , (7)

where we have used a relaxation-time approximation in
the last term to capture the Drude contribution to mag-
netotransport [18].

Replacing r(t) with its average over one cycle as
above, and using Eq. (4), we find GC diffusion, Dgc

xx =
(1/2)

∫∞
0
〈vgc(t)vgc(0)〉dt, as

Dgc
xx =

∫ ∞
0

〈E[R(t)]E[R(0)]〉dt/(2B2) = E2
0τ/(2B

2),

τ =

∫ ∞
0

dtF(∆R/ξ), (8)

where ∆R = |R(t)−R(0)|, E0 is the characteristic elec-
tric field strength of the disorder potential, and τ is the
scattering time that is sensitive to the GC trajectory.

We adopt a mean-field approach in estimating τ . Since
F rapidly decays for ∆R > ξ, τ is most sensitive to the
way the GC moves in ∆R(t) < ξ. As a result, we write
d∆R = vavdt, with speed vav = [〈vgc〉2ξ + 〈vz〉2ξ ]1/2 aver-
aged over a single domain; here 〈O〉ξ denotes averaging
across a single domain ξ. Changing variables t → ∆R,
yields

τ ≈ ξA[
〈vgc〉2ξ + 〈vz〉2ξ

]1/2 , A =

∫ ∞
0

dxF(x) (9)

where A is a number of order unity. Using gaussian cor-
relations, 〈V (x)V (0)〉 = V 2

0 F(x) = V 2
0 e
−x2/ξ2 we obtain

A =
√
π/2, and E2

0ξ
2 = 6V 2

0 .
Two distinct classes of GC trajectories can be dis-

cerned: (a) squeezed z-motion (Fig. 1c), and (b) unre-
stricted z-motion (Fig. 1d). Squeezing in class (a) arises
from energy conservation in Eq. (6): for particles with
mv2z/2 < V (r), z-motion is constrained within a V (r)
puddle. It escapes when GC diffuses out of the V (r)
puddle (Fig. 1c). Squeezing yields 〈vz〉ξ that vanishes
and vav ≈ 〈vgc〉ξ ≈ E0/B. As a result, Eq. (9) yields
τ< ≈ ξA/〈vgc〉ξ and

Dgc
xx =

E0ξA
2B

, for vz <∼ (e2V0/m)1/2 = v∗, (10)

corresponding to electrons in Fig. 1b with kz < k∗z ; k∗z
depends on the dispersion relation and v∗. For 3DDM,
h̄k∗z = (e2V0µ/v

2
F )1/2. We note that Eq. (6) can only be

used for electrons with vz � vgc, Eq. (6). However, in
the opposite limit vz � vgc, 〈vz〉2ξ is obviously smaller

than 〈vgc〉2ξ in Eq. (9), allowing us to neglect the former’s
contribution, yielding Dgc

xx as in Eq. (10). As a consis-
tency check, we note that v∗ � vgc for our regime of
validity ξ � rc, eV0 < µ [31]. Therefore v∗ determines
the range of electrons that obey Eq. (10).

In contrast to Eq. (10), electrons with vz >∼ v∗ do not
have z-motion squeezed [case (b), see Fig. 1d]. As a re-
sult, GC samples many V (r) domains, with its x-y plane
velocity scrambled over times τ> ∼ ξ/vz, yielding an x-y
plane mean free path ` ∼ vgcξ/vz. This is captured in
Eq. (9) whence 〈vgc〉ξ � 〈vz〉ξ, giving vav ≈ 〈vz〉ξ ≈ vz.
As a result, Eq. (9) yields Dgc

xx ∝ 1/B2. Importantly, for
sufficiently large B, vz > v∗z electrons, while mobile in
the z direction, exhibit suppressed x-y plane mobility as
compared with vz < v∗z . As a result, (a) dominates x-y
plane transport.
Linear Magnetoresistance in 3DDM - To illustrate the

striking effects of GC diffusion we specialize to 3DDM.
Using the Einstein relation, and Eq. (8-10), we obtain

σgc
xx = e2

∑
k

Dgc
xx(kz)δ(εk − µ) = α

[ 1

B
+

B̃

B2

]
, (11)

where εk is the electron energy, α/(e2ν2D) ≈
E0ξAk∗z/(4π), and B̃ ≈ (E0/v∗) × ln(kF /k

∗
z). Here we
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have used the 2D density of states for a kz slice in 3DDM
as ν2D(µ) =

∑
kx,ky

δ(εk − µ) = µ/2πh̄2v2F , and Dgc
xx(kz)

obtained from the two trajectory classes (a) and (b). We
note that the first term dominates over the second when
B > B̃. It is useful to re-write this condition as rc < ξK,
where K =

√
2(µ/eV0)1/2 × (ln[kF /k

∗
z ])−1 >∼ 1, since we

are interested in µ > eV0. Hence, the first term always
dominates in our regime of validity, ξ � rc.

In the same way, the second term in Eq. (7) yields the
usual expressions

σcycl
xx =

∑
kz

ζτtr, σxy =
∑
kz

ζωcτ
2
tr ≈

ne

B
, (12)

where ζ = e2ν2D(µ)v20/[2(1 + ω2
cτ

2
tr)]; we have taken

ωcτtr � 1 limit in the last expression. Since σcycl
xx ∝

1/B2, for sufficiently large fields it provides a negligible
contribution to σxx as compared with Eq. (11).

An important diagnostic of magnetotransport is the
Hall angle, tanθH = ρxy/ρxx = σxy/σxx. Using Eq. (11)
and writing σxx = σgc

xx (neglecting σcycl
xx since ωcτtr � 1),

we obtain a B-field magnitude independent

tanθH =
2√
27π

( µ

eV0

)3/2
, (13)

where we have used n = µ3/6π2h̄3v3F for a single fermion
flavor in 3DDM, and gaussian correlated 〈V (r)V (r′)〉.
We note that the Hall angle changes sign when B field
flips sign. Interestingly, the Hall angle can be tuned by
V0 and µ. Estimating V0 ≈ 20 mV in 3DDM [22], and
µ ∼ 0.1 eV [13–17], we obtain tanθH ≈ 2.4.

We note that tunable Hall angle [Eq. (13)] controls G.
Indeed, G is a non-monotonic function of Hall angle (and
hence it depends on µ/eV0), reaching a peak when Hall
angle becomes unity.

To summarize, we find that under the conditions
ωcτtr � 1, ξ � rc, µ > eV0, G is independent of B
field magnitude, yielding LMR according to Eq. (2). Of
the first two conditions, ξ � rc can be expressed as
B > Bc = mvF /(eξ) which is a more stringent condi-
tion than ωcτtr � 1. This is seen by estimating τtr using
the Born approximation, giving Bc that exceeds the field
marking the onset of ωcτtr > 1 by a factor ∼ (µ/eV0)2.
Hence, we predict LMR as long as B > Bc.

An important figure of merit for magnetoresistance is
the ratio MR =

[
ρxx(B)−ρxx(0)

]
/ρxx(0). Using Eq. (2),

and noting the mobility η = σxx(0)/ne, we obtain

MR =
ρxx(B)− ρxx(0)

ρxx(0)
≈
(η[cm2/Vs]

104

)
× B[T]× G.

(14)
For typical η ≈ 1− 20× 104 cm2/Vs in 3DDM, Eq. (14)
yields giant MR ≈ 5 − 100 at B = 10 T. Here we have
used maximal G = 1/2. For fixed G, Eq. (14) is consistent
with Kohler’s rule [27] since it scales with mobility. This

mirrors the experiments where MR scaled with temper-
ature dependent mobility over wide range of B [15].

We note that for other dispersions, our treatment
above follows through yielding LMR under the same con-
ditions of ωcτtr � 1, ξ � rc, µ > eV0. However, features
e.g., k∗z , α and Hall angle are altered appropriately [32].
Inelastic scattering - Energy relaxation through in-

elastic scattering (e.g. through phonon scattering) in the
z-direction can drastically affect GC motion by mixing
squeezed z with unconstrained z trajectories. Absorp-
tion of phonons with h̄ω >∼ V0 − m

2 v
2
z relaxes the energy

constraint [Eq. (6)], allowing vz < v∗ electrons to jump
out of V (r) troughs. If τ< ≈ ξ/vgc >∼ τin(ε = V0 − m

2 v
2
z),

these electrons exhibit Dxx(kz) ∝ 1/B2. Here τin(ε) is
the time for an electron to absorb energy ε. Suppressed
at low T, phonon-assisted escape leads to LMR degrada-
tion when kBT >∼ V0.

However, when typical V0 � h̄ωD, phonon-assisted es-
cape becomes difficult even at high temperatures since
the maximum energy that can be absorbed from phonons
is h̄ωD � V0; ωD is the Debye frequency. As a result, in
this regime LMR is stable even at high temperatures and
large fields, as recently observed in Cd3As2 [14, 15] where
LMR persisted at 300 K and high fields.

While detrimental to LMR from GC diffusion in 3D, in-
elastic scattering can have the opposite effect in 2D. Con-
ventionally in 2D, GCs form closed orbits along equipo-
tential lines of a disorder potential yielding localization
behavior [28]. However, for inelastic phonon scattering
which is not so strong to entirely disrupt the GC mo-
tion, but strong enough (ξ/vgc � τin) to induce switch-
ing between adjacent equipotentials [29], the GC trajec-
tories can become open, moving through multiple V (r)
domains. In this regime, we speculate D2D

xx ∼ vgcξ ∝ 1/B
as above. Interestingly, 2D semi-classical regime LMR
was reported previously [30].

Semi-classical GC diffusion can conspire to produce
LMR in metals. Importantly, the requirements for GC
magnetoresistance are modest - arising in the semi-
classical regime with multiple occupied Landau levels,
and for weak and smooth disorder. Giant MR ratios,
B-field magnitude independent Hall angles, µ and V0
tunability, and stability at high temperatures, make
GC diffusion and its magnetoresistance easy to iden-
tify in experiment. Indeed, these features bear strik-
ing resemblance to LMR measured recently in a vari-
ety of 3DDM [13–17]. Additionally, oscillatory motion
of the GC trajectories along B could have interesting,
polarization-dependent, absorption signatures in the Ter-
ahertz regime.
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