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We demonstrate an effective approach of modifying the long-range spatial correlation for light
propagating inside random photonic waveguides by varying the shape of the waveguide. The
functional form of spatial correlation is no longer universal in the regime of diffusive transport and
becomes shape-dependent due to the non-local nature of wave propagation. The spatial dependence
of the correlation may become asymmetric for light incident from opposite ends of the waveguide.
This work opens the door to control non-local effects in mesoscopic transport of waves by tailoring
the geometry of random systems.
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The diffusion model has been widely utilized to de-
scribe wave propagation in disordered media, e.g., light in
biological tissues, ultrasonic waves through cracked met-
als, and electron wavefunctions in disordered conductors.
It, however, ignores the interference of scattered waves,
which lead to many prominent phenomena including An-
derson localization, universal conductance fluctuations,
and enhanced backscattering [1–3]. Extensive theoreti-
cal and experimental studies in the past three decades
have illustrated that mesoscopic transport of both classi-
cal and quantum mechanical waves is governed by wave
interference effects [4, 5].

One important consequence of wave interferences in
random media is the correlations in the fluctuations of
scattered intensities [6, 7]. The interference between waves
scattered along independent paths gives rise to intensity
correlation on the scale of wavelength, one crossing of
paths generates long-range correlation beyond the mean
free path, and two crossings leads to an infinite-range
correlation [8, 9].

The non-local correlations have a direct consequence for
the coherent control of light transmission through random
media via wavefront shaping [10], which has advanced
rapidly in the past few years due to potential applications
to deep tissue imaging [11–13]. Indeed focusing light to a
single speckle simultaneously brightens nearby speckles,
and hence reducing the contrast of focusing [14, 15]. It
has been shown that the spatial correlation of intensity
inside the random medium [16–20] determines not only
focusing contrast but also energy deposition into the
sample [21]. Moreover, the long-range correlation also
affects the enhancement of total transmission [22] by an
optimized wavefront with limited degree of input control
[23]. Therefore, manipulating the non-local correlation
can open up a new avenue to controlling waves inside
random media.

Typically the magnitude of long-range correlation is
small, but it becomes significant in strongly scatter-
ing media, especially when localization regime [3] is ap-
proached [8, 9, 24–27]. Experimentally long-range corre-

lations have been observed not only in space, but also in
time, frequency, angle, and polarization, but most mea-
surements are performed on transmitted or reflected light,
i.e. outside the random media [17, 19, 28–34]. Modifica-
tions of the correlations of transmitted light have been
realized with two techniques: (i) varying the spot size of
an incident beam on a wide disordered slab [16, 19, 26],
and (ii) inserting a constriction, e.g., a pin hole, inside
a random medium [30, 35]. However, the possibility of
manipulating long-range correlations inside the random
media has not been explored. This is at least in part due
to the experimental challenge of gaining a noninvasive
access to the interior of a random structure where light
propagates.

We recently fabricated quasi-two-dimensional random
waveguides to probe the transport inside from the third di-
mension [20, 36, 37]. This experimental setup has enabled
us to monitor directly how the long-range spatial correla-
tions build up inside diffusive systems [20]. Moreover, by
reducing (or increasing) the width of a rectangular waveg-
uide, we were able to enhance (or suppress) the crossing
probabilities of scattering paths throughout the system
and, therefore, to modify the magnitude of long-range
correlation function. However, the functional form of
correlation remained unchanged, as it is known to be uni-
versal for diffusive waveguides with uniform width [16, 18].

In this Rapid Communication, we experimentally
demonstrate an effective approach of tailoring the spatial
dependence of long-range intensity correlation function
inside a random system. This is accomplished by fabricat-
ing photonic waveguides with cross-section varying along
their length. The functional form of the long-range cor-
relation is modified inside waveguides of different shapes
because the crossing probability of scattering paths is
affected non-uniformly in space. Our approach enables
global optimization of non-local effects via system geome-
try and it is applicable to other types of waves such as
acoustic waves and matter waves. Besides the fundamen-
tal importance, manipulating the long-range correlation
of waves inside random systems is useful for imaging and
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focusing into multiply scattering media using wavefront
shaping [10, 21, 38] because it affects such aspects as
focusing contrast, degree of control, as well as energy de-
position inside the medium. Therefore, our approach can
provide an additional degree of freedom for controlling
wave transport in scattering media.

To illustrate the effects of waveguide geometry on long-
range spatial correlation, we first present a theoretical
analysis of two-dimensional (2D) disordered waveguides.
The structures have reflecting sidewalls which confine
the light inside the waveguide where scattering and dif-
fusion take place within r = (y, z) plane with z being
the axial direction. Light transport in the random waveg-
uide is diffusive, and the non-local intensity correlation is
dominated by the long-range correlation C2 [6, 24]. The
2D correlation function C2(r1; r2) between two points
r1 = (y1, z1) and r2 = (y2, z2) is calculated with the
Langevin approach [18, 19, 39–41], see [42] for details.

Let us consider the simplest case of linear tapering
where the waveguide width (W (z)) increases or decreases
linearly along the waveguide axis z. Figure 1 shows the
magnitude of C2, C2(r; r), in three waveguides with W (z)
being constant (a), linear increasing (b) or linear decreas-
ing (c). The 2D distributions of C2 across the waveguides
are clearly different in the three cases, revealing that the
waveguide geometry has a significant impact on the growth
of C2. In Fig. 1(d-f), the correlation functions C2(z1; z2)
of the cross-section averaged intensity [42] further illus-
trates the difference: in the waveguide of increasing W (z),
the correlation function stay nearly constant for most
values of z1 and z2, while in the waveguide of decreas-
ing width, the correlation function exhibits more rapid
variation over z1 and z2. These results suggest that the
range of spatial correlation is increased (or decreased) in
the gradually expanding (or contracting) waveguide, as
compared to the waveguide of constant width.

For a more quantitative comparison, the magnitude of
C2 of the cross-section averaged intensity, i.e., C2(z; z),
is plotted in Fig. 2(a) for six waveguides of same length
but different geometry. To compare the shape of these
curves, the maximum value of each curve is set to 1. After
the normalization, the two curves for the constant widths
of 10 µm and 60 µm coincide and agree to the universal
functional form. In the expanding waveguide, C2(z; z)
increases more rapidly at the beginning and levels off
when light diffuses deeper into the waveguide. This is
attributed to the higher crossing probability of scattering
paths near the front end of the waveguide where the cross
section is narrower. As the width increases with z, the
crossing probability is reduced, and the enhancement of C2

is slowed down. The contracting waveguide exhibits the
opposite trend: the magnitude of C2 grows more quickly
in the second half of the waveguide due to enhanced
crossing probability. We can further conclude that by
enhancing the tapering of the waveguide cross section,
the change in the spatial dependence of C2 can be made

FIG. 1: (Color online) Calculated spatial long-range intensity
correlation for the constant-width and two types of tapered
2D random waveguides. The waveguide length L = 80 µm, the
transport mean free path ` = 2.2 µm, and the diffusive absorp-
tion length ξa = 26 µm. The waveguide in (a,d) has a constant
width W = 10 µm; in (b,e) W (z) increases linearly from 10
µm to 60 µm, while in (c,f) W (z) decreases linearly from 60
µm to 10 µm. (a-c) show spatial distribution of the magnitude
of long-range correlation function, C2(r; r) for three geome-
tries. (d-f) show long-range correlation function C2(z1; z2) of
cross-section averaged intensity [42] for the same geometries.
The maximum value is normalized to 1 for comparison. The
differences in these plots reveal that the waveguide geometry
has a significant impact on the magnitude and range of C2.

FIG. 2: (Color online) Comparison of calculated long-range
correlation in six waveguides with different degrees of taper:
two with constant widths of 10 µm (solid black line) and 60 µm
(dash-dotted magenta line); two with width linearly increasing
from 10 µm (thick dashed blue line) or 20 µm (thin dashed
blue line) to 60 µm; and two with width linearly decreasing
from 60 µm to 10 µm (thick dotted red line) or 20 µm (thin
dotted red line). Other parameters are the same as in Fig. 1.
Both C2(z; z) (a) and C2(z;L) (b) clearly demonstrate that
while the functional form of long-range correlation is universal
for uniform waveguides, it is strongly modified in the tapered
ones.

larger.
Figure 2(b) plots the correlation function C2(z;L) for

two points z and L of cross-section averaged intensity
of the six waveguides studied above. After normalizing
the maximum value to 1, C2(z;L) for the two constant-
width waveguides coincide; in the expanding waveguide
the spatial range of correlation is enhanced while in the
contracting waveguide the range is reduced. To be more
quantitative, we find the correlation length ∆z from
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C2(L− ∆z;L) = C2(L;L)/2. The constant-width waveg-
uides have the same ∆z = 48 µm, whereas the waveguide
tapered from 10 µm to 60 µm has ∆z = 65 µm and the
one from 60 µm to 10 µm has ∆z = 27 µm. Hence, the
correlation length inside the random waveguide can be
tuned by geometry.

We note that the change in the functional form of the
long-range correlation function cannot be explained by the
effective conductance model [42]. This model, which was
developed in the previous studies of expanding diffusive
beams inside disordered slabs [26, 30], can only predict
the correlations of light outside random media. Inside
a random medium, the magnitude of C2 at depth z is
not determined simply by the effective conductance of
the waveguide section from 0 to z, which only reflects the
crossing probability of scattering paths between 0 and
z. The diffusive waves that pass through z may return
to it after multiple scattering and crossing in the section
between z and L, thus contributing to C2 at z as well.
Indeed the calculated C2 inside the random waveguide of
either constant or varying cross-section displays significant
difference from the prediction of the effective conductance
model [42].

Next, we conduct the experiments. The 2D disordered
waveguides are fabricated in a silicon-on-insulator (SOI)
wafer with a 220 nm silicon layer on top of a 3 µm buried
oxide. The structures are patterned by electron beam
lithography and etched in an inductively-coupled-plasma
(ICP) reactive-ion-etcher (RIE). Each waveguide contains
a 2D random array of air holes that scatter light. The
air hole diameters are 100 nm and the average (center-
to-center) distance of adjacent holes is 390 nm. The
waveguide walls are made of triangle lattice of air holes
(the lattice constant of 440 nm, the hole radius of 154
nm) that has a complete 2D photonic bandgap for the
in-plane confinement of light.

The monochromatic beam from a tunable CW laser
source (HP 8168F) is coupled into the empty waveguide
by an objective lens of numerical aperture (NA) 0.4. The
light is transverse-electric (TE) polarized, i.e., the electric
field is in the plane of the waveguide. After propagating
through the empty waveguide, the light is incident onto
the random array of air holes inside the waveguide. The
front end of the random array is uniformly illuminated
along the y direction. The light undergoes multiple scat-
tering in the 2D plane of waveguide. Some of the light
is scattered out of plane and imaged by a 50× objective
lens (NA = 0.42) onto an InGaAs camera (Xeva 1.7-320).

From the optical image, the spatial distribution of light
intensity inside the waveguide I(y, z) is extracted. To
smooth out the short-range fluctuations, I(y, z) is aver-
aged over the cross-section of the waveguide to obtain
the cross-section-averaged intensity Iv(z). The spatial in-
tensity correlation C(z1, z2) is then computed from Iv(z).
With the short-range contribution removed, C(z1, z2) is
dominated by long-range correlation C2. The contribu-

FIG. 3: Experimental measurement of long-range intensity
correlation inside the tapered waveguides. (a,b) Top-view
SEM images of fabricated quasi-2D disordered waveguides
with linearly increasing (a) or decreasing (b) width. The
width of waveguide in (a) increases from 10 µm to 60 µm, and
in (b) it is opposite. Both have the same length L = 80 µm.
Magnified SEM images show the air holes distributed randomly
in the tapered section of the waveguide and the triangle lattice
of air holes in the reflecting sidewalls. (c) Measured long-range
correlation function for the cross-section-averaged intensity
C(z, L) inside the tapered waveguides shown in (a) and (b).
The blue circles (green squares) represent experimental data
for the waveguides with increasing (decreasing) width, and
the dashed lines are theoretical results.

tion of C3, which is on the order of 1/g2 ( where g is the
dimensionless conductance ), is negligible as g � 1 in our
waveguides.

The relevant parameters for light transport in the dis-
ordered waveguide are the transport mean free path l and
the diffusive dissipation length ξa. The dissipation results
from out-of-plane scattering, which can be treated simi-
larly as absorption [36]. From the disordered waveguides
with constant width, we find ξa = 26 µm and ` = 2.2 µm
by fitting the measured Iv(z) and C(z1, z2 = z1) [42]. The
tapered waveguides have the same density and diameter
of air holes, thus the values of ξa and ` are identical.

Figure 3(a,b) are the scanning electron microscope
(SEM) images of an expanding waveguide and a contract-
ing waveguide. The measured correlation functions for the
cross-section averaged intensity inside the two waveguides,
C(z1 = z, z2 = L), are plotted in Figure 3(c). The exper-
imental data clearly show that the dependence of C(z, L)
on z is very different for the two tapered waveguides,
which agree well to the calculation results.

Since the waveguide geometry in Fig. 3(b) is the mirror
image of the one in Fig. 3(a), the C(z, L) for light input
from the left end of the former is equivalent to that
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with input from the right end of the latter. As C is
dominated by long-range correlation function, this result
implies C2 becomes asymmetric. Note that the asymmetry
exists only inside the random medium. The C2 for the
transmitted light remains symmetric, as it is determined
by the dimensionless conductance g which has the same
value for the two waveguides [42].

The difference in the correlation functions in expanding
and contracting waveguides reveals that C2(r1; r2) is no
longer symmetric because one waveguide is a mirror image
of the other. In other words, the long-range intensity
correlation function for light input from one end of the
tapered waveguide is different from that with input from
the other end. This behavior is distinct from that of the
constant-width waveguide whose two ends are equivalent.

Next, we vary the waveguide cross section in a non-
monotonic manner for further manipulation of long-range
intensity correlation inside the random waveguide. The
waveguide shown in Fig. 4(a) has the width W increasing
linearly in the first half of the waveguide and decreasing
in the second half. This geometry, unlike the tapered
waveguides studied above, is symmetric with respect to
the center (z = L/2), thus the spatial intensity correlation
function is the same for light incident from either end of
the waveguide. Figure 4(b) shows the spatial distribution
of light intensity inside the waveguide with input from the
left end. The short-range intensity fluctuations seen in
Fig. 4(b) are smoothed out after the intensity is averaged
over the cross section, leaving only the long-range con-
tributions to the intensity correlation function C(z1, z2).
Figure 4(c) plots C(z, L), which increases initially at a
slow rate as z approaches L/2, but turns into a sharp
rise once z passes L/2 and approaches L. This is be-
cause the crossing probability of scattering paths is first
reduced as the waveguide is expanding in z < L/2, and
then enhanced in z > L/2 as the cross section decreases.
Therefore, the crossing probability can be controlled by
modulating the waveguide width, which changes the spa-
tial dependence of long-range correlation function. Figure
4(d) shows the intensity correlation function C(z, L/2).
It first increases monotonically as z moves from 0 to L/2,
and then decreases slightly for z from L/2 to L. The
experimental data (solid circles) are in good agreement
to the theoretical results (dashed lines) in Fig. 4(c,d).

Finally, we comment that the confined geometry can
be used to tailor the functional form of long-range correla-
tions not only in real space, but also in momentum space
[42]. The former sets the contrast for light focused inside
a scattering medium by shaping the input wavefront [15],
whereas the latter determines the maximum total trans-
mission that can be achieved with incomplete control of
input wavefront [22]. Therefore, we believe our approach
will have immediate applications to communication and
imaging through or into turbid media [10].
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discussions and Michael Rooks for suggestions regard-

FIG. 4: Long-range correlation in a quasi-2D disordered waveg-
uide whose width varies non-monotically. (a) Top-view SEM
image showing the waveguide width W increases linearly from
10 µm at z = 0 to 60 µm at z = 40 µm and then reduces
linearly down to 10 µm at z = 80 µm. Other structural param-
eters are the same as the waveguides in Fig. 3. (b) An optical
image of the intensity of scattered light from the disordered
waveguide. The wavelength of the probe light is 1510 nm. (c)
Long-range correlation function C(z, L) for the cross-section
averaged intensities at z and L in the waveguide shown in
(a). C(z, L) displays a sharp change in the growth rate before
and after z passes L/2. (d) Long-range correlation function
for the cross-section averaged intensities at z and L/2 in the
waveguide shown in (a). C(z, L/2) increases monotonically in
the first half of the waveguide and decreases slightly in the
second half. In (c,d), solid circles represent experimental data
and the dashed curves are obtained by numerical calculation.
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