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Motivated by the studies of the superconducting pairing states in the iron-based superconductors, we analyze
the effects of Brillouin zone folding procedure from a space group symmetry perspective for a general class of
materials with the P4/nmm space group. The Brillouin zone folding amounts to working with an effective
one-Fe unit cell, instead of the crystallographic two-Fe unit cell. We show that the folding procedure can be
justified by the validity of a glide reflection symmetry throughout the crystallographic Brillouin zone and by the
existence of a minimal double degeneracy along the edges of the latter. We also demonstrate how the folding
procedure fails when a local spin-orbit coupling is included although the latter does not break any of the space
group symmetries of the bare Hamiltonian. In light of these general symmetry considerations, we further discuss
the implications of the glide reflection symmetry for the superconducting pairing in an effective multi-orbital
t − J1 − J2 model. We find that the P4/nmm space group symmetry allows only pairing states with even
parity under the glide reflection and zero total momentum.

I. INTRODUCTION

The iron-based superconductors form a large family of ma-
terials which exhibits considerable diversity in their lattice
structures. Examples include the 1111, 111, and 122 iron
pnictides, as well as the 11 iron chalcogenides. The struc-
tural unit cell of most of these superconductors consists of
two Fe and two pnictogen/chalcogen atoms and it is typically
labeled as a 2-Fe unit cell. In momentum space, the corre-
sponding physical Brillouin zone (BZ) is usually referred to
as the folded BZ (FBZ). However, many theoretical studies
have been based on tight-binding models defined on an effec-
tive ”unfolded BZ” (UBZ) of 1-Fe unit cell with an implicit
equivalence between the former and the FBZ. The mapping
between the effective 1-Fe UBZ and the physical 2-Fe FBZ is
via a BZ folding procedure. In view of the widespread use of
this mapping we believe it is important to better understand
the necessary conditions for its employment.

An early discussion of such a BZ folding procedure for
1111 iron-pnictide superconductors was provided by Lee and
Wen [1]. They noticed that a single Fe-As plane contains a
glide reflection symmetry which consists of a fractional unit
cell translation followed by a reflection about the Fe-plane
(see below). This symmetry can be used to define a pseudo-
crystal momentum which can label the single-particle wave-
functions with different parities under the operation. The
last step in turn allows the definition on an unfolding pro-
cedure from the 2-Fe FBZ of the physical momentum space
to the 1-Fe UBZ of the pseudo-crystal momentum space.
More recently, a thorough group theoretical description of the
electronic structure in the iron-based superconductors with a
P4/nmm space group symmetry has been given in Ref. 2.
There, it was found that the glide-reflection symmetry clas-
sifies the Bloch states near the Fermi level and puts strong
constraints on the low-energy effective model of the system.

∗ Corresponding author: en5@rice.edu

The immediate motivation for the current work has come
from the strong-coupling approach to superconductivity in the
multi-orbital models for the iron-based materials. Supercon-
ducting paring in this approach has been studied by using
t − J1 − J2 models with three or more 3d orbitals, involv-
ing at least the 3dxz , 3dyz and 3dxy set, in an effective 1-Fe
unit cell [3–5]; such studies have been motivated by both the
multi-orbital nature of the electronic structure and the bad-
metal behavior of the parent compounds [4]. As we will dis-
cuss, the Bloch states formed directly from 3dxz and 3dyz
Wannier states are odd under the reflection about the Fe plane,
whereas those associated with the 3dxy orbital are even under
this symmetry operation. In the former case, the unfolding
procedure becomes trivial as both types of Bloch states map
onto the same quasi-crystal momentum in an unfolded BZ.
By contrast, states derived directly from the 3dxy orbital are
mapped onto a quasi-crystal momentum which is shifted w.r.t.
the other two orbital states. Given this, the validity of calcu-
lations done directly in a 1-Fe unit cell comes into question
and a careful examination is required to establish whether a
more involved 2-Fe unit cell basis should be used instead. It
appears that this potential issue is not restricted to the particu-
lar t−J1−J2 case. Indeed, within a more general but related
context, different ways of taking into account the two inequiv-
alent pnictogen/chalcogen atoms have recently been proposed
[6, 7]. A consensus does not appear to be reached since even
the lattice symmetries considered in these studies are quite dif-
ferent: Ref. 6 considered a C4v point-group symmetry about
each As atom, while in Ref. 7 a local S4 symmetry about each
Fe atom was taken into account. The proposed effective tight-
binding models and the superconducting pairing symmetries
in these two works are also quite distinct. Indeed, while Ref. 6
proposed a spin singlet, orbital triplet d+ id A1g pairing (de-
noted as “TAO pairing”) as a consequence of the two inequiva-
lent As atoms, Refs. 7–9 discussed an s-wave odd-parity pair-
ing with nonzero total momentum, labeled η-pairing. These
proposals not only question the validity of using the an effec-
tive 1-Fe UBZ, they also point to the need for a clear link be-
tween the superconducting pairing and lattice (space group)
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symmetries. This is particularly the case for the η-pairing,
where it is still uncertain whether such pairing is allowed by
the space group symmetry [8–11].

We believe that part of the confusion regarding the pair-
ing symmetry is related to the issue we mentioned in the be-
ginning of our paper: To what extent can a model for iron-
based superconductors defined on the 1-Fe UBZ reproduce
results consistent with the one defined on a 2-Fe FBZ? Here
we study this problem for systems with a P4/nmm space
group (which include the 111 and 1111 iron pnictides and the
11 iron chalcogenides). The stringent conditions imposed by
the space group constitute our starting points in the analysis of
the validity of the 1-Fe unit cell formulation. To our knowl-
edge there have been only a few attempts [1, 2, 12, 13] at
placing this procedure on a firmer footing. More specifically,
we wish to give a better description of the notion of the glide
reflection symmetry within a more formal group-theoretical
context and provide some justification for it’s implicit use as a
general symmetry which can be used to label Bloch states of
arbitrary momenta.

The glide reflection operation is a part of the P4/nmm
space group, and is characteristic of the non-symmorphic na-
ture of this group. As we will see, it plays an important role
in establishing, in the absence of any spin-orbit coupling, the
validity of using the 1-Fe UBZ for both the single-particle dis-
persion and the pairing states. From analyzing the effect of the
glide reflection, we are also able to show that treating the local
spin-orbit coupling would require working with the 2-Fe FBZ.
We should stress that we will consider the effect of the glide
reflection in the context of the entire space group symmetry.

The remainder of the paper is organized as follows. In Sec-
tion II A, we aim to give a rigorous analysis of the mapping
from the physical 2-Fe BZ to an effective 1-Fe BZ for a class
of materials with P4/nmm space group symmetry. Our con-
siderations apply to the ideally 2D case for which the con-
duction electrons do not disperse along the c-axis. We show
that in this case, the existence of a glide reflection symmetry
for all momenta is guaranteed by this particular space group.
Without a spin-orbit coupling, the classification of all Bloch
states under the glide reflection and the particular degenera-
cies along the BZ ensure that the folding procedure does not
violate any space group symmetries of the system. In Sec-
tion II B we discuss some consequences of the space group
symmetry on the superconducting pairing in the multi-orbital
t − J1 − J2 model. In Section III, we discuss the effects of
an atomic spin-orbit coupling term on the electronic proper-
ties of both normal and superconducting states. We first show
in Section III A that despite the glide reflection still being
a valid symmetry for all momenta, the lack of degeneracies
along part of the BZ edge nullifies the usual unfolding proce-
dure. In Sec. III B we present and compare numerical results
for the normal state bandstructure with and without a spin-
orbit coupling to confirm the preceding symmetry-based ar-
guments. The direct consequences of the spin-orbit coupling
on the pairing are then discussed in Sec. III C. In Sec. IV we
show how the symmetry arguments on the BZ folding survive
for a 2D dispersion even when the interlayer couplings are
taken into account. We also discuss the constraint imposed by

the space group symmetry on the glide-reflection parity of the
pairing channels, and subsequently examine the compatibil-
ity of several proposed pairings with the previously described
space group symmetry. Concluding remarks are given in Sec.
V. Appendix A contains a derivation of the important ansatz
used in the main sections while related details are given in
Appendix B.

II. THE P4/nmm SPACE GROUP SYMMETRY AND THE
BRILLOUIN ZONE FOLDING

In a large group of Fe-based materials which have
the P4/nmm space group symmetry, the identical Fe-
pnictogen/chalcogen layers are stacked on top of each other
along the c-axis. The nontrivial spatial symmetry properties
can be traced back to the structure of a single layer which is
composed of a square Fe lattice in between two square As lat-
tices shifted horizontally w.r.t. the Fe lattice and each other.
The projection of the layer onto the Fe plane is shown in Fig. 1
(a). Two adjacent Fe sites have different nearest-neighbor As
configurations defining the A and B sublattices.

The space group of the 1111 Fe-based superconductors is
P4/nmm. The latter is non-symmorphic such that under any
choice of unit cell one cannot decompose the set of symme-
try operations into a point subgroup and its coset made up
of proper lattice translations. In particular, for the conven-
tional 2-Fe unit cell choice [14], the crystal is invariant under
a glide reflection symmetry {σz| 12

1
20} composed of a frac-

tional unit cell translation Tτττ = {E| 12
1
20} in units of the sub-

lattice translation, followed by a reflection about the Fe-plane
Pz = {σz|000}. The notation was chosen to be consistent
with Ref. 1.

The crucial point to consider is that the glide reflection
TτττPz can be used to classify Bloch states of arbitrary momen-
tum kkk. As observed in Ref. 2, for a general kkk = (kx, ky, 0)
in the Folded Brillouin Zone (FBZ) corresponding to the 2-Fe
unit cell, the group of the wave-vector is isomorphic to the
C1h point group. The latter has two irreducible representa-
tions which have even/odd parity under the simple reflection
Pz . Consequently, states belonging to the irreducible repre-
sentations of the space group P4/nmm for general kkk are also
either Even (E) or Odd (O) under the glide reflection. In our
view, this provides a connection between the particular glide
reflection symmetry as part of the space group of the Hamilto-
nian and it’s use in classifying states of arbitrary 2D momen-
tum kkk, an argument we feel lacks an explicit exposition in the
literature. By general group theoretical arguments [15], states
belonging to different irreducible representations cannot mix
and thus the even/odd Bloch states do not hybridize. As we
show in the following, this, together with the particular degen-
eracies along the entire folded BZ edge (see Fig. 1) allows the
reduction to the 1-Fe unit cell.
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FIG. 1. (a) Projection onto the Fe plane of the crystal structure of
1111 systems. The thick lines define the crystallographic 2-Fe unit
cell while the dashed lines denote the effective 1-Fe unit cell. As
throughout the text, the unit distance is defined by the NNN Fe trans-
lation (same sublattice). (b) The Folded Brillouin Zone (FBZ-thick
line) corresponding to the true 2-Fe unit cell and the unfolded BZ
(UBZ-dashed line) of the effective 1-Fe unit cell (for definiteness, in
the kz = 0 plane). The FBZ is defined by the translation in recip-
rocal space by QQQ = (±2π, 0, 0) or (0,±2π, 0), which correspond
to (±π,±π, 0) or (±π,±π, 0) in the notation for the effective 1-Fe
unit cell. Here Γ, X and M label the points in the FBZ, while ∆, Σ
and Y mark the corresponding segments.

A. The glide reflection symmetry and the Brillouin Zone
folding

The advantage of using an unfolded 1-Fe BZ consists in ef-
fectively reducing the number of bands in the calculation. In
practice this means introducing a set of trial wavefunctions
defined on an UBZ, carrying on the calculation, then folding
back to the physical FBZ. In doing this, one must check that
the Bloch functions defined in the UBZ do not introduce addi-
tional hybridization terms in the Hamiltonian, and that they do
not violate any of the original symmetries of the space group.
Here, we analyze the same procedure in reverse. We start with
a set of trial wave functions which are in accord with a mini-
mum space group symmetry, namely the glide reflection, then
examine the unfolding process.

As mentioned in the previous section, the glide-reflection
can be used to classify the irreducible representations of the
space group for general kkk in the folded BZ when there is no
dispersion along the z-axis i.e. kz = 0. This ensures that
eigenstates of this operator will be eigenstates of the Hamilto-
nian within a transformation on the orbital indices alone. As
a consequence, the Hamiltonian can be written in block di-
agonal form at these general kkk. The detailed representation
theory of this space group shows that for a number of higher-
symmetry momenta in the FBZ, the irreducible representa-
tions are not required to be eigenstates of the glide [2]. This
does not invalidate our arguments since by continuity any off-
diagonal terms must vanish here as well. We will show that
this implies a one-to-one correspondence between the eigen-
states of the glide-reflection and Bloch states defined on the
UBZ, with no hybridization between different momenta.

We proceed to build Bloch eigenstates of the glide opera-

tion with kkk in the folded zone (See Appendix A). The elec-
tron annihilation operator in the physical 2-Fe BZ on sublat-
tice A(B) is defined as

Ckkk,A/B,α =
1√
Ns

∑
i

eikkk·RRRi,A/BCRRRi,A/B ,α, (1)

where α is an orbital index, Ns = N/2 refers to the number
of (2-Fe) unit cells and i is the index of the unit cell. The
two sublattice vectors are related by RRRi,A + τττ = RRRi,B with
τ the nearest-neighbour distance used in the translation of the
glide operation. The anihilation operators do not have definite
parity under the glide reflection TτττPz:

(TτττPz)Ckkk,A/B,α = (−1)αCkkk,B/A,α, (2)

where (−1)α = ±1 depending on the parity of the local or-
bital under a pure reflection. Without loss of generality we
can define operators with definite parity :

Ckkk,E,α =
1√
2

[Ckkk,A,α + (−1)αCkkk,B,α] (3)

Ckkk,O,α =
1√
2

[Ckkk,A,α − (−1)αCkkk,B,α] . (4)

Note that the even (E) and odd (O) parity states refer to parity
under the glide and so we can build both types of operators for
arbitrary orbital parity α. We also refer the reader to Appendix
A for more details on the states defined above.

Since Ckkk,E,α and Ckkk,O,α have different parity under the
glide for arbitrary ”2-Fe” crystal momentum , they do not mix
in a one-particle Hamiltonian. An arbitrary 2D tight-binding
Hamiltonian consistent with the space group symmetries can
then be expressed in the terms of the E/O states as

HTB =
∑

kkk∈FBZ

(
εαβE (kkk)C†kkk,E,αCkkk,E,β + εαβO (kkk)C†kkk,O,αCkkk,O,β

)
,

(5)

where FBZ stands for the 2-Fe Folded Brillouin Zone and
εαβE (kkk), εαβO (kkk) are matrices in orbital space. We omitted the
spin index for simplicity.

We now turn to the unfolding procedure and start by noting
that the eigenstates of the glide reflection have (see Eqs. A10
and A11)

Ckkk+QQQ,E/O,α = Ckkk,O/E,α, (6)

where QQQ = (±2π, 0) or QQQ = (0,±2π) in units of the 2-Fe
unit cell, and correspond to (±π,±π, 0) or (±π,±π, 0) in
units of the effective 1-Fe unit cell. That is, our states ap-
parently violate the symmetry under the pure translation by a
2-Fe unit cell sublattice. In the simplest Bravais lattice case a
state of arbitrary momentum is only labeled by the irreducible
representation of the pure translation subgroup i.e by kkk itself.
Here, in addition to kkk one can also label all the states accord-
ing to the irreducible representations of the glide reflection as
well, that is, by both kkk and λ. The resolution to our apparent
conundrum lies in the fact that states displaced by a reciprocal
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lattice vectorQQQ can switch their representation with respect to
the glide reflections:

E → O, εαβE (kkk +QQQ) = εαβO (kkk). (7)

This ensures that we are not violating the original pure transla-
tion symmetry but it also introduces a constraint: Eigenstates
of the system must be at least doubly degenerate all along the
edge of the first (folded) BZ. Only in such case can the states
switch representations as one goes beyond the folded BZ. In-
deed, this is precisely what happens in Si and Ge at the X point
along the edge of the BZ [16], [17]. The lattice in this case has
a diamond structure and the two sublattices can be connected
by a glide reflection. Due to the non-symmorphic nature of
the space group, the states are degenerate at X and must ex-
change representations as one goes into the extended BZ. In
the present case for P4/nmm, there is a minimal degeneracy
throughout the edge of the folded BZ [2], [18] which allows
for the switching of the representations as one crosses into the
extended zone.

We can connect with one of the initial folding proce-
dures [1] which relied on a definition of a quasi-crystal-
momentum dependent on the parity of the orbital state under
the pure reflection. Using the equivalent form of the glide
states in (A10), (A11), we can absorb the negative sign from
(−1)(α=1) = e±iQ·τQ·τQ·τ = −1 for states with odd parity under
a pure reflection. Here QQQ = (±2π, 0) or QQQ = (0,±2π) and

τ = (± 1
2 ,±

1
2 ) in units of the 2-Fe unit cell. Explicitly, the

eigenstates of the glide become

Ckkk,E,α even = Ckkk,α =
1√
N

∑
RRRi

[
eikkk·RRRiCRRRi,α

]
(8)

Ckkk,E,α odd = Ckkk+QQQ,α =
1√
N

∑
RRRi

[
ei(kkk+QQQ)·RRRiCRRRi,α

]
(9)

Ckkk,O,α even = Ckkk+QQQ,α =
1√
N

∑
RRRi

[
ei(kkk+QQQ)·RRRiCRRRi,α

]
(10)

Ckkk,O,α odd = Ckkk,α =
1√
N

∑
RRRi

[
eikkk·RRRiCRRRi,α

]
.

(11)

The expressions above can be formally subtituted into the
Hamiltonian (5). Under this mapping, the initial summation
over kkk ∈ FBZ for both E and O glide parity sectors can be
re-written as a summation over /kkk ∈ UBZ (unfolded BZ) for
the E only sector (recall that εEαβ(kkk + QQQ) = εOαβ(kkk)). By
taking into account the fact that different orbital parity states
must be displaced by QQQ w.r.t. to each other we can recast the
tight-binding Hamiltonian as

HTB =
∑

/k/k/k∈UBZ

[∑
ee

(
εEαβ(/k/k/k)C†

/k/k/k,α
C/k/k/k,β

)
+
∑
oo

(
εEαβ(/k/k/k)C†

/k/k/k+QQQ,α
C/k/k/k+QQQ,β

)
+
∑
eo

(
εEαβ(/k/k/k)C†

/k/k/k,α
C/k/k/k+QQQ,β

)
+
∑
oe

(
εEαβ(/k/k/k)C†

/k/k/k+QQQ,α
C/k/k/k,β

)]
(12)

=
∑

k̃̃k̃k∈UBZ

∑
αβ

(
εEαβ(k̃̃k̃k)C†

k̃̃k̃k,α
Ck̃̃k̃k,β

)
, (13)

where e, o refer to the parity of the orbitals α and β. The de-
tails of the above derivation are presented in Appendix B. In
going to the second line we explicitly identified along with
Ref. 1 the dependence of /kkk on the orbital parity such that
k̃̃k̃k = /k/k/k for even orbital states and k̃̃k̃k = /k/k/k +QQQ for odd states.
What allows us to equate the two forms is the fact that /k/k/k is
effectively a dummy variable in (12) and the matrix structure
is determined by the orbital parities alone. For the purpose of
notational clarity, we stress the following: a) /k/k/k is defined in
the larger Brillouin zone (UBZ) for the 1-Fe unit cell, and is
associated with an orbital-dependent procedure in unfolding
from the smaller Brillouin zone (FBZ). It has the same mean-
ing as that used in Ref. 1; b) k̃̃k̃k, also defined in the UBZ for
the 1-Fe unit cell, arises in an orbital-independent unfolding
procedure. The distinction between these two wave vectors
will be important for our later considerations.

We can illustrate a different widely used unfolding pro-
cedure if we define two types of local states. Specifically,

we can set CRARARA,α = CRARARA+τττ,α for even parity orbital α and
CRARARA,α = (−1)CRARARA+τττ,α for odd parity orbital α in Eqs. 8-11
such that the local orbital state changes sign under the sim-
ple 1-Fe unit cell translation Tτ . The additional minus sign
for odd orbital states will generate and additional eiQQQ·τττ factor
for odd orbital states. This is equivalent to the orbital parity
dependent gauge transformation encountered in the literature.
Using the same notation as above the eigenstates become

Ckkk,E,α =Ckkk,α (14)
Ckkk,O,α =Ckkk+QQQ,α (15)

for arbitrary parity α. If we identify εOαβ(kkk) = εEαβ(kkk + QQQ)
and use the above definitions in the Hamiltonian (5) the latter
can be re-written as
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HTB =
∑

kkk∈FBZ

(
εαβE (kkk)C†kkk,αCkkk,β

+ εαβE (kkk +QQQ)C†kkk+QQQ,αCkkk+QQQ,β

)
(16)

=
∑

k̃̃k̃k∈UBZ

εαβE (k̃̃k̃k)C†
k̃̃k̃k,α
Ck̃̃k̃k,β (17)

where k̃̃k̃k is in the Unfolded Brillouin Zone (UBZ).
We stress that both unfolding procedures discussed above

were guaranteed by the absence of mixing between the E,O
sectors in the Hamiltonian for general kkk together with the
switching of the glide parity for the ansatz states beyond the
first folded BZ (Eq. 6). These two conditions are a direct con-
sequence of the irreducible representations of the glide sym-
metry for arbitrary kkk ∈ FBZ. None of the folding procedures
discussed above and used in the literature would work if the
Hamiltonian contained E,O mixing terms since we could not
define QQQ shifted states related to the 1-Fe unit cell Fourier
transforms for either even and odd parity orbitals.

Although the above arguments seem to be implicit in the
literature [1, 12], we have encountered few observations of
the crucial connection to the irreducible representations of the
P4/nmm space group, with a notable exception of Ref. 13 in
the context of the electronic structure. Here, by constructing
the electronic states which are even or odd under glide reflec-
tion, we are in position to discuss the the constraints imposed
by the glide-reflection symmetry on the various types of pair-
ing, which will be discussed in the next subsection, as well
as the effects of a local spin-orbit coupling on the unfolding
procedure, which we turn to in the following section. As we
mentioned in Sec. II, we believe that it is insufficient to argue
that the presence of a glide reflection operation in the space
group of the Hamiltonian guarantees the success of a folding
procedure. Along with the glide reflection, the space group
contains fifteen other symmetry elements [14] different from
pure sublattice translations. Of these, only the glide reflection
can be used to classify states according to the irreducible rep-
resentations of the space group for general two-dimensional
crystal momenta, since only this operation leaves an arbitrary
kkk invariant. But as we will show in Sec. III, the same fold-
ing procedure fails when a spin-orbit coupling is turned on,
even though the additional interactions do not violate the glide
reflection symmetry or any space symmetry of the original
Hamiltonian.

B. The effects of the glide symmetry on the superconducting
pairing interactions

We now discuss some of the effects of the glide symme-
try for the superconducting pairing interaction. We assume
that the symmetry outlined in the previous sections is not vi-
olated such that without the pairing interactions one can un-
fold the BZ of the 2-Fe unit cell to the effective 1-Fe UBZ.
We also assume that the original symmetry of the 2-Fe unit
cell is not broken by the appearance of magnetic or “ne-
matic” order. The analysis presented here also assumes a triv-

ial spatial dependence of the bare pairing interactions such as
would arise in a nearest neighbor (NN), next-nearest neighbor
(NNN) t − J1 − J2 Hamiltonian. Lastly, we consider singlet
pairing, as evidenced by experiments for various iron-based
superconductors. In this case, the antisymmetric nature of the
pairing wavefunction requires the pairing to be even parity un-
der inversion [23].

Before proceeding in a manner analogous to that of Sec.
II A, some additional remarks are in order. The tight-binding
part of a Hamiltonian with pairing interactions at mean-field
level is typically chosen as the identity representation of the
space group. In general, the pairing functions are determined
self-consistently and can lower the symmetry of the Hamil-
tonian to a subgroup of the full space group (as e.g., what
happens to the rotational invariance of the Hamiltonian under
the C4 operation of the D4h point group of the full P4/nmm
space group in the case of a d-wave pairing). The problem
simplifies for the spin singlet pairing considered in this sec-
tion. For Cooper pairs of equal and opposite momenta in the
FBZ ( kkk,−kkk) associated with the 2-Fe unit cell, the symme-
try properties of the pairing functions are completely deter-
mined by the D4h point group associated with the P4/nmm
space group. More precisely, the tensor irreducible represen-
tations of the space group used to classify the pairing are the
irreducible representations of the group of the wave-vector la-
beled by total momentum kkk+(−kkk) = (0, 0) (For a general ar-
gument, see Ref. 22). Given this, we know that the irreducible
representations of the D4h point group are either even or odd
under inversion. In addition, for zero total momentum repre-
sentations, the glide reflection is equivalent to a simple reflec-
tion about the z-plane. This means that the parity under in-
version coincides with the parity under the glide-reflection for
one dimensional irreducible tensor representations and is op-
posite for the two-dimensional ones [2]. Restricting ourselves
to the former 1D representations, a Hamiltonian containing
any linear combination of inversion-even pairing terms cannot
break the glide reflection symmetry, regardless of whether the
pairing preserves the rotational invariance or not. The glide
symmetry can be broken if and only if the system sponta-
neously breaks the inversion symmetry, which consequently
results in triplet pairing. The remaining part of the section
seeks to illustrate that no finite momentum pairing terms can
be present in either the folded or unfolded BZ provided that
the Hamiltonian is invariant under the glide-reflection. This
also guarantees that the common folding procedure is still
valid in this case.

We consider for illustration purposes the following NN
pairing interaction:

Hint =
∑
αβ

∑
ij,NN

Jαβ

[
C†iα↑C

†
jβ↓ − C

†
iα↓C

†
jβ↑

]
×

[
Ciα↑Cjβ↓ − Ciα↓Cjβ↑

]
+H.C.

(18)

Based on Eqs. 3, 4 we can define Fourier transforms on
each sublattice as
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CRRRA,α =
1√
Ns

∑
kkk∈FBZ

e−ikkk·RARARA [Ckkk,E,α + Ckkk,O,α] , (19)

CRRRB ,α = (−1)α
1√
Ns

∑
kkk∈FBZ

e−ikkk·RBRBRB [Ckkk,E,α − Ckkk,O,α] .

(20)

It is straightforward to see that the pairing interaction in Eq.18
will contain equal numbers of E and O states. Indeed, this
can be understood from the general discussion in the previ-
ous sections. Although formally at some special points of the
FBZ the eigenstates are not required to also be eigenstates of
the glide reflection, in practice, continuity must enforce this
as was mentioned in the preceding section. All terms in the
Hamiltonian must effectively be invariant under the glide re-
flection symmetry for arbitrarykkk, ensuring that all interactions
must be even under the glide reflection symmetry. This con-
strains all pairing terms to have equal numbers of even and
odd states by the space group symmetry arguments. The gen-

eral form of the interactions can in principle generate pairing
terms mixing E and O states which might result in a finiteQQQ
momentum Cooper pairs.

To make progress, we can consider (18) in a mean-field
(MF) approach. In view of the connection between the MF
Hamiltonian and the equation of motion approach we antici-
pate the same results beyond the simplest level. As an illus-
tration we analyze the term

H ′int,MF =
∑
αβ

∑
<ij>

∑
e〈

Jαβ

[
C†iα↑C

†
jβ↓ − C

†
iα↓C

†
jβ↑

]〉
× Ciα↑Cjβ↓. (21)

The remaining terms in Eq.18 can be obtained by flipping the
spin indices of the last pair and adding the Hermitian conju-
gate terms. Decomposing the NN summation as

∑
<ij> ≡∑

RARARA

∑
eee=±x̂,ŷx̂,ŷx̂,ŷ +

∑
RBRBRB

∑
eee=±x̂,ŷx̂,ŷx̂,ŷ and taking the sublattice

specific Fourier transformation (F.T.) as in (19),(20) we ob-
tain

H ′int,MF =
∑
αβ

∑
eee

∑
kkk∈FBZ

eikekeke×

[
(−1)β∆A

eee,αβ(Ckkk,E,α↑C−k−k−k,E,β↓ − Ckkk,E,α↑C−k−k−k,O,β↓ + Ckkk,O,α↑C−k−k−k,E,β↓ − Ckkk,O,α↑C−k−k−k,O,β↓)+

+(−1)α∆B
eee,B,αβ(Ckkk,E,α↑C−k−k−k,E,β↓ + Ckkk,E,α↑C−kβ↓O − Ckkk,O,α↑C−k−k−k,E,β↓ − Ckkk,O,α↑C−k−k−k,O,β↓)

]
(22)

where

∆A
eee,αβ =

〈
Jαβ

[
C†RARARAα↑C

†
RARARA+eeeβ↓ − C

†
RARARAα↓C

†
RARARA+eeeβ↑

]〉
(23)

∆B
eee,αβ =

〈
Jαβ

[
C†RBRBRBα↑C

†
RBRBRB+eeeβ↓ − C

†
RBRBRBα↓C

†
RBRBRB+eeeβ↑

]〉
(24)

The crucial assumption made in the above equations is that
both ∆A

e , ∆B
e are independent of their sublattice space indices

RARARA and RBRBRB , but ∆A
e 6= ∆B

e in general. This amounts to
having the pairing order parameters which are constant on the
respective sublattices.

We distinguish two cases: i) α and β corresponding to or-
bitals of the same parity under the reflection, ii) α and β have
different parities.

For case i) of same parity we can look at the real space ex-
pression (21) and demand invariance under a glide reflection.
Since both α, β terms acquire the same orbital parity factor
and each state gets shifted by one unit of the 1-Fe unit cell
we have ∆A

eee,αβ = ∆B
eee,αβ . Plugging this into (22) and setting

(−1)α = (−1)β , we see that all EO and OE mixed terms
cancel and we get only same glide parity terms.

For case ii) where α and β have different orbital parities
we can do the same as above and impose the glide reflection
symmetry in real space. We get ∆A

eee,αβ = −∆B
eee,αβ . With

(−1)α = −(−1)β we get the same cancellation as for case i).

Identical results are obtained for the next-nearest coupling
(NNN, J2) case.

In both cases of same and different orbital parity pairing,
the results are completely analogous to those considered in
Section II A for a tight-binding model without spin-orbit cou-
pling. Namely, the pairing part of the Hamiltonian splits into
EE and OO glide parity sectors. The exact same unfolding
arguments can be trivially extended to the pairing part. Calcu-
lations can be done in an UBZ using the k̃̃k̃k F.T. and then fold
the results to the 2-Fe BZ. In this scheme there is no finite
momentum pairing.
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III. THE EFFECTS OF SPIN-ORBIT COUPLING

A. Folding in the presence of spin-orbit coupling

A local (atomic) spin-orbit coupling (SOC) term

ILLL ·SSS =
I

2

(
JJJ2 −LLL2 −SSS2

)
(25)

preserves the P4/nmm space group symmetry since the lat-
ter is a scalar under all point group operations and is local
in space (I is a constant). It does however lock the orbital
and spin parts of the conduction electrons together such that
the two do not transform independently of each other under
space group operations. This forces us to change the irre-
ducible representations of the space group to double valued
representations [18]. In general, the reflection Pz = {σz|000}
is equivalent to

σz = C2z ⊗ I (26)

where C2z corresponds to a rotation by π along a chosen z-
axis and I is the inversion. Since spinor states are invariant
under the inversion [18], the effect of Pz is given by the Pauli
matrix term

D(j= 1
2 )(σz) =

−i 0

0 i

×
1 0

0 1

 =

−i 0

0 i

 = −iσ3

(27)
For arbitrary momentum kkk, one constructs the irreducible

representations of the space group by determining the so-
called group of the wave vector. That is the subgroup of the
space group, with elements which either leave kkk invariant or
translate it by a reciprocal vector. By examining the effect
of these elements on a set of properly chosen states, one can
determine the group isomorphic to the group of the wave vec-
tor. In the case of double valued representations one must
also consider, in addition to the operations in the single-valued
case, those obtained by changing in sign of the states [18].

Even with SOC terms, the glide reflection is still part of the
group of the wave-vector. Because of the locking of the spin
and orbital states, the glide reflection generates factors of i,
consistent with Eq. 27. By considering local states with and
without spin and applying the operations that keep an arbi-
trary kkk invariant one obtains a group isomorphic to the double
valued group of C1h. The irreducible representations of the
latter are illustrated in Table III A.

The inclusion of the spin in the glide reflection will always
generate the pure phases ±i. We then conclude that the phys-
ical irreducible representations correspond to Γ3 and Γ4. This
indicates that, as for the P4/nmm case without SOC, for ar-
bitrary momentum in an unfolded BZ, eigenstates of a general
tight-binding Hamiltonian will also be eigenstates of the glide
reflection symmetry. We can connect with the ansatz states in
Eqs. 3, 4 which coincide with Bloch states in a 1-Fe BZ. We
remark that these are still eigenstates of the glide reflection
operator but in the presence of SOC, we need to account for
the transformation of the spins as well. We thus relabel

TABLE I. The double-valued irreducible representations of the C1h

point group [ C.J. Bradley and A.P. Cracknell, Mathematical Theory
of Symmetry in Solids (Clarendon Press, Oxford 1972) ].

C1h E σz Ē σ̄z

Γ1 1 1 1 1

Γ2 1 −1 1 −1

Γ3 1 i −1 −i
Γ4 1 −i −1 i

Ckkk,E,α,↑ → Ckkk,Õ,α,↑ (28)

Ckkk,E,α,↓ → Ckkk,Ẽ,α,↓ (29)

Ckkk,O,α,↑ → Ckkk,Ẽ,α,↑ (30)

Ckkk,O,α,↓ → Ckkk,Õ,α,↓ (31)

where the Ẽ, Õ refer to the sign in front of the ieikkk·τττ term
under the glide transformation. Since the irreducble repre-
sentations are also eigenstates of the glide, the Hamiltonian
excluding the pairing terms can only connect Ẽ, Ẽ or Õ, Õ
states. Note however that states E,O states in the original (no
SOC) labeling such as Ckkk,E,α,↑, Ckkk,O,α,↑ both belong to the
Ẽ irreducible representation of the space group with SOC. So
in general, the space group symmetry allows the mixture of
the E,O states invalidating the unfolding procedure since the
two will always correspond to states with shifted momenta kkk
and kkk +QQQ.

Also note that the eigenstates of the Hamiltonian in this
case are not degenerate along the Y line of the unfolded BZ
[2], [18] (not counting Kramers degeneracy which is irrele-
vant here). In general, there cannot be an analogous switching
between the Γ3 and Γ4 representations at the edge of the BZ
and one must conserve the “parity” under the glide reflection
as one crosses into adjacent zones. Therefore for finite SOC
and for a general choice of tight-binding parameters,

Ckkk,E/O,α = Ckkk+QQQ,O/E,α , (32)

with ±i eigenstates under the glide-reflection for Γ3 and Γ4

respectively. This forces us to accept other eigenstates of the
glide-reflection such as those in Eqs. A14, A15.

The relation above also signals that we cannot choose the
simple sublattice superposition states in (3),(4) and so we can-
not connect with the effective extended momentum Fourier
transforms in Eqs. 8-11 or the gauge transformed states in
(14),(15). In a practical calculation where the 1-Fe unit cell
assumption is of any use we implicitly carry on calculations
using the familiar 1-Fe unit Fourier transform defined on
k̃̃k̃k ∈ UBZ and then fold to the physical 2-Fe unit BZ. But
our arguments show that in doing so we are violating space
group symmetry and as a consequence we have no guarantee
that the results thus obtained coincide with those done directly
in the unfolded zone.

As in the zero SOC case, we argue that it is insufficient to
justify the validity or invalidity of the 1-Fe unit cell by invok-
ing a general symmetry of the Hamiltonian, namely, the glide
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reflection. In the SOC case, the space group of the Hamilto-
nian does not change since the extra coupling does not violate
any symmetry of the latter. Our arguments, through which
we attempt to treat the glide reflection within its natural space
group symmetry perspective, can be used to give a more pre-
cise prescription to its use and to illustrate how the formula-
tion of the problem in an 1-Fe unit cell can fail in spite of the
validity of the glide reflection as a symmetry of the Hamilto-
nian.

B. The effects of the spin-orbit coupling on the normal-state
bandstructure
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 0.2
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k y/π

k x / π

FIG. 2. (a) Bandstructure of the five-orbital tight-binding model in
the folded Brillouin zone (FBZ) without the spin-orbit coupling. (b)
The corresponding Fermi surface in two quadrants of the FBZ.

In light of the discussion on the folding procedure, in this
section we study the effects of the spin-orbit coupling on the
bandstructure of the normal state. We consider the following
Hamiltonian: H = HTB +HSO, where

HTB =
∑

kαβ,σ

εαβ(k)C†kασCkβσ, (33)

is a five-orbital tight-binding model for the parent compound
of iron pnictides. Here εαβ(k) are tight-binding parameters,
which we adopted from Ref. 19. HSO = λSO

∑
i Li·Si, refers
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FIG. 3. (a) Bandstructure of the five-orbital tight-binding model
in the folded Brillouin zone (FBZ) with a local spin-orbit coupling
λSO = 0.05 eV. (b) The corresponding Fermi surface in two quad-
rants of the FBZ.

to a local spin-orbit coupling term. As we discussed, this term
does not break any symmetry of the lattice, but couples the
spatial and spin part of the single-particle wave function.

According to Sec. II A, the tight-binding Hamiltonian de-
fined by the pseudo-crystal momentum k̃̃k̃k in the UBZ can be
transformed to the physical momentum in FBZ via the folding
procedure. This allows us to study the effects of the spin-orbit
coupling by comparing the bandstructures without and with
a spin-orbit coupling in the FBZ. In the absence of the spin-
orbit coupling, the bandstructure of the tight-binding model
is shown in panels (a) and (b) of Fig. 2; it is in agreement
with that from ab initio calculations using the density func-
tional theory [19]. It is clearly seen that the bands are doubly
degenerate along the boundary of the FBZ (Y line from the
M to the X point), and as a consequence, the two elliptical
electron pockets cross at a point along this direction. As we
have emphasized in Sec. II A, this double degeneracy guar-
antees the successful folding procedure: the wave function
can switch representations under the glide when crossing the
FBZ boundary, and hence one can define a pseudo-crystal mo-
mentum according to the parity of the wave function under
the glide. This ensures the equivalence between the models
defined in the FBZ and UBZ. When a spin-orbit coupling is
turned on, as shown in Fig. 3 (a) and (b), the double degener-
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acy along the FBZ boundary (M-X direction) is lifted. As we
discussed, this invalidates the unfolding procedure since the
wave functions have to conserve the parity under glide across
the FBZ boundary. As a result of the lifted degeneracy, the
two electron pockets no longer cross, but a gap opens along
the X-M direction.

Another feature of the bandstructure in the presence of spin-
orbit coupling is the opening of hybridization gaps between
the dxy and dxz/yz bands along the Γ-M direction as shown
within the dashed ellipses in Fig. 3. In absence of spin-orbit
coupling, these bands simply cross, without opening a gap
because they have different parity (pseudo-crystal momenta)
and can not mix. But with a finite spin-orbit coupling, the
Ck,xz/yz,↑ and Ck+Q,xy,↓ have the same parity and they can
hybridize via opening a gap. Recently, a hybridization gap
between the dxz/yz and dxy bands along the Γ-M direction has
been observed in ARPES measurements on several iron-based
compounds [20, 21]. It would be interesting to compare the
experimental results with theoretical ones as this may provide
valuable information about the strength of spin-orbit coupling
in these systems. The spin-orbit couplin g also mixes the dxz
and dyz orbitals, and lifts the double degeneracy between the
dxz and dyz orbitals at Γ point. But a local spin-orbit coupling
does not lift the degeneracy between the dxz and dxy orbitals
at the bottom of the electron bands at M point since it does not
break the four-fold rotational symmetry of the P4/nmm group.

C. The pairing interactions in the presence of spin-orbit
coupling

In Sec. III A we showed that the correspondence between
states defined on a 1-Fe BZ and those belonging to the irre-
ducible representations of the space group in the presence of a
SOC breaks down even when there are no pairing interactions
present. For consistency, here we analyze the direct effect of
a local spin-orbit coupling term (Eq. 25) on the pairing inter-
actions of a t− J model.

The projective nature of this model [3] excludes non-singlet
pairing terms. However, the SOC does not conserve the elec-
tronic spin quantum number and in this case a t − J model
must include ad-hoc triplet pairing terms. In general, the re-
sulting pairing must include terms which are odd under inver-
sion. Based on the discussion at the beginning of Sec. II B,
we expect that the inversion-odd pairing, in the spin triplet
case, will also be odd under the glide-reflection and thus cor-
respond to finite-momentum pairs in the UBZ. We note that,
as in the case for pairing without SOC, we restrict ourselves to
one-dimensional representations of the point group, for which
the above is correct. In the case of two-dimensional repre-
sentations, the opposite holds, with inversion-even functions
actually corresponding to glide-reflection odd states.

At mean-field level, the pairing can still be written in the
form of Eq. 21 except for the spin structure allowing both
same-spin and opposite spin pairing. More specifically, we
use the correspondence in Eqs. 28-31 between the E,O la-
bels without SOC and the Ẽ, Õ ones with SOC turned on to
re-write the pairing in Eq. 22 in terms of the latter. As a

consequence, the real-space pairing functions ∆A
eee,αβ ,∆

B
eee,αβ

(Eqs. 23, 24) acquire a spin-index dependence. The previous
argument (without SOC) relied on the transformation prop-
erties of the latter term under the glide reflection. We can
apply the same procedure in real-space allowing the transfor-
mation of the spins. For singlet pairing the ↑, ↓ combination
always generate products of i,−i, ensuring that ∆A,B

α,β have
exactly the same properties as before. Applying the transfor-
mation (28)-(31) in reverse, we note that singlet pairing can
only have diagonal E,E and O,O pairing (original labeling)
and so does not introduce any finite momentum Cooper pairs.

The situation is different when we allow triplet pairing.
The same-spin terms always generate a minus sign under the
glide reflection. When α, β have the same parity this means
∆A
eee,αβ = −∆B

eee,αβ . In the original labeling, the only terms that
survive are the off-diagonal E,O. Similarly, when α, β have
different parity ∆A

eee,αβ = ∆B
eee,αβ but the (−1) terms coming

from the orbital parity guarantee that we again obtain only off
diagonal E,O pairs. Now however, the E,O terms will map
to k̃̃k̃k, k̃ +Qk̃ +Qk̃ +Q in the UBZ producing finite-momentum Cooper
pairs and invalidating the unfolding. The spin-symmetric
combinations allow forms like those for singlet pairing and
thus do not introduce any new terms.

IV. DISCUSSIONS

In this section we elaborate on some further issues related to
the space group symmetry and BZ folding we detailed above.

A. Effects of three-dimensionality vs. spin-orbit coupling

Real materials with a P4/nmm space group have a 3D
structure ensuring the bands are always dispersive, albeit
weakly, along the kz direction. The group of the wave-
vector for arbitrary kz cannot contain the glide reflection since
the latter connects the generally inequivalent kz,−kz compo-
nents. For kz = 0, the folding can still work as we illustrate
below. The dispersion along the z-direction can be accounted
for by generalizing the 2D ansatze (3), (4) to

Ckkk,kz,E,α =
1√
2

∑
Rz

eikzRz [Ckkk,A,α,Rz
+ (−1)αCkkk,B,α,Rz

] ,

(34)

Ckkk,kz,O,α =
1√
2

∑
Rz

eikzRz [Ckkk,A,α,Rz
− (−1)αCkkk,B,α,Rz

] ,

(35)

which for general kz are not eigenstates of TτPz and we
keep the E,O indices for labeling purposes. Here, kkk still
refers to a purely 2D wave vector. Since for finite kz , these
states do not necessarily coincide with the irreducible rep-
resentations of the space group, the Hamiltonian will con-
tain terms mixing E,O indices. For kz = 0 however, the
glide does not affect the Bloch momentum label but it maps
Rz → −Rz . Due to the equivalence of the different planes,
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Ckkk,A/B,α,Rz
= Ckkk,A/B,α,−Rz

since the two Wannier states
are related by a proper translation. This means in the kz = 0
plane the states (34), (35) still coincide with the irreducible
representations of the space group and the previous arguments
still apply. Therefore, states with two-dimensional crystal mo-
menta can still be mapped onto an effective 1-Fe BZ even
when the dispersion along the z-axis is turned on.

B. Space group symmetry and parity of pairing

Recent studies have paid particular attention to the conse-
quences specific to the 2-Fe unit cell such as the use of an ad-
ditional isospin quantum number [6] on the superconducting
pairing. But some important issues are still unclear. For ex-
ample, pairing channels with very different symmetries have
been proposed theoretically, [6, 8] although the target com-
pounds have the same spatial symmetry. As we discussed ear-
lier in our paper, the space group already imposes strong con-
straints on the parity of symmetry-compatible pairing. This
provides a means to check whether a pairing channel is al-
lowed by the space group symmetry of the system. Here we
examine this issue for two recently proposed pairing chan-
nels, the TAO pairing [6] and the η-pairing [8]. As before, we
focus on spin-singlet pairings in one-dimensional representa-
tions henceforth.

1. TAO pairing

Discussed in Ref. 6, the TAO pairing refers to a spin sin-
glet, orbital triplet A1g dx2−y2 + idxy pairing in the 2-Fe BZ.
It is easy to check that this pairing channel has an even parity
and is compatible with the P4/nmm space symmetry. From
Sec. II B we know that for a 2D dispersion of the conduc-
tion electrons and in the absence of spin-orbit coupling, any
pairing defined on the 2-Fe unit cell FBZ which respects the
space group symmetry must have an equivalent, albeit given
by a different linear combination of channels, (k̃̃k̃k,−k̃̃k̃k) pairing
in the 1-Fe unit cell UBZ. The aforementioned TAO pairing
defined in the 2-Fe BZ (kkk,−kkk) is equivalent to one defined in
the 1-Fe UBZ and does not incorporate any particular prop-
erties of the 2-Fe BZ not captured by the former. A possible
advantage of the direct 2-Fe unit cell formulation might con-
sist in expounding physical features which might be harder to
illustrate in an equivalent 1-Fe unit cell picture.

2. η-pairing

Recent discussions have also considered the η-pairing in
the iron-based superconductors [8–11]. In its original pro-
posal, [8] the η-pairing refers to a singlet pairing of two elec-
trons with pseudo-crystal momenta k̃̃k̃k and −k̃ +Qk̃ +Qk̃ +Q, respec-
tively. This pairing has nonzero total pseudo-crystal momen-
tum in the 1-Fe UBZ, and the momentum dependent part of
the wavefunction has odd parity under inversion. This pro-
posal was based on the observation that the inversion center in

an Fe plane lies half-way in between two (inequivalent) sites.
In a real space basis, the inversion operation interchanges the
two positions on the different sublattices. In a simpler case
where the two lattices are equivalent, the antisymmetry under
exchange of the pairing wavefunction forces the spatial (kkk-
dependent) part to be even under inversion. The existence of
the two inequivalent sites opens up the possibility of odd par-
ity momentum dependence since the overall spatial part could
be described as a direct product of a purely kkk-dependent part
(in the FBZ, 2-Fe unit cell description) and a pseudo-spin ma-
trix which captures the effect of the different sublattices. The
purely kkk-dependent part can have odd parity under inversion
as long as the remaining degrees of freedom compensate with
a minus sign such that the total inversion parity is still even.
Although not explicitly stated in Ref. 8, such a state could cor-
respond to a E,O pseudo-spin singlet. Upon unfolding, the
combination will generate the finite momentum (k̃̃k̃k,−k̃ +Qk̃ +Qk̃ +Q)
pairing. As already shown in Sec. II B, for states of definite
parity under inversion, or equivalently, of definite parity un-
der the glide-reflection, the pairing can be written in general
as a linear combination of terms with and without E,O mix-
ing together with their respective momentum-dependent parts.
In addition, if we do not break the glide-reflection symmetry,
the total pairing must be even. In a purely two dimensional
BZ, the glide-reflection cannot change any of the momenta of
the pair, such that terms with E,O mixing change sign under
the operation while those without do not. Indeed, as detailed
in our Sec. II B , all mixing terms must vanish, ensuring that
upon unfolding no finite momentum pairs can be generated.
We stress that this conclusion holds whenever inversion is not
spontaneously broken for a two dimensional BZ.

In recent studies on the η-pairing, there also seems to be
confusion in the definition for this type of pairing in the lit-
erature which, we believe, is associated with different subse-
quent definitions of the 1-Fe BZ. While in the original work
the η-pairing referred to a (k̃̃k̃k,−k̃ +Qk̃ +Qk̃ +Q) state, in more recent
studies, it is associated with a (/k/k/k,−/k +Q/k +Q/k +Q) pairing in the so-
called “physical extended BZ” [10, 11] given by a mapping
similar to the one in Eqs. 8-12. As in the original proposal
[8], Ref. 10 alludes to the inequivalence of the two sublattice
sites but does not attempt to explicitly consider eigenstates of
the glide reflection operation. Rather, the authors classify 2D
states both in the ”physical” (/k/k/k in our convention) and un-
folded (k̃̃k̃k) representations according to the parity under the
reflection about the z-plane. In the physical representation,
an alternating minus sign in the hopping between different or-
bital parity Wannier states is ”absorbed” into the definition of
the quasi-crystal momentum, resulting in a shift byQQQ between
the even and odd reflection parity states, as detailed in our Sec.
II A. The authors argue that a zero mometum pair in the UBZ
(k̃̃k̃k,−k̃̃k̃k) or arbitrary parity under the z-reflection alone must
decompose into a linear combination of even/even, odd/odd
and even/odd terms which correspond to (/k/k/k + QQQ,−/k/k/k − QQQ),
(/k/k/k,−/k/k/k) and (/k/k/k + QQQ,−/k/k/k) respectively in the physical BZ.
From this, they seem to explain inconsistencies in the spec-
tral weights in the superconducting state between calculations
done on a 1-Fe/UBZ (k̃̃k̃k) and subsequently folded down and
ARPES experiments among others whose results are naturally
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obtained in a 2-Fe/FBZ.
In the context of a glide reflection symmetry, the two con-

structions referring to a finite momentum (k̃̃k̃k,−k̃ +Qk̃ +Qk̃ +Q) in the
UBZ [8] and in the ”physical” (/k/k/k,−/k +Q/k +Q/k +Q) [10, 11] are dif-
ferent. The (k̃̃k̃k,−k̃ +Qk̃ +Qk̃ +Q) pairing has an odd parity under glide
reflection, while the (/k/k/k,−/k +Q/k +Q/k +Q) -pairing is parity even un-
der the glide. To see this, consider the latter (”physical”
representation) case which corresponds to an odd/even par-
ity combinations under the pure reflection. In our language,
this corresponds to states given in Eqs. 8-11 with α odd and
even respectively. It is not difficult to see that upon con-
verting to the ”true” 2-Fe/FBZ (kkk) this term corresponds to
(kkk,−kkk), O/O under the glide-reflection pairs. To the best of
our knowledge, this point has not been clarified before. Ac-
cording to our analysis, the only symmetry-allowed pairing is
the even glide parity one, i.e., the (k̃̃k̃k,−k̃̃k̃k) pairing (or equiv-
alently, the (/k/k/k,−/k +Q/k +Q/k +Q) pairing). It corresponds to normal
zero-momentum pairing in both the 2-Fe FBZ (kkk) or the 1-
Fe UBZ in pseudo-crystal momentum space (k̃̃k̃k). More pre-
cisely, the three formulations alluded to above are equivalent
and we see no reason why 1-Fe unit cell/UBZ calculations
which are folded down could not a priori capture experimen-
tal results. This correspondence naturally explains why the
superconducting gap functions obtained from calculations in
the 2-Fe FBZ are identical to the previous results in the 1-Fe
UBZ [11]. Within our approach, we have also shown that the
odd glide parity (k̃̃k̃k,−k̃ +Qk̃ +Qk̃ +Q) pairing is not allowed by sym-
metry.

V. CONCLUSIONS

The glide reflection symmetry is valid for states of arbitrary
momentum and without spin-orbit coupling there is a minimal
double degeneracy all along the 2-Fe unit cell BZ edge. This
ensures that a tight-binding Hamiltonian can be determined
using an unfolded BZ corresponding to a 1-Fe unit cell. By
contrast, although the glide symmetry still holds for arbitrary
momentum when spin-orbit coupling is turned on, the latter
mixes states corresponding to different pseudo-momenta in
the unfolded BZ and lifts the degeneracy along the Y line,
forbidding the general use of the same unfolding procedure.
These conclusions are consistent with bandstructure calcula-
tions with and without spin-orbit coupling which show the
lack of and the presence of this hybridization.

We also conclude that for a t − J type Hamiltonian with-
out spin-orbit coupling the results obtained directly from a 1-
Fe unit cell should coincide with those from 2-Fe unit cell,
the two being related by the validity of the unfolding proce-
dure. This applies to the TAO pairing [6]: Though proposed
in the 2-Fe BZ, it is equivalent to a dx2−y2 + idxy pairing with
both intra- and inter-orbital contributions. One more remark is
that this equivalence does not hold when a spin-orbit coupling
term is included.

Another conclusion from our symmetry analysis is that the
pairing channel compatible to theP4/nmm space group sym-
metry must have an even parity (once again,we focus on spin-

singlet pairings in one-dimensional representations). With
this criterion, the η-pairing with (k̃̃k̃k,−k̃̃k̃k + Q), originally pro-
posed in Ref. [8] is not symmetry-allowed since it is parity
odd. The η-pairing discussed in most recent works [10, 11],
on the other hand, refers to a (/k/k/k,−/k +Q/k +Q/k +Q) pairing, which cor-
responds to a total momentum zero (k̃̃k̃k,−k̃̃k̃k) pairing with an
even parity, and is thus compatible with the P4/nmm space
group symmetry.

Our analysis for the folding within a P4/nmm space group
symmetry can serve as a comparison point for a similar dis-
cussion in the more involved I4/mmm case. As we stressed
throughout the text, the validity of the glide-symmetry, to-
gether with the fortuitous double degeneracy along the edge
of the FBZ guarantee the success of the folding for kz = 0 and
no SOC. Since none of these appear to be valid for I4/mmm,
the folding will probably not work. A rigorous analysis of this
latter case is reserved for a future publication.
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Appendix A: Eigenstates of the glide operation

The irreducible representations of the P4/nmm space group
for general kkk ∈ FBZ and for the special loci Γ, ∆, Σ and M
[2] transform as

(TτττPz)Ckkkα = eikkkτττλCkkkα, (A1)

where λ = ±1. The above form is not the case for X and
Y . However, since the Hamiltonian must evolve continously
with kkk it is clear that we can form irreducible representations
at the two above mentioned loci by taking linear combinations
of even (E) only or odd only (O) such that our arguments are
not affected.

We can derive the general form of states which transform
according to (A1) from a general superposition of operators
defined on each sublattice

Ckkkα =
1√
N

∑
RARARA

eikkk·RARARAC
(A)
RARARAα

+
∑
RBRBRB

eiθkkkeikkkRBRBRBC
(B)
RBRBRBα


=

1√
N

∑
RARARA

eikkk·RARARA

[
C

(A)
RARARAα

+ eiθkkkeikkkτττC
(B)
RARARA+τττα

]
(A2)

where RRRA, RRRB are summations over the position vectors of
the respective sublattices, and α stands for the parity of the
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local degrees of freedom under a pure reflection σz . We stress
that, in the most general case, the completely local states can
be different (C(A)

rrrα 6= C
(B)
rrrα ) due to the physical inequivalence

of the two sublattice sites. Although in principle the linear

combinations of the two sublattice Bloch states can have arbi-
trary complex coefficients, the form chosen above is sufficient
for our purposes.

Applying the glide reflection to the trial state (A2) and im-
posing (A2) we get

(TτττPz)Ckkkα = λeikkkτττ
1√
N

∑
RA

eikkk·RARARA

[
(−1)αC

(A)
RARARA+τττα + eiθ̃kkkeikkkτττ (−1)αC

(B)
RARARA+2τττα

]
(A3)

such that all position vectors get shifted by the fractional
translation τττ , the local states generate the parity term α, and
the phase θkkk → θ̃kkk in general. Comparing (A2) and (A3) we
see there are a number of possibilities. In general, condition
(A3) cannot determine all the unknowns i.e. the phase fac-
tor and the relation between the the two displaced local states.
We can connect with a folding procedure by making some as-
sumptions regarding the phase and letting the above condition
determine the local states.

A first possibility corresponds to taking λ = 1 in (A3)

C
(A)
RARARAα

=(−1)αC
(A)
RARARA+τττα (A4)

C
(B)
RARARA+τττα =(−1)αC

(B)
RARARA+2τττα (A5)

θkkk =θ̃kkk. (A6)

For λ = −1 we can have

C
(A)
RARARAα

=− (−1)αC
(A)
RARARA+τττα (A7)

C
(B)
RARARA+τττα =− (−1)αC

(B)
RARARA+2τττα (A8)

θkkk =θ̃kkk. (A9)

and we set θkkk = 0. The conditions above are simply the trans-
formation properties of the local states under a simple 1-Fe
unit cell translation. If we choose the states at corresponding
to CA and CB to have the same functional form, we can con-
struct two distinct eigenstates of the glide by for arbitrary α
:

Ckkk,E,α =
1√
N

∑
RARARA

eikkk·RARARA

[
CRARARAα1 + (−1)αeikkkτττCRARARA+τττα

]
(A10)

Ckkk,O,α2 =
1√
N

∑
RARARA

eikkk·RARARA

[
CRARARAα − (−1)αeikkkτττCRARARA+τττα

]
,

(A11)

where we omitted the A,B superscripts which are now irrele-
vant. Eqs. A10 and A11 are the operators in (3) and (4).

Note that in addition to the above states which allowed the
unfolding we can also choose eigenstates of the glide reflec-
tion by imposing

C
(A)
RARARAα

=± (−1)αeiθ̃kkkeikkkτττC
(B)
RARARA+2τττα (A12)

eiθkkkeikkkτττC
(B)
RARARA+τττα =± (−1)αC

(A)
RARARA+τττα. (A13)

We can choose the phase factor eiθkkk = eiθ̃kkk = e−ikτkτkτ and
disregard the A,B distinction as in the first choice. The two
sublattices are now related by a kkk-dependent phase rather than
a simple sign. The initial ansatz (A2) becomes

Ckkk,E,α =

√
1

N

∑
RARARA

eikkk·RARARA [CRARARAα + (−1)αCRARARA+τττα] (A14)

Ckkk,O,α =

√
1

N

∑
RARARA

eikkk·RARARA [CRARARAα − (−1)αCRARARA+τττα] (A15)

which clearly do not correspond to a 1-Fe unit cell.

Appendix B: The Hamiltonian in the physical extended
momentum basis

Direct substitution of the definitions (8)-(11) into the 2-Fe
BZ Hamiltonian (5) gives
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HTB =
∑

kkk∈FBZ

[∑
ee

(
εEαβ(kkk)C†kkk,αCkkk,β + εOαβ(kkk)C†kkk+QQQ,αCkkk+QQQ,β

)
+
∑
oo

(
εEαβ(kkk)C†kkk+QQQ,αCkkk+QQQ,β + εOαβ(kkk)C†kkk,αCkkk,β

)
+
∑
eo

(
εEαβ(kkk)C†kkk,αCkkk+QQQ,β + εOαβ(kkk)C†kkk+QQQ,αCkkk,β

)
+
∑
oe

(
εEαβ(kkk)C†kkk+QQQ,αCkkk,β + εOαβ(kkk)C†kkk,αCkkk+QQQ,β

)]
. (B1)

We can use the fact that εE(O)
αβ (kkk +QQQ) = ε

O(E)
αβ (kkk) to rewrite

the first two terms as a total sum over /k/k/k over the unfolded BZ.
We can also show that the third term can be expressed as a
sum over /k/k/k. Specifically,

∑
/k/k/k∈UBZ

εEαβ(/k/k/k)C†
/k/k/k,αβ

C/k/k/k+QQQ,αβ =
∑

/k/k/k∈FBZ

εEαβ(/k/k/k)C†
/k/k/k,αβ

C/k/k/k+QQQ,αβ +
∑

/k/k/k/∈FBZ

εEαβ(/k/k/k)C†
/k/k/k,αβ

C/k/k/k+QQQ,αβ (B2)

=
∑

kkk∈FBZ

εEαβ(kkk)C†kkk,αβCkkk+QQQ,αβ +
∑

kkk∈FBZ

εEαβ(k +QQQk +QQQk +QQQ)C†kkk+QQQ,αβCkkk+2QQQ,αβ (B3)

which after recognizing that Ckkk+2QQQ = Ckkk gives the form in
Eq. 12.
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