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We investigate effects of ordinary nonmagnetic disorder in the bulk of a superconductor on mag-
netic adatom-induced Shiba states and on the proximity-induced superconductivity in a nanowire
tunnel-coupled to the bulk superconductor. Within the formalism of self-consistent Born approx-
imation we show that, contrary to the widespread belief, the proximity-induced topological super-
conductivity can be adversely affected by the bulk superconducting disorder even in the absence
of any disorder in the nanowire (or the superconductor-nanowire interface) when the proximity
tunnel-coupling is strong. In particular, bulk disorder can effectively randomize the Shiba state en-
ergies. In the case of a proximate semiconductor nanowire, we numerically compute the dependence
of the effective disorder and pairing gap induced on the wire as a function of the semiconductor-
superconductor tunnel coupling. We find that the scaling exponent of the induced disorder with
respect to coupling is always larger than that of the induced gap, implying that at weak coupling,
the proximity induced pairing gap dominates whereas at strong coupling the induced disorder domi-
nates. These findings bring out the importance of improving the quality of the bulk superconductor
itself (in addition to the quality of the nanowire and the interface) in the experimental search for
solid state Majorana fermions in proximity-coupled hybrid structures and, in particular, points out
the pitfall of pursuing strong coupling between the semiconductor and the superconductor in a goal
toward having a large proximity gap. In particular, our work establishes that the bulk superconduc-
tor in strongly-coupled hybrid systems for Majorana studies must be in the ultra-clean limit, since
otherwise the bulk disorder is likely to completely suppress all induced topological superconductivity
effect.

PACS numbers: 74.62.En, 74.45.+c, 03.65.Vf

I. INTRODUCTION

Majorana fermions in solid state systems [1–5] obey
non-Abelian braiding statistics [6], and are a promising
platform for topological quantum computation [7]. A
feasible route towards realizing them utilizes a hybrid
structure involving the proximitization of a semiconduc-
tor (SM) with a bulk s-wave superconductor (SC) [8–14].
With the appropriate combination of spin-orbit coupling
(SOC), Zeeman spin splitting, and SC pairing terms, the
proximitized system becomes topological (i.e. an effec-
tively spinless p-wave superconductor) and localized Ma-
jorana fermions emerge at the ends of one-dimensional
(nanowire) systems or at the vortices of two-dimensional
systems. Their existence can then be probed by con-
ductance measurements as quantized zero-bias peaks of
height 2e2/h at zero temperature associated with the per-
fect Andreev reflection induced by the Majorana zero
energy modes [10, 15–19]. Shortly after the theoreti-
cal proposals [8–13, 20] were put forward, several experi-
mental groups implemented different variants of the pro-
posed Majorana experiment using nanowires in proxim-
ity to bulk superconductors [21–27]. Although the initial
data reporting zero-bias tunneling conductance peaks in
nanowires (albeit with conductance values below the the-
oretically predicted 2e2/h quantized conductance) are en-
couraging, more theoretical and experimental work still
needs to be done in order to distinguish signatures of
Majorana fermions from those from other possible non-

topological mechanisms as have been discussed in the lit-
erature [28–35].

The current work is on the deleterious effect of disor-
der on the proximity induced topological superconduc-
tivity in the hybrid system of experimental interest. The
topological superconductivity induced in the nanowire,
arising from a combination of s-wave superconductiv-
ity, spin-splitting, and spin-orbit coupling, is essentially
equivalent to a type of an effectively spinless p-wave su-
perconductivity [36] with triplet spin correlations [37]
which is not immune to ordinary nonmagnetic disorder
in the environment unlike regular s-wave spin-singlet su-
perconductors which are protected against nonmagnetic
disorder by virtue of the Anderson theorem. There have
therefore been many theoretical and numerical studies
[28–30, 38–54] of the effects of disorder on the topological
superconductivity in this context, going back to almost
15 years ago [28]. It may appear that another theoretical
study of disorder effects in this context would be redun-
dant, but as we explain below, this is not the case here.
The specific question regarding disorder effects (in the
bulk superconductor itself) addressed in this paper has
only been discussed three times in the literature before
with the first paper [55] coming to an erroneous con-
clusion which was subsequently corrected [56, 57]. The
conclusion we reach in our current work is of great im-
portance in choosing the proper materials for the hybrid
structures manifesting topological superconductivity and
Majorana fermions.
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In considering the effects of disorder in these hybrid
SM-SC [21] (or FM-SC where FM stands for the ferro-
magnetic adatoms as in Ref. [27]) systems, one should
distinguish between disorder in the SM and that in the
bulk SC. Disorder in the SM has been extensively studied
[30, 39, 40, 44, 46, 47], with the main conclusion being
that the topological gap is destroyed by this type of dis-
order when the mean free path is comparable with or
smaller than the induced coherence length in the semi-
conductor. It has been much emphasized in the lit-
erature [44] that the topological nanowire must be in
the ballistic limit with the carrier mean free path be-
ing much larger than the proximity-induced coherence
length in the nanowire for the manifestation of the Ma-
jorana zero modes, a condition which is likely (unlikely)
to be satisfied in the semiconductor [21] (ferromagnetic
[27]) nanowires. It has also been emphasized [58] that
the applicable disorder at the nanowire-superconductor
interface must be low for the induced proximity super-
conductivity to manifest a hard gap as has recently been
apparently accomplished in the InAs-Al epitaxial core
shell nanowire hybrid structures [59]. On the other hand,
disorder in the bulk SC has received relatively little at-
tention [14, 55–57], with the focus mainly on the limit
where the coupling between the two materials is small
(i.e. the weak-coupling limit where the SM-SC tunnel-
ing amplitude is small). In this limit, it has been found
[55, 57] that the disorder in the bulk SC hardly affects the
superconducting gap in the topological system, making
it possible to use disordered or dirty SCs in experiments
[21–25]. One consensus in the community regarding dis-
order effects seems to be that disorder in the nanowire
itself (superconductor itself) is important (unimportant)
with respect to the manifestation of proximity-induced
topological superconductivity and Majorana fermions in
the hybrid system. The current work directly challenges
this consensus, showing that the disorder in the bulk su-
perconductor may very well be important for the prox-
imity induced topological superconductivity, particularly
in the limit where the superconductor and the nanowire
are strongly tunnel-coupled. In particular, the bulk su-
perconductor should be in the clean limit with its elas-
tic mean free path being much larger than the super-
conducting coherence length for optimal induced topo-
logical superconducting order in the hybrid structures.
Our current work indicates that having a clean super-
conductor with a very long mean free path is an ab-
solute necessary condition for the realization of a large
proximity-induced topological superconducting gap host-
ing Majorana fermions in the SM-SC and FM-SC hybrid
systems.

Two recent developments prompted us to revisit the
issue of of bulk disorder in the superconductor. First, a
new class of proposals [27, 60–73], utilizing Shiba states
induced by magnetic adatoms on SCs to generate Ma-
jorana fermions, has emerged. This platform for us-
ing ferromagnetic adatoms on a superconducting sub-
strate as the topological FM-SC hybrid system is in some

sense the large spin-splitting limit [34] of the SM-SC hy-
brid structure with the spin-splitting arising intrinsically
from exchange effects in the ferromagnet rather than
from a Zeeman splitting induced by an external magnetic
field as in the SM-SC hybrid system. This ferromagnet-
superconductor hybrid system can therefore be effectively
described by a Hamiltonian same as that of the SM-SC
heterostructure, with a crucial difference that the tunnel
coupling between the adatoms and the SC (as well as the
spin splitting in the adatom chain) is much larger than
the corresponding term in the SM-SC system [35], render-
ing the previous perturbative treatment of disorder in SC
inapplicable. Second, in Ref. [59] the SM-SC structure
has been grown epitaxially which drastically improved
the quality of the interface between the two materials.
A hard proximity-induced superconducting gap is then
observed on the SM, resolving the “soft gap” issue that
previous experiments found [58]. The size of the gap on
SM is comparable to that on the SC, indicating strong
coupling between the two materials [74]. In this limit,
however, it is unclear whether disorder in the bulk SC
can significantly degrade the gap on the SM, especially
when a magnetic field is applied on the SM to create a
Zeeman spin splitting necessary for producing the topo-
logical superconductivity in the SM wire.

In both of these experiments [27, 59], the strong tun-
nel coupling between the SM (or magnetic adatoms) and
the SC necessitates the re-examination of the issue of
disorder in the SC, as previous treatments of this prob-
lem were valid only when the coupling is small [55–57],
which are not the case in these two new systems. In this
paper, we investigate the effects of disorder in a SC on
the spectral properties of a proximate SM in the SM-SC
system and on the Shiba states in the FM-SC system.
The disorder problems for the two hybrid structures (i.e.
disorder effects on the Shiba states in the ferromagnetic
adatom chain and on the SC/SM nanowire) are some-
what different, and we therefore study the two systems
(FM/SC and SM/SC) separately so that our work ap-
plies to both experimental systems although our main
emphasis in the current work is on the semiconductor-
based Majorana hybrid systems since the experimen-
tal situation is better understood in such semiconduc-
tor nanowire structures. The formalism we adopt is the
self-consistent Born approximation, which is valid in the
limit of weak impurity scattering (specifically kF l � 1,
where kF and l are respectively the Fermi wave num-
ber and the disorder-induced transport mean free path
in the bulk SC– this condition is well-satisfied in the
bulk superconductors used in the Majorana hybrid struc-
tures with the clean/dirty bulk superconductors being
defined by whether l � ξ or l � ξ, respectively where
ξ is the SC coherence length). We extract the density
of states (DOS) of the topological systems via their dy-
namic Green functions which contain the self-energy due
to ensemble-averaged disorder in the bulk of the SC.
Throughout the paper we shall assume the SM itself as
well as the SM-SC interface is clean and only consider
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disorder in the bulk superconductor.
Investigating whether a strong tunnel coupling to

the superconductor in hybrid systems, e.g. the in-
herent strong coupling in metal-on-metal ferromagnetic
adatom systems or the strong coupling in epitaxial
semiconductor-superconductor systems, could lead to the
disorder in the bulk superconductor (quite apart from the
disorder in the adatoms or the semiconductor itself) be-
coming relevant for the topological superconducting (and
consequently Majorana fermion) properties is the goal of
the current theoretical work. We ignore all disorder in
the SM nanowire (or the FM chain) itself since it has
already been studied extensively elsewhere and is well-
understood as being detrimental to topological proper-
ties.

To qualitatively understand how the bulk supercon-
ducting disorder might be relevant for the proximity in-
duced superconductivity in the strong tunnel coupling
(which we often refer to simply as “strong coupling” in
this paper) limit we refer to the simple (and approximate)
formula for the proximity-induced superconducting gap
in the hybrid system derived in Refs. [10, 44, 74] and used
extensively:

∆w ∼
Γ∆

Γ + ∆
(1)

where Γ is the effective coupling, ∆ is the bulk gap in the
superconductor, and ∆w is the induced proximity gap in
the nanowire. It has been much emphasized that in or-
der to obtain a large induced gap one must have Γ� ∆
so that ∆w ∼ ∆ which is obviously the maximum pos-
sible value of the induced gap (as achieved presumably
in the epitaxial InAs-Al coreshell nanowire systems [59]).
In the opposite limit of very weak coupling, Γ� ∆, one
gets ∆w ∼ Γ with a very small induced gap � ∆ (with
consequently an even smaller topological gap since the
topological gap is bounded from above by ∆w). Let us
now imagine an extremely large tunnel coupling (e.g. Γ
going to infinity) where there is then no discernible dif-
ference between the superconductor and the nanowire so
that ∆w = ∆ applies, and hence the nanowire has essen-
tially become a part of the bulk superconductor as far
as superconducting properties go. In such a situation,
the bulk disorder in the superconductor is now a part of
the disorder in the nanowire since from the perspective
of superconductivity, these two have become one mono-
lithic system. Now, if we turn on spin-orbit coupling and
spin-splitting so as to convert ∆w into a topological su-
perconducting gap, then the disorder existing in the bulk
superconductor must necessarily suppress the effectively
triplet spinless topological superconductivity since it is
not protected by any Anderson theorem (as time reversal
invariance is explicitly broken)! We note that this argu-
ment does not apply in the weak tunneling (Γ� ∆) limit
where the two parts of the hybrid system (the bulk super-
conductor and the nanowire) are distinct, and indeed it
has been explicitly shown [57] that in the weak tunneling
limit (Γ going to zero), the bulk superconducting disor-

der does not suppress the topological superconductivity,
but of course the topological gap is very small in this
limit (< Γ) anyway! Although this physically motivated
qualitative argument is not a proof by any means, the ar-
gument demonstrates that the strong- and weak-coupling
situations could be fundamentally different with respect
to disorder effects coming from the bulk superconductor,
and a careful investigation is necessary to see whether the
strong-coupling situation is benign or not with respect to
the bulk disorder effects. While this problem is of consid-
erable intrinsic interest itself in the context of the theory
of superconducting proximity effect, the current exper-
imental push (e.g. InAs-Al epitaxial hybrid system) to
produce a hard induced gap makes our work timely in
the study of Majorana fermions in solid state systems.

The paper is organized as follows. In Sec. II we con-
sider the ferromagnet-SC hybrid system in the Shiba
limit, where the coupling between the magnetic adatoms
and the SC is much stronger than the inter-atomic cou-
pling. We find that in this strong coupling regime disor-
der in the bulk SC has strong effects on the location of the
Shiba energy in the bulk SC gap. In Sec. III we consider
the effects of bulk superconducting disorder on SM-SC
heterostructure, in both weak- and strong-coupling lim-
its. We show that our results in the weak-coupling limit
agree with previous works [55, 57], and highlight features
specific to the strong-coupling limit, where, in contrast
to the weak-coupling limit, nonmagnetic elastic disorder
in the bulk superconductor invariably strongly degrades
the proximity-induced topological SM superconductivity.
We conclude in Sec. IV with a summary and with a brief
discussion on the far-reaching implications of our find-
ings for the future design of hybrid structures hosting
Majorana fermions.

II. FERROMAGNETIC ADATOM-INDUCED
SHIBA STATES IN A DISORDERED

SUPERCONDUCTOR

We first consider a disordered s-wave SC strongly cou-
pled with a magnetic impurity, described by

H =
∑
kσ

ξka
†
kσakσ + ∆

∑
k

(
a†k↑a

†
k↓ + h.c.

)
−J

∑
σ

σa†σ (r = 0) aσ (r = 0) (2)

+

ˆ
drUdis (r)

∑
σ

a†σ (r) aσ (r) ,

where akσ annihilates an electron with momentum k and
spin σ. In the first line, ξk is the normal-state dispersion
and ∆ the s-wave pairing term of the SC. In the second
line, J characterizes the strength of the magnetic impu-
rity, located at the origin (r = 0), which induces a local
Zeeman term in the SC. The prefactor σ = ±1 corre-
sponds to spin-up/down respectively. In the third line,
Udis (r) represents nonmagnetic elastic disorder present
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in the SC (which leads to a finite transport mean free
path l in the bulk SC in its normal state). Below, we in-
vestigate effects of the magnetic term (J) on the DOS of
the system, for both clean (Udis = 0) and dirty (Udis 6= 0)
SCs by generalizing the original Yu-Shiba-Rusinov the-
ory [75–77] to include static nonmagnetic elastic disorder
Udis in the SC.

A. Clean Superconductor

We first briefly review the theory of Shiba states [75–
77] in the absence of disorder (Udis = 0) to set a context
and to fix the terminology. In frequency (ω)-momentum
(k) space, the Green function for the system is

G
(1)
kk′ = G

(0)
k δkk′ +G

(0)
k Tkk′G

(0)
k′ , (3)

where G(0)
k (ω) = ωτ0+ξkτz+∆τx

ω2−ξ2k−∆2 is the Green function for
a clean SC with τµ the Pauli matrices acting on the

Nambu-Gorkov space of
(
ak↑, a

†
k↓

)T
. The superscript

(1) in Eq. (3) indicates the presence of one magnetic im-
purity, but without disorder in the system. The effect of
the magnetic term J is captured by the T -matrix in the
second term of Eq. (3), which is given by

Tkk′ = −

(
1 +

J

V

∑
k

G
(0)
k

)−1
J

V

= −
(

1− Jπν0
ωτ0 + ∆τz√
ω2 −∆2

)−1
J

V
, (4)

where V is the volume of the system and ν0 the normal-
state DOS at the Fermi level. The pole of T in the subgap
regime indicates the presence of a bound state, called the
Shiba state [75–77], with the energy given by

ε0 = sgnJ
1− (Jπν0)

2

1 + (Jπν0)
2 ∆. (5)

The local density of states (LDOS) at the position of the
Shiba state is given by ν (r = 0) = V −1

∑
kk′ G

(1)
kk′ . In

Fig. 1, the black lines show the the LDOS at a Shiba state
with energies ε0 = 0 and ε0 = 0.4∆. The divergence of
the LDOS at ω = ε0 indicates that the Shiba states have
well-defined energies. We mention the obvious fact that
the Shiba state energy ε0 is tuned by appropriately tuning
the magnetic coupling J , and in a given experimental set-
up J would typically be fixed producing a Shiba energy
according to Eq. 5 above. Results corresponding to two
situations with ε0 = 0 and 0.4∆ are shown in Figs. 1 and
2.

B. Disordered Superconductor

We now investigate the effects of ensemble-averaged
disorder in the bulk SC (Udis) on the Shiba state energy.
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Figure 1: (Color Online) The LDOS at the position of the
magnetic impurity in a clean (black solid lines) or disordered
(colored lines) SC. The Shiba state energies are tuned to (a)
ε0 = 0, and (b) ε0 = 0.4∆. A broadening of magnitude 0.001∆
is used to smear out the delta-functions for depicting the re-
sults. The elastic disorder in the system is quantified by the
mean free path l which is given in the units of the clean limit
coherence length ξ of the SC as shown on the right.

To this end, we assume the random quenched nonmag-
netic impurities in the SC have a concentration of nimp,
and each impurity has a scattering potential of the form
Ui (r) = Uδ (r − ri), where ri is the position of the ith
impurity. In the self-consistent Born approximation, the
Green function is written as

Gkk′ =

[(
G

(1)
kk′

)−1

− Σkk′

]−1

, (6)

where G(1) is given by Eq. (3) and the inversion here
is operated on the k − k′ matrix space. The disorder-
induced self-energy Σkk′ is given (in the self-consistent
Born approximation) by

Σkk′ = nimpU
2 1

V

∑
p

τzGp+k,p+k′τz, (7)

≈ τ−1

2πν0
δkk′

1

V

∑
pq

τzGp,qτz. (8)

where τ =
(
2πnimpU

2ν0

)−1 is the disorder scattering
time. Note that due to the lack of translational invari-
ance, the self-energy due to disorder, in its exact form of
Eq. (7), is nondiagonal in k−k′. It is easy to check that
Eq. (7) reduces to the conventional form for translation-
ally invariant systems [? ? ] if Gkk′ is proportional to
δkk′ .

In reaching Eq. (8), we observed that that G(1)
kk′ has

the highest weight when |k| = |k′| = k
(N)
F , where k(N)

F
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is the Fermi momentum of the system in its normal
state. Therefore, in the summation over p in Eq. (7), the
summand has appreciable weights only when |p + k| =

|p + k′| = k
(N)
F . In the general case where k 6= k′, this

condition is satisfied only for a one-dimensional mani-
fold of p, but when k = k′, the condition reduces to
|p + k| = k

(N)
F and is satisfied by a two-dimensional

manifold of p. Thus we see that Σkk′ has most of
its weights at k = k′, allowing us to approximate it
by Eq. (8). This can be understood physically as the
ensemble-averaged disorder should not introduce further
translational-symmetry breaking and hence Σkk′ is diag-
onal in k.

For each value of energy (ω), Eqs. (6) and (8) are it-
erated numerically until convergence. In the evaluation
of the momentum integrals, we use the approximation
1
V

∑
k → ν0

´∞
−∞ dξk. The ξk-integral is discretized on a

grid with 104 points distributed in a way such that 1
1+|ξk|

is sampled uniformly over the interval
[
10−4, 1

]
. The it-

eration converges after a few cycles for most values of ω
except for those in the vicinity of the Shiba state energy
(ε0), which requires a few hundred of iteration cycles.

The blue dashed line in Fig. 1 shows the LDOS at
the magnetic impurity when the SC is disordered with a
mean free path of l = vF τ = 10ξ, where vF and ξ = vF /∆
are the Fermi velocity and the coherence length of the SC.
The results for several other values of l are also presented.
We observe that the delta-peak at ω/∆ = ε0 associated
with the Shiba state is now broadened to a dome by the
disorder in the SC. This can be understood as follows:
the continuum states of the SC are different for each re-
alization of disorder. The scattering phase shift due to
the magnetic impurity therefore varies from one realiza-
tion to another, leading to an effective disorder-induced
fluctuation in J and ε0 [c.f. Eq. (5)]. Ensemble-averaging
the LDOS over disorder leads to a dome-like shape cen-
tered around the energy of the Shiba state in a clean SC
with the dome in Fig. 1 reflecting the “spreading” in the
effective Shiba energy due to disorder– it is clear that the
clean SC limit with l � ξ is necessary for the system to
have a sharp Shiba energy.

We plot in Fig. 2a the effective fluctuation in J , which
is defined as the standard deviation δJ of the distribu-
tion in J that would result in Shiba state energies dis-
tributed according to the subgap LDOS obtained from
self-consistent Born approximation (e.g. the dome in
Fig. 1). Fixing the Shiba state energy in the clean limit
at ε0 = 0 and 0.4∆ (as in Fig. 1), we plot in Fig. 2b the
width of the subgap dome of LDOS against the strength
of disorder as characterized by ξ/l. In general, the Shiba
subgap state is broadened by disorder, and the subgap
DOS joins the continuum states when l . ξ, with the
precise critical disorder dependent on the Shiba energy.
The results presented in Figs. 1 and 2 clearly demonstrate
the importance of being in the ultra-clean SC limit, i.e.,
l � ξ, for obtaining a Shiba state whose energy is close
to that in the clean limit.
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Figure 2: (Color Online) (a) The normalized fluctuation δJ/J
as a function of the disorder strength ξ/l and the Shiba energy
ε0 for clean SC. In the white regions, the subgap dome of
LDOS joins the continuum modes (|ω| > ∆) which makes δJ
ill-defined. (b) The width of the subgap dome as a function
of disorder strength for ε0 = 0 (solid line) and ε0 = 0.4∆
(dashed line).

C. Discussion

We have investigated the LDOS associated with a sin-
gle magnetic impurity embedded in a disordered SC with
ensemble-averaging. The result thus obtained is not ex-
pected to be directly applicable to a real experiment con-
ducted with a single impurity since in reality there is only
one realization of disorder, and therefore this Shiba state
energy should appear as a sharp subgap LDOS peak. Our
ensemble-averaged results, however, reveal that the Shiba
state energy is shifted randomly from sample to sample
around its value in the clean-SC limit (with the likelihood
roughly proportional to the height of the subgap dome)
because each specific experimental sample will have its
unique disorder configuration which will differ randomly
from one sample to another. Qualitatively, when the
mean free path of the bulk SC is of the same order of
magnitude as (or shorter than) its SC coherence length,
the Shiba state energy could be anywhere within the SC
gap. This is likely to have implications for a class of re-
cent proposals which utilize the Shiba states induced in a
superconductor by a chain of magnetic adatoms to gen-
erate Majorana fermions [27, 61, 64, 66, 67, 69, 72, 73].
In general, the spin-orbit-coupling strength, the lattice
spacing between magnetic adatoms and the Shiba state
energy all need to be fine-tuned to obtain topological
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superconductivity in the system [67, 72]. However, it
is difficult to control the Shiba state energy even if the
SC is clean, as it is determined by the strengths of the
magnetic adatom and its coupling with the SC, both of
which can hardly be tuned experimentally. Our finding
indicates that in addition to the difficult task of fine-
tuning the Shiba energy to zero, it is also necessary to
use an ultra-clean SC with l � ξ so as to ensure that
the Shiba state energy for each individual atom remain
close to zero. Otherwise, with Shiba state energies along
the chain being shifted randomly by disorder, the sys-
tem would then be fragmented into segments of topo-
logical and non-topological regions, an unfavorable situ-
ation for topological quantum computation. Thus, our
current work implies that the fine-tuning problem of cre-
ating Majorana modes using Shiba states becomes sub-
stantially worse in the strong coupling situation since
the bulk disorder in the superconductor now randomly
shifts the Shiba state energy, leading to strong sample-
to-sample variations. We mention here that the typical
Shiba-induced Majorana system is a metal-on-metal sys-
tem (i.e. a ferromagnetic metal chain on a supercon-
ducting metal) where the tunnel coupling is large (∼eV),
and the typical bulk disorder scale in the superconductor
(∼meV) much larger than the typical induced gap (∼ 0.1
meV) leading to an intrinsically unfavorable theoretical
situation for the existence of Majorana modes by virtue
of the fine-tuning problem.

III. SEMICONDUCTOR
NANOWIRE-SUPERCONDUCTOR SYSTEM

In Sec. II, we looked into the system in the “Shiba
limit”, in which the inter-atomic hopping among the mag-
netic adatoms is much weaker than their coupling with
the bulk SC. We now turn to consider the opposite limit
where the system hybridizes strongly to form a nanowire.
(We mention as an aside that the two limiting situations,
the Shiba limit of weak inter-wire hopping [69] and the
nanowire limit of strong inter-wire hopping [70], are not
separated by a quantum phase transition and are two
extremes, which are applicable to different physical situ-
ations, of the same underlying physics [35, 73].) Previous
work [57] has indicated that disorder in the bulk SC can-
not degrade the superconducting gap in the nanowire if
the SM-SC coupling is weak. It, however, remains un-
clear whether a strong SM-SC coupling could alter this
conclusion qualitatively (as was already discussed in the
Introduction of this paper). Therefore we now investi-
gate this question in depth without assuming any weak
SM-SC coupling. Note that the effect of disorder at the
SM-SC interface is a separate issue which has been the-
oretically treated previously [58].

In the absence of disorder, the system is described by
the Hamiltonian H = Hw + Hsc + HT , where Hw/sc is
the Hamiltonian for the SM wire / SC and HT is the
coupling between the two materials. Explicitly, they are

given by

Hw =
∑
kzσ

[
ξ

(w)
kz

c†kzσckzσ +Bσc†kzσckzσ + αkzc
†
kzσ̄

ckzσ

]
(9a)

Hsc =
∑
kσ

ξ
(s)
k a†kσakσ + ∆

∑
k

(
a†k↑a

†
k↓ + h.c.

)
(9b)

HT =
∑
kσ

a†kσckzσ + h.c. (9c)

where ξ(w)
kz

= k2
z − µ and ξ(s)

k are the dispersions of the
wire and the SC, respectively. B and α are the Zeeman
and SOC terms on the wire, and ∆ is the s-wave pair-
ing term on the SC. The subscript σ̄ represents the spin
species opposite to that of σ. The physical properties of
the system are captured by its Green function, which is
given by

G =

(
G

(0)−1
s − Σdis T

T † G
(0)−1
w

)−1

≡
(
Gs

Gw

)
. (10)

Here, the full Green function G of the whole system is
written in the block spinor space of

(
ψ(s), ψ(w)

)
, where

ψ(s)/(w) represents the Bogoliubov-de Gennes spinors for
the SC / wire respectively. The off-diagonal block ma-
trix T represents the tunneling between the two systems.
Σdis is the self-energy originating from the nonmagnetic
disorder, which is present in the SC only in our model.
The explicit forms for these terms are

G(0)
s

(
ω,k(s)

)
=
ωτ0 + ξ

(s)
k τz + ∆τx

ω2 − ξ(s)2
k −∆2

, (11a)

G(0)
w

(
ω, k(w)

z

)
=
(
ωτ0 − ξ(w)

kz
τz −Bσz − αk(w)

z σxτz

)−1

,

(11b)

T
(
k(s), k(w)

z

)
= tδ

k
(s)
z ,k

(w)
z
, (11c)

Σdis

(
k(s),p(s)

)
≈ δk(s),p(s)

τ−1

2πν0V

∑
q1,q2

Gs

(
q

(s)
1 , q

(s)
2

)
,

(11d)

where G(0)
w/s are the unperturbed Green functions of the

wire / SC. The superscripts (w) / (s) on the momentum
variables indicate that they refer to the wire / SC. The
effects of disorder in the bulk SC is captured by the self-
energy Σdis, whose expression has been approximated in
the same way as Eq. (8).

Inverting the matrix in Eq. (10), we get the following
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set of coupled equations:

Gw =
(
G(0)−1
w − Σw

)−1

, (12a)

Σw =
t2

A

∑
k⊥

τzG̃S (k) τz, (12b)

G̃s =
(
G(0)−1
s − Σdis

)−1

, (12c)

Σdis (k,k′) ≈ δkk′
τ−1

2πν0V

∑
q1,q2

τzGs (q1, q2) τz,(12d)

Gs (k,k′) = G̃Sδkk′ + G̃s (k) t2τz ×
Gw (kz) τzG̃s (k′) δkz,k′

z
, (12e)

where G̃s is the Green function of the SC with the effects
of disorder incorporated, while Gs incorporates both the
effect of disorder and that of the coupling to the wire. [A
in Eq. (12b) is the area required for normalization similar
to the volume V normalization in the earlier equations.]

The DOS on the wire can be calculated from Gw by
νw (ω) = −1

π TrIm
´
dkz
2π Gw (kz). To evaluate the momen-

tum integrals, we use the following approximations

1

A

∑
k⊥

→ ν2D

ˆ
dξk⊥ (13a)

1

V

∑
k

→ ν2D

ˆ ∞
−∞

dkz
2π

ˆ
dξk⊥ (13b)

where ν2D = ν0π/kF is the density of states of a two-
dimensional system and kF is the Fermi momentum.

We are primarily interested in the spectral properties
of the SM wire, which becomes topological and hosts Ma-
jorana fermions with suitable combinations of SOC, Zee-
man and induced SC pairing terms. The influence of the
SC on the SM wire is captured by the self-energy term
Σw. To have a better understanding, we expand it at
small frequencies as

Σw (ω) ≈ (Σ0 + ωΣ′0) + Σxτx + . . . , (14)

where Σµ = 1
4Tr [Σw (0) τµ] and Σ′0 = 1

4TrReΣ′w (0) are
scalar numbers, and the symbol “ . . .” represents terms
proportional to other matrices. These terms renormalize
the SOC, Zeeman splitting, effective mass and chemical
potential of the SM wire, and do not concern us here.
By substituting Eq. (14) into Eq. (12a), we obtain the
following form of Green function for the wire:

Gw = [ω −Hw − (Σ0 + ωΣ′0)− Σxτx]
−1
, (15)

= Z−1

(
ω +

i

τw
− Z−1Hw − Z−1Σxτx

)−1

, (16)

where Z = 1−Σ′0 is the frequency renormalization factor,
and

τ−1
w = −Z−1ImΣ0 (17)

is the broadening induced by Σw. Since τ−1
w has the same

effect as disorder, we define it as the effective disorder on
the SM wire which can be thought of as the proximity-
induced effective disorder arising in the SM due to the
presence of the SC. The term Z−1Σx induces a SC pair-
ing onto the wire, but we shall not define it as the pairing
term directly since Eq. (14) is an expansion at zero fre-
quency and does not capture the frequency dependence
of Σx. Rather, we numerically compute the spectral gap
when the wire has no Zeeman splitting (B = 0), and iden-
tify this gap as the effective magnitude of the pairing
term (∆w) in the SM wire.

Before presenting the full numerical results, we review
the conventional treatment of the problem in the weak-
coupling limit where Γ� ∆, with Γ = πν2Dt

2 being the
tunnel coupling strength between the wire and the SC. In
this limit, the second term of Eq. (12e) can be neglected,
and Eq. (12) has the analytic solution [78, 79]

Gs =
ω̃τ0 + ξkτz + ∆̃τx

ω̃2 − ξ2
k − ∆̃2

(18)

Σw (kz) = −Γ
ω −∆τx√
∆2 − ω2

(19)

where ω̃ and ∆̃ satisfy ω̃ = ω + 1
2τ

ω̃√
∆̃2−ω̃2

and ∆̃ =

∆ + 1
2τ

∆̃√
∆̃2−ω̃2

. The self-energy Σw therefore gives a

superconducting gap of size Γ (� ∆) on the wire. Since
ImΣw (ω = 0) = 0, we see that disorder is not induced on
the wire in this limit. This is the gist of the weak-coupling
result obtained earlier by Lutchyn et al. [57] establishing
the immunity of the proximity-induced topological su-
perconductivity to any disorder in the SC itself, and it is
only valid for Γ� ∆ when the induced gap is extremely
small (∼ Γ).

In the strong-coupling limit in which the second term
of Eq. (12e) is not small and cannot therefore be ignored,
both superconducting gap and disorder are induced on
the wire by the disordered SC. We now investigate their
dependence on the strength of the bulk disorder and of
the SM-SC coupling.

A. Superconducting Gap Induced on the Wire

We first investigate the superconducting gap induced
on the wire which, in the absence of Zeeman term on the
wire, is equal to the induced pairing potential ∆w. For
simplicity we set B = α = 0 and µ = ∆ on the wire.
(We have explicitly numerically checked that our results
presented here are generic, and using different parame-
ter values do not change the results at all qualitatively.)
We note that the natural energy scale of the problem
is ∆ and the natural length scale is

√
k−1
F ξ. The di-

mensionless parameter quantifying disorder is defined as
d =

√
k−1
F ξ/l =

√
ξ
l

1
kF l

, where l is the transport mean
free path of the bulk SC.



8

2 4 6 8 10

0.2

0.4

0.6

0.8

GêD

D
w

êD

0.050.10 0.501.00 5.0010.00

0.01

0.02

0.05

0.10

0.20

0.50

GêD

D
w

êD

d

0

0.01

0.032

0.1

0.32

1

3.2

10

Figure 3: (Color Online) Induced superconducting gap on the
wire (∆w) against SM-SC tunnel coupling (Γ) in (a) linear
scale and (b) log scale. Different lines correspond to different

strengths of disorder in the bulk of the SC
(
d =

√
k−1
F ξ/l

)
.

The parameters on the wire are chosen to be B = α = 0 and
µ = ∆.
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Figure 4: (Color Online) Calculated dimensionless induced
gap (∆w/Γ) plotted against the dimensionless tunnel coupling
(∆w/Γ) for various values of the disorder parametrized by

d =
√
k−1
F ξ/l as shown. The parameters on the wire are

chosen to be B = α = 0 and µ = ∆.

In Fig. 3 we plot the calculated induced gap ∆w as
a function of Γ in both linear and log scales. We ob-
serve from the log-log plot that in the weak coupling and
weak disorder limit, the induced gap scales linearly with
coupling, i.e.,

∆w ∝ Γ, for l�
√
k−1
F ξ and Γ� ∆. (20)

This is the same as previous calculations done with a
clean SC [74]. Perturbative calculations [57] have also
shown that at weak enough coupling Γ, disorder in the
bulk SC does not change the linear scaling of ∆w with Γ.
To verify this, in Fig. 4 we plot ∆w/Γ against Γ, where

we observe that

lim
Γ→0

∆w

Γ
= 1, (21)

irrespective of the strength of disorder in the SC, which
is identical to the induced gap for a clean SC in the weak
coupling limit (Γ� ∆), as we pointed out in the discus-
sion following Eq. (19). This is an indication that the
induced pairing dominates over the induced disorder in
the weak-coupling limit Γ� ∆. In the following section,
we develop a more quantitative understanding by com-
puting the scaling behavior of disorder with respect to Γ
and comparing it with Eq. (20), explicitly demonstrating
that the induced pairing dominates at small Γ.

B. Disorder Induced on the Wire

Apart from the proximity-induced superconducting
gap, the wire also inherits disorder from the SC. In the
topological phase, the superconducting gap protecting
the Majorana fermions could be destroyed by the induced
disorder if its strength becomes comparable to the gap
[44]. It is therefore important to study the dependence
of the induced disorder on the coupling strength so as to
compare its strength with that of the gap. The disorder
on the wire has been defined in Eq. (17), which when
written out in full is

τ−1
w =

TrImΣw (ω = 0)

TrReΣ′w (ω = 0)− 4
. (22)

We remark here that τ−1
w could in general be defined as

a frequency-dependent quantity, but for our purpose of
investigating its dependence on coupling strength we take
only its value at zero frequency. Also, from Eqs. (12) we
see that ImΣw (ω) is nonzero only if the band dispersion
of the wire crosses the energy ω. Therefore in order to
produce a nonzero τ−1

w , we choose the Zeeman term on
the wire to be B = 5∆ while keeping α = 0 and µ =
∆, noting that the results depend only weakly on the
parameters.

In Fig. 5 we plot τ−1
w against Γ in linear and log

scales. It shows that τ−1
w scales quadratically with Γ

when τ−1
w � Γ. However when τ−1

w is comparable with
Γ, the dependence changes to linear. Similarly, from the
plot of τ−1

w against l−1 in Fig. 6 we see that it scales
linearly when l−1 is small. In summary, we have

τ−1
w ∝

{
l−1Γ2, τ−1

w � Γ,

Γ, τ−1
w . Γ.

(23)

This result could be compared with previous results
obtained from perturbative treatments which apply in
the limit of very small induced disorder [55, 57]. We
note that in addition to recovering the quadratic scaling
at weak coupling, our result also shows a crossover to
linear scaling at intermediate coupling strength, which
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Figure 5: (Color Online) Effective disorder strength on the
wire

(
τ−1
w

)
as a function of SM-SC coupling (Γ) in (a) linear

scale and (b) log scale. The parameters on the wire are chosen
as α = 0, µ = ∆, and B = 5∆. Different lines represent

different disorder strength defined by d =
√
k−1
F ξ/l.
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Figure 6: (Color Online) Effective disorder on the wire
(
τ−1
w

)
against disorder in bulk SC

(
l−1
)
in log scale. The parameters

on the wire are chosen as α = 0, µ = ∆, and B = 5∆. The

disorder strengths are defined by d =
√
k−1
F ξ/l.

cannot be captured by perturbative approaches. This
qualitatively new linear scaling behavior of the induced
disorder has important consequences for the Majorana-
carrying SC-SM hybrid nanowire systems as discussed
below.

C. Suppression of Topological Gap by Disorder

For practical reasons, the calculations in Sec. III B and
Sec. IIIA have been performed for wires with and without
Zeeman terms, respectively. It is natural to ask whether
there is a system in which both induced SC gap and in-
duced disorder are at play. The Majorana nanowires,
with nonzero SOC and Zeeman terms, are such systems.
If its normal-state dispersion crosses zero energy, the dis-
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Figure 7: Superconducting gap on the SM wire (Egap) as a
function of coupling strength (Γ) for various values of disorder

strengths in the bulk SC
(
d =

√
k−1
F ξ/l

)
. The parameters

on the wire are chosen to be µ = ∆ and (a) B = 2∆, α =

0.3
√

∆
2m

, (b) B = 2∆, α =
√

∆
2m

, (c) B = 3∆, α = 0.3
√

∆
2m

,

(d) B = 3∆, α =
√

∆
2m

.

order term as defined by Eq. (17) is nonzero. On the
other hand, with the SOC term present, the induced pair-
ing can produce a spectral gap even in the presence of the
Zeeman term. Therefore a comparison between the scal-
ing behaviors of induced pairing and induced disorder
with respect to the SC-SM tunnel coupling is in order.

Comparing Eq. (20) and Eq. (23), we see that the scal-
ing exponent (2) of disorder

(
τ−1
w

)
with respect to cou-

pling strength (Γ) is larger than that (1) of the pairing
term (∆w). This implies that ∆w dominates at smaller
Γ while τ−1

w dominates at larger Γ. Therefore, increasing
the coupling strength does not always lead to a larger
proximity-induced topological gap since the induced ef-
fective disorder increases faster. Rather, the optimal
value of Γ at which the topological gap is maximum is
dependent on the parameters of the system, and one ex-
pects some intermediate value of Γ, which is neither too
small (so that the intrinsic topological gap itself is not
too small) nor too large (so that the induced disorder is
not too strong overwhelming the induced gap), to be the
optimal choice. Purely on dimensional ground, the opti-
mal value of the tunnel coupling is expected to be Γ ∼ ∆
in the relatively clean SC limit, but with increasing SC
disorder we expect the optimal value of Γ to decrease so
as to keep induced disorder effects small.

Fig. 7 shows the superconducting gap on the wire
(Egap) as a function Γ for several values of B and α. For
0 < Γ <

√
B2 − µ2, the system is in topological regime

since the s-wave pairing term is smaller than the Zeeman
term [11, 13]. When α is nonzero and in the absence of
disorder (black line in Fig. 7), a topological gap exists
and a zero-energy Majorana fermion is present at each
end of the nanowire. When Γ increases to values near
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the Zeeman energy |B|, the topological gap shrinks and
closes completely at Γ =

√
B2 − µ2, indicating the onset

of the topological phase transition. The gap then reopens
at Γ >

√
B2 − µ2 where the system is non-topological.

The gap on the wire is suppressed by disorder in the
bulk SC, but the degree of this suppression is dependent
on Γ. In particular, we see from Fig. 7 that the effect
of disorder vanishes when Γ → 0, and a topological gap
(albeit small) exists in that limit. This is consistent with
our results in Sec. IIIA and Sec. III B on the scaling of
∆w and τ−1

w with respect to Γ [Eq. (20) and Eq. (23)
respectively]: since at small Γ, ∆w scales as Γ while τ−1

w

scales as Γ2, the pairing term eventually dominates over
disorder at small Γ, producing a superconducting gap.

Fig. 8 shows the dependence of the optimal values of
tunnel coupling for which the topological gap on the wire
is largest, as a function of the disorder in the bulk SC.
We see that with a more disordered SC, it is actually
more favorable to have a smaller coupling between the
SM and the SC in order to generate a larger topologi-
cal gap. We believe this non-intuitive finding (Fig. 8) to
be an important new result for the fabrication of opti-
mal SC-SM hybrid structures for the realization of Ma-
jorana fermions– the tunnel coupling could be strong for
an ultra-clean SC (where l � ξ), but for dirty SCs, one
is far better off (as shown in Fig. 8) having a rather small
SC-SM tunnel coupling!

D. Discussion

We have analyzed, within the framework of self-
consistent Born approximation, the effect of disorder re-
siding solely in the bulk of the SC on the spectral prop-
erties of the proximity induced topological superconduc-
tivity in the SC-SM hybrid system. The dependence of
the induced pairing gap and the induced disorder on the

coupling strength is theoretically explored. Crucially, we
find that the topological gap induced on a SM wire with
SOC and Zeeman splitting can be very susceptible to the
disorder in the bulk SC when the SC-SM tunnel coupling
is strong. While the specific optimal coupling strength
depends on the details of the system, in general with high
disorder in the SC a weak SM-SC coupling is preferable.

These results have implications for the on-going exper-
imental efforts to generate Majorana fermions by proxim-
itizing a spin-orbit-coupled SM nanowire under magnetic
field in contact with a SC. Although it is important to
improve the interface quality between the two materials
so as to generate a hard gap on the SM [58, 59], one
should also so be aware that a strong SC-SM tunnel cou-
pling induces stronger disorder on the SM wire, if the SC
is diffusive. Thus it is necessary to either use an ultra-
clean SC or to introduce a barrier between the SM and
the SC so as to effectively reduce the coupling strength.

IV. CONCLUSION

In this paper we examined the effect of disorder in
the bulk SC on a Shiba state or a proximate SM in the
context of the current search for Majorana fermions in
hybrid superconducting systems. In both cases we found
that this type of disorder can have significant detrimen-
tal impact, and could be an obstacle to create topological
superconductivity in the hybrid systems. In particular,
disorder in the bulk SC can randomly shift the energy
of the Shiba states in the ferromagnet-superconductor
hybrid system, which is unfavorable for the existence
of Majorana modes since realizing a Majorana-carrying
topological system requires the fine-tuning of the Shiba
state energy. (We mention that a complementary model
[34, 70] of the ferromagnetic adatom chain on the su-
perconductor system, which is adiabatically connected
[35, 73] to the Shiba model [69], assumes the system to
be equivalent to the semiconductor nanowire on the su-
perconductor structure except for the spin splitting in
the adatom chain being extremely large so that the sys-
tem is completely spin-polarized– in such a spin-polarized
nanowire model of the ferromagnetic chain, the effect of
bulk disorder is qualitatively similar in the semiconduc-
tor and the ferromagnetic chain system with disorder
being detrimental in the strong coupling situation for
reasons discussed in Section III above.) In the case of
semiconductor-superconductor structure, the SM inher-
its both superconducting pairing and disorder from the
SC through the proximity effect. We find that the scal-
ing exponent of inherited disorder with respect to the
coupling strength between the two materials is always
larger than that of the inherited pairing. This implies
that while the pairing term can dominate over disorder
and produce a spectral gap on the SM at small coupling,
upon increasing the coupling strength the inherited dis-
order will eventually dominate and destroy the induced
SC gap. While the precise optimal value of the relevant
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coupling strength for producing the strongest topologi-
cal superconductivity depends on the particular details
of various parameter values, the key message of our the-
ory for the choice of the most suitable topological mate-
rials parameters is that one should use ultra-clean bulk
superconductors with extremely large normal state low-
temperature mean free path and tune the tunnel coupling
to a suitable value lower than the bulk superconducting
gap energy. We note that the disorder in the bulk super-
conductor enters our theory through the dimensionless
combination d =

√
1
kF l

ξ
l , which implies that increasing

either kF l or l/ξ in the parent superconductor should
help to keep the disorder effects weak in the system. This
leads to our conclusion that among the commonly used
parent superconductors in the experimental hybrid sys-
tems probably Nb (Al) is the best (worst) choice with Pb
being somewhere in between since typically Nb (Al) has

the shortest (longest) coherence length, thus making it
easy (difficult) to satisfy l � ξ condition. The detailed
choice for the superconductor requires careful materials
preparation with the longest (shortest) possible values
of the mean free path (coherence length) in the system.
The precise prediction of our theory is simple: Choose a
superconductor with the smallest possible value of the di-
mensionless disorder parameter “d”, and given this value
of “d”, tune the tunnel coupling so that it equals Γop

shown in our Fig. 8.
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