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We study the fate of the Ising model and its universal properties when driven by a rapid periodic
drive and weakly coupled to a bath at equilibrium. The far-from-equilibrium steady-state regime is
accessed by means of a Floquet mean-field approach. We show that, depending on the details of the
bath, the drive can strongly renormalize the critical temperature to higher temperatures, modify
the critical exponents, or even change the nature of the phase transition from second to first order
after the emergence of a tricritical point. Moreover, by judiciously selecting the frequency of the
field and by engineering the spectrum of the bath, one can drive a ferromagnetic Hamiltonian to an
antiferromagnetically ordered phase and vice-versa.

PACS numbers:

The Ising model is undoubtedly the most studied
model of statistical mechanics. Besides its equilibrium
properties, its coarsening dynamics following a tempera-
ture quench from the paramagnetic to the ordered phase
is also quite well understood [1, 2], even in the presence of
weak disorder [3–5]. Taking into account the dissipative
mechanisms due to the inevitable coupling of the spin sys-
tem to an environment has been successful in the descrip-
tion of important many-body phenomena based on the
Ising model such as the decay of metastable phases [8–13],
hysteretic responses [15–17] and magnetization switching
in mesoscale ferromagnets [18, 19]. As it is becoming
clear these days that driven-dissipative physics, i.e. the
balancing of non-equilibrium conditions and dissipative
mechanisms [20], is a promising route to achieve a new
type of control over matter, a burning question arises:
can the Ising model be driven to non-equilibrium steady
states (NESS) with enhanced or even novel properties?

This question has been approached in the context of
slowly oscillating drives (magnetic fields or electrochemi-
cal potentials) by means of Monte-Carlo simulations [14–
17, 27–29], mean-field treatment [21–26], or other analyt-
ical techniques [30–33]. One of the key results is the ex-
istence of a so-called dynamical phase transition, where
the cycle-averaged magnetization becomes non-zero in a
singular fashion. This has recently been supported by
experimental evidence in the dynamics of thin ferromag-
netic films [34].

In this Letter, we focus on the Ising model driven by
a rapidly oscillating magnetic field h cos(ωt). We depart
from the usual Floquet engineering of many-body states
(the Floquet Hamiltonian for this system is simply the
unperturbed Ising model and as such shows no new in-
teresting phases) which is mostly directed towards cold-
atomic systems [35], by including a dissipative mecha-
nism, namely by weakly coupling the system to an exter-
nal bath at equilibrium. We access the non-equilibrium
steady states by means of a Floquet mean-field approach.

We derive the mean-field self-consistent equation for the
magnetization and use it to derive the non-equilibrium
phase diagram. Whenever analytical solutions are be-
yond reach, we complete the picture with numerical re-
sults. Our main results are to show how the combination
of drive (i.e. h and ω) and dissipation (mostly the low-
energy spectrum of the bath) can be used to increase the
critical temperature Tc, to modify the critical exponent
βT , as well as to change the order of the phase transition.
Additionally, we show that the drive can, in the presence
of carefully selected baths, convert a ferromagnetically
ordered system to an antiferromagnetic order, and vice
versa.

I. MODEL

The total Hamiltonian is composed of the system, the
bath and the system-bath Hamiltonians, H(t) = HS (t)+
HB +HSB with (we set ~ = kB = 1)

HS (t) =− J
∑
〈ij〉

σzi σ
z
j − h cos (ωt)

∑
i

σzi , (1a)

HB =
∑
i,α

ωα b
†
i,α bi,α , (1b)

HSB =
∑
i,α

tα σ
x
i

(
bi,α + b†i,α

)
. (1c)

The S = 1/2 spins, represented at each site i of the
bipartite lattice by the usual Pauli operators σx,y,zi , are
interacting through a nearest-neighbor interaction J . h
is the strength of the periodic drive with frequency ω ≡
2π/τ (we choose ω ≥ 0). Equilibrium conditions are
recovered for h = 0 or ω = 0.

The environment is composed of local baths expressed
in terms of a collection of non-interacting bosonic modes
labelled by α, with energy ωα and with creation and an-
nihilation operators b†i,α and bi,α. Each bath is in equilib-
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rium at temperature T ≡ 1/β and we assume it is a “good
bath”, i.e. it has a very large number of degrees of free-
dom and it remains in thermal equilibrium. Below, we
replace

∑
α by

´
dε ρ(ε) where ρ(ε) is the bath density of

states. Without loss of generality, the chemical potential
is set to 0 and ρ(ε < 0) = 0. tα sets the strength of the
spin-bath interactions. After integrating out the bath de-
grees of freedom, the bath will enter the reduced problem
via the hybridization function ν(ε) ≡ |t(ε)|2ρ (ε). The
low-energy behavior of the hybridization ν(ε) ∼

0<ε→0
ε1+s

characterizes whether the bath is Ohmic (s = 0), sub-
Ohmic (s < 0), or super-Ohmic (s > 0). We do not
consider additional system-bath coupling terms such as
σy,zi (bi,α + b†i,α) because they do not induce any qualita-
tive change in the non-equilibrium dynamics.

We stress that it is the system-bath coupling
which generates the quantum dynamics, via the non-
commutation of σxi with the rest of the model. In the
absence of a finite coupling to the environment, our
drive would indeed have a rather marginal impact since
[σzi , H(t)] = 0 at all times, implying that all the degrees
of freedom would be conserved quantities. It is therefore
the interplay between the bath-induced spin flips and the
magnetic-field driven time-dependent phases of the wave
vectors [see e.g. Eq. (3) below] which will result in non-
trivial dynamics.

II. NON-EQUILIBRIUM STEADY-STATE
DESCRIPTION

A. Floquet mean-field picture

The time-dependent mean-field Hamiltonian corre-
sponding to H(t) in Eq. (1) is the one of a single spin
coupled to its local bath, and reads H̄(t) = H̄S (t) +
H̄B + H̄SB with

H̄S (t) =− zJϕ (t)σz − hσz cos (ωt) , (2a)

H̄B =
∑
α

ωα b
†
α bα , (2b)

H̄SB =
∑
α

tα σ
x
(
bα + b†α

)
. (2c)

Here, ϕ(t) is the expectation value of σz(t) which serves
as the order parameter, and z is the coordination num-
ber of the bipartite lattice (this approach becomes ex-
act in the limit of infinite dimensions z → ∞). When
the coupling to the bath is weak (see the discussion be-
low), the spin subsystem can be seen as quasi-isolated
during many periods of the drive. There, the Floquet
theorem states that the instantaneous eigenstates of the
time-periodic Hamiltonian H̄S(t) can be written in the
form |ψα(t)〉 = e−iEαt|ψP

α(t)〉 where Eα is a so-called Flo-
quet quasi-energy and |ψP

α(t)〉 is periodic: |ψP
α(t+ τ)〉 =

|ψP
α(t)〉. Owing to the fact that σz is a conserved quan-

tity, we may choose our Floquet eigenstates to simulta-
neously diagonalize σz. Note that this also implies that
ϕ(t) is a constant (at least between two events induced by
the weakly-coupled bath). Altogether, the instantaneous
eigenstates of H̄S(t) are simply given by

|↑(t)〉 = e+i[zJϕ t+ h
ω sin(ωt)] |↑〉 = e−iε↑t

∣∣↑P (t)
〉
, (3)

|↓(t)〉 = e−i[zJϕ t+ h
ω sin(ωt)] |↓〉 = e−iε↓t

∣∣↓P (t)
〉
, (4)

from which one identifies the Floquet quasi-energies and
the periodic states, reading

ε↑ ≡ −zJϕ ,
∣∣↑P (t)

〉
=
∑
n

Jn (h/ω) e−inωt |↑〉 , (5)

ε↓ ≡ zJϕ ,
∣∣↓P (t)

〉
=
∑
n

Jn (h/ω) e+inωt |↓〉 , (6)

where Jn are the Bessel functions of the first kind.

B. Transition rates

The bath induces incoherent transitions between the
Floquet states. Assuming that the bath correlation func-
tions relax in a time much shorter than the driving period
(Markov approximation), the transition rate R↑↓ from
|↑〉 to |↓〉 can be obtained by means of a Floquet-Fermi
golden rule [6, 7]:

R↑↓(ϕ) = 2π
∑
m∈Z
|Am↑↓|2 g (ε↑ − ε↓ +mω) , (7)

with g (ε) ≡ ν(ε)[1 + nB (ε)] + ν(−ε)nB(−ε) where the
Bose-Einstein distribution nB(ε) ≡ 1/(eβε − 1) and

Am↑↓ ≡
ˆ τ

0

dt

τ

〈
↓P(t)

∣∣σx ∣∣↑P(t)
〉

eimωt = Jm (2h/ω) . (8)

A similar expression can be obtained for the rate R↓↑(ϕ)
with Am↑↓ = A−m↓↑ . Importantly, these rates do not satisfy
detailed balance, contrary to equilibrium dynamics this
would hold even in situations in which the spin relaxation
is much faster than the drive. Note that the integration
over the degrees of freedom of the bath also contributes
to a small renormalization of the spin Hamiltonian (so-
called Lamb-shift) that we neglect.

C. Steady-state populations

We stress that the previous analysis is valid only in the
case when the bath is weakly coupled to the system, i.e.
the rate at which it induces spin flips is much smaller
than the frequency of the drive: R↑↓, R↓↑ � ω. Under
these conditions, ϕ(t) is indeed constant over many peri-
ods of the drive and a time-translational invariant non-
equilibrium steady state can settle. Once it is reached,
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the probabilities of being in the | ↑〉 and | ↓〉 states are
simply given by

PNESS
↑ =

1

1 +R↑↓/R↓↑
and PNESS

↓ = 1− PNESS
↑ . (9)

D. Self-consistency condition

The probabilities in Eq. (9) allow us to compute the
steady-state average magnetization as |ϕ| = |PNESS

↑ −

PNESS
↓ |. Therefore, we obtain the self-consistency condi-

tion for the mean-field order parameter

± ϕ =
R↓↑(ϕ)−R↑↓(ϕ)

R↓↑(ϕ) +R↑↓(ϕ)
. (10)

Here, the + sign corresponds to a ferromagnetic order
while the − sign corresponds to an antiferromagnetic or-
der. Making use of the expression for the rates given in
Eq. (7), we obtain

R↓↑(ϕ)−R↑↓(ϕ) = 2π |J0 (2h/ω)|2 ν (|2zJϕ|) sgn(Jϕ) + 2π
∑
n>0

∑
a,b=±

|Jn (2h/ω)|2 b ν (anω + 2bzJϕ) , (11a)

R↓↑(ϕ) +R↑↓(ϕ) = 2π |J0 (2h/ω)|2 ν (|2zJϕ|) coth (β|zJϕ|)

+2π
∑
n>0

∑
a,b=±

|Jn (2h/ω)|2 ν (anω + 2bzJϕ) coth(β(anω + 2bzJϕ)/2) . (11b)

In case the ac drive is switched off, h = 0, one naturally
recovers

±ϕ =
R↓↑(ϕ)−R↑↓(ϕ)

R↓↑(ϕ) +R↑↓(ϕ)
−−−→
h=0

tanhβzJϕ , (12)

which is the familiar self-consistent condition for the Ising
model in thermal equilibrium. In this case, it is well
known that there is a second-order phase transition at
the critical temperature T eq

c = zJ , below which fer-
romagnetic solutions are possible for J > 0 and anti-
ferromagnetic ones for J < 0.

III. NON-EQUILIBRIUM STEADY-STATE
PHASE DIAGRAM

The self-consistency equation (10) together with
Eqs. (11a) and (11b) allow us to explore the com-
plete mean-field phase diagram far from the equilibrium
regime. Let us first investigate the fate of the well-known
second-order phase transition in this out-of-equilibrium
context. In order to access its locus in parameter space,
we expand and solve Eq. (10) around ϕ = 0. To start
lets assume a power law density of states for the bath
more precisely using the low-energy parametrization of
the bath hybridization ν(ε) '

ε→0+
η ε1+s, we obtain

±ϕ =
R↓↑(ϕ)−R↑↓(ϕ)

R↓↑(ϕ) +R↑↓(ϕ)
= βzJϕ

K |2zJϕ|s +A

K |2zJϕ|s +B
, (13)

where

K ≡ η |J0 (2h/ω)|2 ,

A ≡ 2
∑
n>0

|Jn (2h/ω)|2 ν ′(nω) ,

B(T ) ≡ β
∑
n>0

∣∣∣∣Jn(2h

ω

)∣∣∣∣2 ν (nω) coth

(
βnω

2

)
.

Besides the trivial solution ϕ = 0, the self-consistent
mean-field equation (13) admits non-zero solutions

|ϕ| = 1

2T eq
c

[
B(T )

K

±sgn(J) [A/B(T )] T eq
c − T

T ∓ sgn(J)T eq
c

]1/s

. (14)

Equation (14) above is quite rich and its analysis below
will tell us about 1) the critical temperature, 2) the na-
ture of the ordered phase (and the stability of the non-
trivial solutions), 3) the critical exponent, and 4) the
nature of the phase transition.

Note that ϕ in Eq. (14) must vanish continuously when
crossing a second-order phase transition. For a bath with
a sub-Ohmic low-energy behavior, −1 ≤ s < 0, this im-
plies that the corresponding critical temperature, Tc, is
identical to the equilibrium case: Tc = T eq

c . There-
after, unless stated otherwise, we shall focus on baths
with a super-Ohmic low-energy behavior, s > 0. In this
case, the critical temperature is the non-trivial solution
of Tc = ±sgn(J) [A/B(Tc)] T eq

c . Before solving explic-
itly for Tc, one can already remark that Tc must be
larger than T eq

c so that the numerator and denomina-
tor of Eq. (14) have the same sign for T eq

c < T < Tc,
ensuring a well-defined non-zero magnetization solution
in that temperature range.
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Let us now solve for Tc for a more general bath density
of states by considering the case when h� ω, for which
only the n = 1 mode contributes significantly (because
of the stronger power decay of the Bessel functions for
larger n’s). In this case, the critical temperature Tc is
determined by

tanh

(
ω

2Tc

)
= ±sgn(J)

1

2T eq
c

ν (ω)

ν ′ (ω)
. (15)

Note that Eq. (15) has a finite solution only if the norm
of the right-hand side is smaller than unity.

Importantly, when ν ′(ω) > 0, the type of order is dic-
tated by the sign of J in the ordinary way: J > 0 for a
ferromagnet, J < 0 for an anti-ferromagnet. However, it
is noteworthy that driving can turn a ferromagnet into
an anti-ferromagnet and vice-versa when ν ′(ω) < 0. The
choice of sign in Eq. (15) that yields a positive transition
in this case is the opposite of the common Ising model:
here when J > 0, there is an anti-ferromagnetic solution,
and when J < 0, there is a ferromagnetic solution.

Eq. (15) can be solved analytically when the right-
hand side of the equation is much smaller than unity,
ν(ω)/|ν′(ω)| � T eq

c , yielding the critical temperature

Tc ≈ T eq
c |ω ν ′ (ω)| /ν (ω) . (16)

Eq. (16) transparently elucidates that by judiciously
choosing the driving frequency or engineering the bath,
or both, one can achieve a rather large critical temper-
atures Tc, much larger than the one for the undriven
system, T eq

c . To exemplify this point, let us assume
that the low-energy energy behavior of the hybridiza-
tion ν(ε) ∼ ε1+s (s > 0) holds up to the scale ω. This
yields Tc ≈ (1 + s)T eq

c > T eq
c . See also Fig. 1 where

we plotted the magnetization as a function of the tem-
perature for different drive strengths. In the tempera-
ture range T eq

c < T < Tc, it can be seen from Eq. (14)
that the drive is responsible for a finite magnetization on
the order of |ϕ| ∼ (h/ω)2/sω/zJ . This explains why in
the limit 0 ← h � ω the equilibrium results are recov-
ered. In the Appendix A, we show the stability of this
non-trivial mean-field solution below Tc. In Fig. 2, we
summarized the non-equilibrium phase diagram in the
temperature–drive plane by numerically solving for the
critical temperatures in all the regimes of h and ω. Be-
yond the super-Ohmic case, Eq. (15) suggests that one
can engineer very high critical temperatures by using the
edges of the bath spectrum to realize very large |ν′(ω)| or
by embedding the spins in optical cavities with a finely
tunable sharply peaked spectrum.

Equation (14) also readily provides the mean-field crit-
ical exponent for the order parameter as function of tem-
perature, βT = 1/s, to be contrasted with the undriven
case where the mean-field exponent is βeq

T = 1/2. This
means that, even at the mean-field level, driving changes
the nature the phase transition.
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Figure 1: (color online) Mean-field magnetization |ϕ| as a
function of the temperature T of the bath (super-Ohmic case,
s = 1) for different values of the drive h given by the key:
h = 0 (equilibrium), h � ω, h ∼ ω and h > ω. The driv-
ing frequency is chosen to be ω = zJ = T eq

c . The critical
temperature for h � ω, Tc = (1 + s)T eq

c , is computed ex-
actly in Eq. (16). In the temperature range T eq

c < T < Tc,

|ϕ| ∼ (h/ω)2/s ω/zJ .
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Figure 2: Non-equilibrium phase diagram in the drive vs tem-
perature plane for different values of ω given in the key, for
the case of the super-Ohmic bath (s = 1).

Finally, Eq. (14) predicts a diverging magnetization
at T = T eq

c . Although it was derived under the as-
sumption that ϕ is small, this suggests that the original
self-consistency Eq. (10) may have non-trivial solutions
ϕ 6= 0 which are not connected continuously to ϕ = 0
and signaling the presence of a first-order phase transi-
tion. For example, in the case of baths with a sub-Ohmic
low-energy behavior (−1 ≤ s < 0), the denominator of
Eq. (10) given in Eq. (11b) has 1/(ϕ − ϕn) divergences
located at every ϕn ≡ nω/2zJ for n = 1 . . . b2zJ/ωc.
In turn, this implies the presence of a collection of non-
trivial solutions of the self-consistent Eq. (10) close to
these ϕn’s. For baths with a super-Ohmic low-energy
behavior, the denominator Eq. (11b) is well-behaved and
we investigate the possibility of a first-order phase tran-
sition by solving Eq. (10) numerically. In Fig. 3, we show
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ω/zJ
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h/ω =  0.1

Paramagnet

2nd order
1st order

Figure 3: Non-equilibrium phase diagram in temperature vs
drive frequency for fixed h/ω = 0.1 and for the case of a super-
Ohmic bath (s = 1). The red circle indicates the location of
the tricritical point separating a second order (plain) line from
first-order (dashed) line.

the non-equilibrium phase diagram in the T–ω plane for
a fixed h/ω. Starting from small drive frequencies, the
line of second-order phase transitions reaches a tricritical
point located at (ω∗(h/ω), T ∗c = T eq

c ) and turns into a
line of first-order transitions for larger ω.

IV. DISCUSSION

Besides the demonstration that driven-dissipative con-
ditions can strongly reshape the phase diagram of the
Ising model, this study allows us to shine a new light
on the fate of the universal properties of this model and,
by extension, other similar models when driven to non-
equilibrium steady states. When the drive is finite, we
have found that the critical exponents (and the critical
temperature) are strongly dependent on the details of the
bath, thus losing much of their universality. However, a
certain universality still subsists in the fact that only the
low-energy behavior of the bath determines those new
critical exponents. In the Appendix B, we consolidate
the validity of our mean-field results in finite dimensions
by means of a numerical Monte Carlo approach.

This work has been supported by the Rutgers CMT
fellowship (G.G.), the NSF grant DMR-115181 (C.A.),
and the DOE Grant DEF-06ER46316 (C.C.).

Appendix A: Stability of the mean-field solutions

Here we check whether the non-zero mean-field solu-
tions in Eq. (19) are stable. We start with a Master
Equation for the probabilities P↑ and P↓ in terms of the

rates R↓↑ and R↑↓:

Ṗ↑ =−R↑↓ P↑ +R↓↑ P↓

Ṗ↓ = +R↑↓ P↑ −R↓↑ P↓ .

Using P↑ = (1±ϕ)/2 and P↓ = (1∓ϕ)/2 for the ferromag-
netic and anti-ferromagnetic cases, respectively, yields

±ϕ̇ = [R↓↑(ϕ)−R↑↓(ϕ)]− [R↓↑(ϕ) +R↑↓(ϕ)] (±ϕ)

or, equivalently,

ϕ̇ =− [R↓↑(ϕ) +R↑↓(ϕ)]

{
ϕ∓ R↓↑(ϕ)−R↑↓(ϕ)

R↓↑(ϕ) +R↑↓(ϕ)

}
.

The quantity in curly brackets vanishes at the station-
ary point, and gives precisely the condition in Eq. (14).
Let ϕ̄ be this stationary point solution. To consider the
stability of fluctuations, we expand ϕ = ϕ̄+ δϕ. The ex-
pansion of the terms in curly brackets start at order δϕ
(because ϕ̄ is where it vanishes); so to lowest order, the
term in square brackets does not need to be expanded.
The linearized stability equation becomes

˙δϕ =− [R↓↑(ϕ̄) +R↑↓(ϕ̄)] [1∓ C(ϕ̄)] δϕ ,

where

C(ϕ̄) =
d

dϕ

(
R↓↑(ϕ)−R↑↓(ϕ)

R↓↑(ϕ) +R↑↓(ϕ)

) ∣∣∣∣∣
ϕ̄

.

Notice that R↓↑(ϕ̄) + R↑↓(ϕ̄) > 0, so the stability of the
solution rests upon whether [1∓ C(ϕ̄)] > 0.

Using Eq. (18), we find

1∓ C(ϕ̄) =∓ βzJ d

dϕ

K |2zJϕ|s +A

K |2zJϕ|s +B

∣∣∣∣∣
ϕ̄

=∓ βzJ (A−B)

 d

dϕ

1

K |2zJϕ|s +B

∣∣∣∣∣
ϕ̄

 .

The quantity in the square bracket above is al-
ways negative. Therefore, the sign of 1 ∓ C(ϕ̄) is
that of ±sgn(J) (A − B). Now recall that Tc =
±sgn(J) [A/B(Tc)] T eq

c is larger than T eq
c for the

non-trivial magnetization to be well defined; therefore
±sgn(J)A > B. Thus, ±sgn(J) (A − B) > B[1 ∓
sgn(J)] ≥ 0. Hence, we conclude that the sign of 1∓C(ϕ̄)
is positive and the solutions we found are stable.

Appendix B: Non-equilibrium steady-state
Monte-Carlo

The results presented in this Letter are strictly exact
in the limit of infinite coordination number (infinite di-
mensions). To check that these are not artifacts of the
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Figure 4: (color online) 2d Monte Carlo results of the mag-
netization |ϕ| as a function of the temperature T of the bath
(super-Ohmic case, s = 1) at ω = zJ (z = 4) and for differ-
ent values of the drive h given in the key (L = 200). Here
T c
eq = 2.2691J is the well know exact 2d critical temperature.

mean-field approximation, we computed exact numerical
solutions by means of the Monte-Carlo algorithm that
we adapted to non-equilibrium steady states. In finite
dimension, once the steady state is reached, the rate at
which spins are flipped are still given by Eq. (11), but now
with ε↑ = −J(n↑ − n↓) = −ε↓ where n↑ (n↓) is the num-
ber of spin up (down) neighbors. In practice, we initialize
the lattice with a random spin configuration and update
the configuration by randomly selecting spins and flip-
ping them with probabilities governed by Eq. (11). Once
a steady-state is reached, we measure the averaged mag-
netization in the lattice. We then repeat this procedure
with different temperatures and drive strengths.

In Fig. 4, we present the results of such computa-
tions on a 2d lattice of size L × L with L = 200 that
were averaged over 100 realizations of the non-thermal
noise. The bath was taken to be super-Ohmic with sim-
ply ν(ε) ∝ ε1+s and s = 1. Note that the main qualita-
tive features (i.e. the change of critical temperature, its
trend as a function of h, and the decrease of the zero-
temperature magnetization as a function of h) compare
very well with the mean-field results presented in Fig. 1
of the Letter. The precise value of Tc as well as the criti-
cal behavior, |ϕ| ∼ (Tc−T )s, cannot be accessed reliably
within this numerical approach because of the finite-size
effects that alter the small values of magnetization.
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