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We report a density functional study of the electronic structure and magnetism of Y2Ni7. The
results show itinerant magnetism very similar to that in the weak itinerant ferromagnet Ni3Al. The
electropositive Y atoms in Y2Ni7 serves to donate charge to the Ni host mostly in the form of s
electrons. The non-spin-polarized state shows a high density of states at the Fermi level, N(EF )
due to flat bands. This leads to the ferromagnetic instability. However, there are also several much
more dispersive bands crossing E(F ), which should promote the conductivity. Spin fluctuation
effects appear to be comparable to or weaker than Ni3Al, based on comparison with experimental
data. Y2Ni7 provides a uniaxial analogue to cubic Ni3Al for studying weak itinerant ferromagnetism,
suggesting detailed measurements of its low temperature physical properties and spin fluctuations,
as well experiments under pressure.

I. INTRODUCTION

Weak itinerant ferromagnetism is a topic of ongoing in-
terest, both from the point of view of understanding the
physical behavior of metals near quantum critical points,
and because of the fact that these materials often have
relatively high ordering temperatures when scaled to the
ordered moment. There is also renewed interest in itin-
erant magnetism because of the unusual magnetic prop-
erties of the Fe-based superconductors, [1–4] and spin-
fluctuation pairing models for these and other unconven-
tional superconductors. [5–11]
Elemental fcc Ni metal is a classic example of an itin-

erant ferromagnet. Substitution by 25% with the triva-
lent element Al to form Ni3Al strongly reduces the Curie
temperature to yield a weak itinerant ferromagnet near a
critical point that can be reached under pressure. [12, 13]
Both Ni3Al and Ni3Ga show evidence for strong ex-
change enhancement and spin-fluctuation effects, includ-
ing quantum spin fluctuation induced suppression of fer-
romagnetism [14, 15] in Ni3Ga. [13, 16–22] These two
compounds have very similar electronic structures, and
differ mainly in the strength of the quantum spin fluctu-
ations. This difference places them on opposite sides of
a ferromagnetic quantum critical point at ambient pres-
sure. Unusual physical behavior including non-Fermi liq-
uid scalings extending to very low temperature has been
found in Ni3Al under pressure. [13]
Y2Ni7 forms in a rhombohedral (R3̄m) Gd2Co7 struc-

ture [23–25] and is a ferromagnet. [26–30] The mag-
netism is unusual in that it has a high Curie temperature
of TC ∼ 54 K relative to the moment size, reported as
m = 0.06 µB – 0.08 µB per Ni. [26, 27] If one scales the
Curie temperature of elemental Ni (TC=627 K), which
is also high relative to its moment size, by the square of
the moment as usual, one would infer an expected Curie
temperature of only ∼ 6–7 K for Y2Ni7. The system is
also unusual in that in spite of the high TC , it is very sen-
sitive to alloying, both by H incorporation, [26] and by
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metal alloying. [31, 32] Here we investigate the magnetic
and electronic properties of Y2Ni7 in relation to Ni metal
as well as the weak itinerant ferromagnet Ni3Al and the
related compound Ni3Ga. We find behavior reminiscent
of Ni3Al.

II. METHODS AND STRUCTURE

The present density functional calculations were done
using the generalized gradient approximation of Perdew,
Burke and Ernzerhof [33] and the linearized augmented
planewave (LAPW) method [34] as implemented in the
WIEN2k code. [35] We also performed calculations us-
ing the local spin density approximation (LSDA) and we
also tested the effects of spin-orbit coupling. We used
well converged basis sets, with a planewave cutoff, Kmax

determined by RminKmax=9, where Rmin is the small-
est sphere radius, here 2.25 Bohr for both Y and Ni. The
calculations were done using the experimental lattice pa-
rameters, [25], a=4.947 Å, c=36.25 Å. The internal co-
ordinates were determined by total energy minimization.
For this purpose we started with the structure of the pro-
totype (Gd2Co7). The resulting structure is given in Ta-
ble I and depicted in Fig. 1. Plasma frequencies were de-
termined using the optical package of the WIEN2k code,
which uses integration of the squared band velocity on
the Fermi surface for this purpose. In this code the ve-
locities come from calculations of the dipole (momentum)
operator.

III. RESULTS AND DISCUSSION

Y2Ni7, which is ∼78% Ni, has metal atoms in dis-
torted 12-fold cages. As mentioned, Ni3Al, which con-
tains 75% Ni, also with a trivalent element has suppressed
ferromagnetism relative to Ni and is near an interesting
quantum critical point. [13, 19, 22] Ni3Al has TC=41.5
K, M=0.08 µB/Ni, similar to Y2Ni7. One signature of
physical importance of fluctuations associated with the
quantum critical point in Ni3Al is an overestimate of the
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FIG. 1. Crystal structure of Y2Ni7 showing the layering of
the metal atoms. Y is shown as light grey, with Ni as dark
blue. The numbers denote the atom number as in Table I.

Scalar Relativistic Spin Orbit 

FIG. 2. Band structure of non-spin-polarized Y2Ni7 as ob-
tained with the PBE GGA in a scalar relativistic approxima-
tion (left) and with spin-orbit coupling (right).

ordered moment in standard density functional calcula-
tions. In the case of Ni3Al, the calculated spin moment
in the local density approximation isMLDA=0.24 µB/Ni.
[21]
For Y2Ni7 we obtain a spin magnetization of 1.29 µB

per formula unit (f.u.) with the PBE GGA, with a mag-
netic energy of 0.04 eV/f.u. On a per Ni basis, this is
0.18 µB and 5.7 meV ∼ 70 K, i.e. only slightly higher
than TC=54 K. This is indicative of being in the strongly
itinerant (Stoner) limit. It is notable that the moment
size is ∼ 0.1 µB higher than the reported experimental
value. The spin density is illustrated in Fig. 3. The mo-
ments on the different Ni sites, as determined by the spin
magnetization in the corresponding LAPW spheres, vary
considerably as seen in Table I. There is a small back po-
larization in the interstitial and around the Y atoms, as
is commonly found in 3d transition metal ferromagnets.
This interstitial spin density is derived from extended or-
bitals, such as the metal s states. The two Ni sites with
low numbers of Ni neighbors (Ni1 and Ni5) have the low-
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FIG. 3. Spin density plot showing the orbital character of the
magnetization. The left panel shows a view along the c-axis
while the right panel is perpendicular to the c-axis. The labels
indicate the Ni atoms each layer along c, as in Fig. 1. Note
the pronounced anisotropy around the Ni atoms.

est moments, with Ni5 by far the lowest. However, there
is not a clear correlation between coordination and the
Ni moment for the other sites.
Calculations for fcc Ni done in the same way yield an

ordered moment of 0.635 µB and a magnetic energy of
0.062 eV/atom ∼740 K (c.f. TC=627 K). Spin orbit cou-
pling has only a very small effect, reducing the spin mo-
ment by less than 0.01 µB/f.u. and producing orbital
moments of 0.007 µB – 0.025 µB per Ni, depending on
the specific site, always aligned with the spin moment,
as expected from the third Hund’s rule. The effect of
spin orbit coupling on the electronic structure is also very
small. This is seen in the band structure near the Fermi
energy, EF , which is given in Fig. 2 in a scalar relativis-
tic approximation and with spin orbit coupling. In the
following, we give scalar relativistic results.
With the LSDA we still obtain an overestimation of

the ordered moment, although somewhat smaller, specif-
ically, MLSDA=1.17 µB/f.u. and δELSDA=0.027 eV/f.u.
or∼47 K on a per Ni basis, i.e. slightly less than TC . This
similarity of the magnetic energy to the experimental TC

is similar to what was found for Ni3Al, [21] suggesting
a similarity of Y2Ni7 and Ni3Al. However, it should be
noted that the more complicated non-cubic structure of
Y2Ni7 may lead to larger experimental uncertainty in the
determination of the moment size due to magnetocrys-
talline anisotropy and more possibilities for intrinsic de-
fects.
The calculated electronic density of states and projec-

tions of Ni d and Y d character are given in Fig. 4, both
for the non-spin-polarized and the ferromagnetic cases.
As shown, there is a sharp peak in the density of states
almost exactly at EF . The high value leads to a Stoner
instability and ferromagnetism, with an exchange split-
ting of the Ni d bands, although not in a perfect rigid
band fashion (note the change in the shape of the ex-
change split peak between majority and minority spin).
Also, the Y d states are above EF in this compound. In
contrast, Y metal is a transition element with ∼ 2 d elec-
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TABLE I. Calculated internal structural parameters and
atomic moments with the PBE GGA of Y2Ni7 at the exper-
imental lattice parameters of a=4.947 Å, c=36.25 Å, space
group 166, R3̄m with hexagonal coordinates. The nearest 12
neighbors are given as “coord.”.

Atom x y z coord. m(µB)

Y1 6c 0 0 0.0504 12 Ni -0.03

Y2 6c 0 0 0.1472 12 Ni -0.02

Ni1 18h 0.1671 0.8329 0.4430 7 Ni, 5 Y 0.17

Ni2 9e 1/6 1/3 1/3 8 Ni, 4 Y 0.33

Ni3 6c 0 0 0.2782 9 Ni, 3 Y 0.22

Ni4 6c 0 0 0.3883 9 Ni, 3 Y 0.23

Ni5 3b 0 0 1/2 6 Ni, 6 Y 0.10

trons. This implies a charge transfer from the Y d states
to the Ni host matrix. This is not surprising in view
of the electropositive nature of Y relative to Ni. Based
on integration of the Ni d density of states in compari-
son with fcc Ni, most of this charge transfer is to the s
electrons. This inference is based on the fact that the d
electron count of Ni does not show an increase commen-
surate with the additional charge.
Within Stoner theory [36, 37] the susceptibility of a

metal is given by a random phase approximation (RPA)
formula, χ = χ0/[1−N(EF )I], where χ0 is the bare Pauli
susceptibility, χ0 = µ2

BN(EF ), with appropriate units.
This formula is exact at the level of band structure calcu-
lations, but neglects the effects of spin-fluctuations which
can renormalize the spin susceptibility (see Ref. 38 for a
detailed discussion applied to Pd, which is a high suscep-
tibility paramagnetic metal). The Stoner theory itiner-
ant ferromagnetic instability occurs when N(EF ) = I−1,
which is the point where the RPA enhancement factor
1/[1−N(EF )I] diverges.
In contrast to standard local moment magnetic mate-

rials, in the itinerant limit a metal with properties de-
termined by the non-spin-polarized electronic structure
occurs above TC . There is typically a second order or
near second order phase transition at TC . In Y2Ni7 this
is a rather interesting metallic state in part because of
the high density of states.
We obtain N(EF )=24.0 eV−1 per f.u. on a both spins

basis. This well above the criterion for Stoner mag-
netism, [8, 36, 37] N > I−1 where I is 0.7-0.9 eV for
heavy 3d transition elements [39] and N is N(EF ) ex-
pressed on a per atom per spin basis (1.71 eV−1 in the
present case). The fixed spin moment energy (Fig. 5) as
a function of magnetization therefore drops quickly from
zero but then rises because of the narrowness of the peak.
The curve is featureless and smooth except for the min-
imum corresponding to the ferromagnetic ground state.
There is no sign of any metamagnetic state at higher
magnetization.
The peak at EF is derived from Ni d orbitals on the

Ni2, Ni3 and Ni4 sites, with a somewhat smaller contri-
bution from the Ni1 site and practically no contribution

Ferromagnetic 

Non-spin 

polarized 

FIG. 4. Electronic density of states of Y2Ni7 as obtained with
the PBE GGA for non-spin-polarized (top) and ferromagnetic
(bottom) states.

FIG. 5. Fixed spin moment energy as a function of con-
strained magnetization. The inset shows an expanded scale
for low magnetizations.
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from the Ni5 site. This mirrors the distribution of the
moments in the ferromagnetic state. For an atom with
trigonal site symmetry (i.e. axial with a three fold axis),
as are the Ni3, Ni4 and Ni5 atoms, the d electron crystal
field levels are a singly degenerate ag (z

2, with z along the
axis), and two double degenerate eg levels (x2

− y2+xy
and xz+yz). The Ni3 and Ni4 contributions to the peak
at EF are from the eg (xz+yz) orbital. The Ni1 and Ni2
contributions are from the same two d orbitals in this ref-
erence frame, but not in equal proportion reflecting the
lower site symmetry. The orbital character is reflected in
the spin density (Fig. 3), where the lobes corresponding
to these orbitals are seen around the Ni sites. As seen
in the figure these orbitals are not oriented favorable for
bonding interactions, which is a fact consistent with the
narrowness of the peak.

The magnetic behavior found in the calculations is con-
sistent with what is expected from extended Stoner the-
ory based on the sharply peaked density of states. Within
extended Stoner theory, [40, 41] which involves a rigid
band approximation, one exchange splits the density of
states to obtain magnetization. The stationary solutions
are points for which N(m) = I−1, where N(m) is the av-
erage density of states between the position of the Fermi
level for minority spin and that for majority spin to ob-
tain the magnetization, m using the non-spin-polarized
density of states.

In other words N(m) is the magnetization divided by
the energy shift between majority and minority spin den-
sities of states needed to produce this magnetization.
Thus a sharp peak with little area underneath it will
yield a strong initial ferromagnetic instability in a fixed
spin moment plot, but will not lead to a high magnetiza-
tion. This is the origin of the high TC with low moment.
In other words a narrow peak with a very high N(EF )
leads to a strong initial instability, i.e. a large negative
χ = χ0/[1 −N(EF )I]. However if the weight under the
peak is small, the net magnetization will be low because
N(m) will not be large for finite m since it is an integral.
Note also that the extended Stoner formula uses the con-
nection between the moment size and the exchange split-
ting through the fact that the moment is an integral of
the density of states over the energy range coming from
the exchange splitting. This connects the moment, the
exchange splitting and the magnetic energy.

The density of states at the Fermi level is reduced to
N(EF )=9.1 eV−1 per f.u., mainly from the minority spin
in the ferromagnetic ground state. The majority and
minority spin contributions are N↑(EF )= 2.8 eV−1 and
N↓(EF )=5.3 eV−1, respectively. This corresponds to a
bare specific heat coefficient, γbare=18.9 mJ/(mol K2) on
a per f.u. basis. It would be interesting to compare with
experiment to determine the specific heat enhancement,
γ/γbare, which if large might be an indicator of quantum
spin fluctuations.

We now return to the non-spin-polarized case, which
should correspond to the electronic structure above TC

in this itinerant material. The band structure (Fig. 2)

shows heavy bands close to EF , specifically the band
just below EF along a large part of the Γ–L line and
the band at EF along P–Z. In addition there are sev-
eral much more dispersive bands crossing EF . The con-
sequence is that although the value of N(EF ) is high,
the material can have a reasonable conductivity. This
multi-sheet Fermi surface characteristic also occurs in
Ni3Ga and Ni3Al. [19, 21] In general the conductiv-
ity can be written as σ ∝ ω2

pτ , where τ is an effec-
tive inverse scattering rate and ωp is the plasma fre-
quency. We obtain plasma energies ~ωp of Ωp,a=2.3 eV
and Ωp,c=2.0 eV, for the basal plane and c-axis direc-
tions, respectively. The implied conductivity anisotropy
is modest, σa/σc ∼1.3. The anisotropy increases in the
low temperature ferromagnetic state, for which we ob-
tain σa/σc ∼1.8. Also, even though the magnetization is
small we obtain a significant transport spin polarization,
defined by P = (σ↑ − σ↓)/(σ↑ + σ↓). We obtain P=0.09
both in the basal plane and c-axis directions.

As mentioned, Y2N7 has a remarkably high ordering
temperature in relation to its moment. Most magnetic
materials are described in terms of local moments and
their interactions through the interatomic exhange cou-
plings, Ji,j . These describe spin wave dispersions, which
are transverse in character. Longitudinal degrees of free-
dom, which correspond to changes in the local moment
size are hard and not involved in the phase transition.
This leads to a simplification in which one can treat
the phase transition using the effective spin Hamilito-
nian and the effect of increasing temperature as the ex-
citation of spin-waves. This local moment case has been
well described theoretically and numerical simulations
of the temperature dependent magnetic properties and
phase transitions are practical even for complex systems.
[42, 43] Importantly, the paramagnetic state above the
ordering temperature is a disordered local moment state
in which the local moment directions may be regarded as
fluctuating in time but retaining their size. This means
that the atomic Hund’s rule energy associated with the
moment formation (i.e. the longitudinal degree of free-
dom) is not involved in the phase transition as this con-
tribution to the magnetic energy is present in both the
ordered and paramagnetic phases.

The itinerant limit has excitation of both transverse
and longitudinal degrees of freedom with temperature
through coupling to the electronic system and is not de-
scribable by an effective spin Hamiltonian. This is more
difficult to treat theoretically as it involves coupling to
the electrons without separation of electronic and mag-
netic degrees of freedom. Y2Ni7 and Ni3Al are both ap-
parently close to this limit, and based on comparison of
density functional results with experiment both also have
renormalizations of their ground states due to quantum
fluctuations. Itinerant magnets also have magnetic con-
tributions to the energy in the paramagnetic state, [44]
above but close to the ordering temperature. However,
these are reduced as the moment size is reduced, and in
the itinerant limit become negligible. This means that
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in the itinerant limit all of the magnetic energy includ-
ing the onsite Hund’s energy is available to drive the
ordering, providing an explanation for the high ordering
temperatures relative to the moments in these itinerant
materials. In other words, in itinerant magnets disorder-
ing implies destroying the moments, which has an energy
cost from the on-site Hund’s energy and this leads to high
ordering temperatures. We note that the Stoner model
of itinerant magnetism has a parallel in the Slater model
of itinerant antiferromagnetism and that high ordering
temperatures in certain antiferromagnets have been dis-
cussed in a way similar to the above. [45–47] In neither
case (itinerant or local moment magnets) can energy dif-
ferences by themselves be simply interpreted as the or-
dering temperature.

IV. SUMMARY AND CONCLUSIONS

We report density functional calculations of the elec-
tronic structure and magnetic properties of Y2Ni7.
Y2Ni7 shows similarity to the weak itinerant ferromagnet
Ni3Al, which has a modest renormalization of the mag-

netism due to nearness to a quantum critical point. The
overestimation of the magnetization relative to experi-
ment is a bit smaller in Y2Ni7 implying perhaps some-
what weaker fluctuation effects. This is in contrast to
Ni3Ga, where magnetic ordering is apparently completely
suppressed by quantum spin fluctuations. The weak itin-
erant ferromagnetism in Y2Ni7 arises from a Stoner insta-
bility of a rather interesting metallic state. This state fea-
tures a very narrow density of states peak at EF , a mix-
ture of dispersive and flat bands crossing EF and modest
but non-negligible anisotropy of the plasma frequency.
Thus Y2Ni7 is a uniaxial analogue of cubic Ni3Al. It will
be of interest to study the low temperature properties
of Y2Ni7, its magnetic fluctuations and the pressure de-
pendence of the magnetic, thermodynamic and transport
properties in comparison with Ni3Al.
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