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Abstract

The thermoelectric figure of merit (ZT ) of semiconductors such as PbTe can be improved by

forming nanostructures within the bulk of these materials. Alloying PbTe with PbS causes PbS-

rich nanostructures to precipitate from the solid solution, scattering phonons and increasing ZT .

Understanding the thermodynamics of this process is crucial to optimizing the efficiency gains of

this technique. Previous calculations of the thermodynamics of PbS–PbTe alloys [(J. W. Doak

and C. Wolverton, Phys. Rev. B 86, 144202 (2012)] found that mixing energetics alone were not

sufficient to quantitatively explain the thermodynamic driving force for phase separation in these

materials: first-principles calculations of the thermodynamics of phase separation over-estimate the

thermodynamic driving force for precipitation of PbS-rich nanostructures from PbS–PbTe alloys.

In this work, we re-examine the thermodynamics of PbS–PbTe, including the effects of vibrational

entropy in the free energy through frozen-phonon calculations of special quasirandom structures

(SQS) to explain this discrepancy between first-principles and experimental phase stability. We find

that vibrational entropy of mixing reduces the calculated maximum miscibility gap temperature

TG of PbS–PbTe by 470 K, bringing the error between calculated and experimental TG down from

700 K to 230 K. Our calculated vibrational spectra of PbS–PbTe SQS exhibit dynamic instabilities

of S ions which corroborate reports of low-T ferroelectric-like phase transitions in solid solutions of

PbS and PbTe which are not present in either of the constituent compounds. We use our calculated

vibrational spectra to obtain phase transition temperatures which are in qualitative agreement with

experimental results for PbTe-rich alloys, as well as to predict the existence of a low-T displacive

phase transition in PbS-rich PbS–PbTe which has not yet been experimentally investigated.
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I. INTRODUCTION

Nanostructures formed within a bulk matrix material have been used to improve the

thermoelectric figure of merit, ZT = TS2σ/(κl + κe), of a variety of semiconductor alloy

systems, including the prototypical system PbS–PbTe.1–8 These nanostructures increase

ZT by reducing the lattice thermal conductivity, κl, of the alloy without overly affecting

the electronic thermal conductivity, κe, or other electronic transport properties (electrical

conductivity σ or Seebeck coefficient S).9,10 In certain systems, such as PbSe–CdSe, PbSe–

ZnSe5 SnTe–CdTe,7 or SnTe–HgTe,8 the alloying element can play a ZT -enhancing role in

the matrix phase in addition to forming nanostructures; Cd and Zn in PbSe and Cd and

Hg in SnTe all reduce the energy separation between the two highest-lying maxima in the

valence band of the host phase (at L and Σ in the rocksalt BZ, respectively), increasing the

Seebeck coefficient.

Optimizing the phase separation process which gives rise to nanostructures requires un-

derstanding the thermodynamics of phase separation in these systems: the free energy of

mixing as a function of composition and temperature. The experimentally-determined phase

diagram of PbS–PbTe11,12 contains a miscibility gap—a region of compositions where a solid-

solution of PbS and PbTe will thermodynamically prefer separation into a PbS-rich phase

and a PbTe-rich phase. Nanostructures in PbS–PbTe are formed using this miscibility gap:

cooling an alloy of PbS–PbTe from a temperature above the miscibility gap (where the alloy

is a solid solution) down to a temperature within the gap causes a PbS-rich nanostructured

phase to form from the PbTe-rich matrix.1,9,10,13

Previous first-principles calculations of the thermodynamics of PbS–PbTe showed that

while density functional theory (DFT) energetics capture the asymmetry of the equilibrium

miscibility gap in composition, the calculated temperatures of the miscibility gap are in poor

agreement with experiment.14 In particular, the maximum temperature of the miscibility

gap TG has been calculated to be 1770 K,14 approximately a 65% error with respect to

the measured maximum miscibility gap temperature of 1070 K.11,12 These thermodynamic

calculations were based on a mean-field model of mixing that included only a temperature-

independent mixing energy (fit to DFT energetics) and an ideal configurational entropy (for

mixing S and Te on the anion fcc sublattice of the rocksalt structure),

∆Fmix(x, T ) = ∆Emix(x)− T∆S ideal
mix (x) (1)
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The failure of this free energy of mixing to capture the correct solid-state phase diagram

of PbS–PbTe suggests that important physical contributions to the free energy are missing

from the above model.

There are several possible contributions to the free energy of mixing which could be signif-

icant. These include the magnetic entropy of mixing,15 electronic entropy of mixing,16 non-

ideal configurational entropy,17 and vibrational entropy of mixing.18 Of these, the magnetic

entropy of mixing should be negligible because these systems are non-magnetic, the electronic

entropy of mixing should be small due to the semiconducting nature of the pure compounds

PbS and PbTe as well as their solid solution, and the non-ideal configurational entropy

should also play a small role due to the dominance of the long-range strain interactions19

in previously calculated mixing energetics.14 In contrast, the vibrational entropy of mixing

can have a potentially significant effect on the phase stability of an alloy system.17,18,20–24

In alloy systems where the constituent compounds have a large lattice mismatch (PbS

and PbTe have a lattice mismatch of 8.5%25,26), the vibrational entropy of mixing has been

attributed to a size-mismatch effect.21,23 The size-mismatch effect posits that when the

constituent atoms of an alloy have large size differences, the disordered alloy will, by neces-

sity, contain regions that are locally in compression or tension resulting in stiffer or weaker

bonds, respectively. The magnitude and sign of the size-mismatch effect (i.e. stabilizing

vs. destabilizing the disordered phase relative to the phase-separated constituents) then de-

pends on the details of the atomic relaxations in the disordered alloy. This size-mismatch

effect may be heightened by the inherently anharmonic nature of the bonds in the lead

chalcogenides,27–36 whose anharmonicity is due to the resonant, half-filled p-states shared by

the six nearest-neighbor (NN) chalcogen anions of each Pb cation.37 Finally, there is some

experimental evidence that PbS–PbTe alloys undergo a ferroelectric-like phase transition

at very low temperatures, even though neither constituent compound is a ferroelectric.38–42

This transition has been attributed to off-center S ions in the PbS–PbTe solid solution

forming local dipole moments which undergo order-disorder and/or displacive transitions

depending on S concentration,38,39,42 similar to other off-center ions,43,44 dipole glasses,45

and possibly relaxors.46 The physics of S-ion dipole-moment ordering falls within the lattice

dynamics of PbS–PbTe and so could play a role in the vibrational entropy of mixing, even

at temperatures above a ferroelectric phase transition.

In this work, we investigate the effect of vibrational entropy on the thermodynam-
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ics of mixing in PbS–PbTe using first-principles DFT47,48 calculations of the vibrational

spectra of special quasirandom structures (SQS)49,50—structures which approximate the

random alloy of PbS–PbTe. DFT calculations have been used to study the vibrational

properties29,30,32,35,36,51–55 and phase stability of thermoelectric systems.14,56–60 DFT calcu-

lations have also been used to study phase separation processes in a variety of materials

systems,17,61–63 in some cases including the effects of vibrational entropy.20,64–66 In Sec. II we

describe the theoretical framework for our calculations and the computational methodology

used to carry them out. In Sec. III we discuss the vibrational and thermodynamic properties

of PbS–PbTe SQS, the effect of local relaxations on the atomic-scale structural properties of

PbS–PbTe SQS, and construct a solid-state phase diagram of PbS–PbTe which incorporates

the effects of vibrational entropy.

We find that PbTe-rich PbS–PbTe alloys have complex energy landscapes with shallow

barriers, giving rise to soft phonon modes. These phonon modes correspond to displacements

of S ions, supporting the hypothesis of off-center S ions in the random alloy at low temper-

atures. We also find that Pb ions are statically displaced from their ideal lattice sites to

accommodate the lattice mismatch between PbS and PbTe in the solid solution, in contrast

to the anion sublattice which largely retains its ideal lattice arrangement. Using a mean-

field model of phase transitions in a soft-mode ferroelectric,67 we calculate the displacive

transition temperatures of PbS–PbTe SQS and find them to be in good qualitative agree-

ment with experimentally measured phase-transition temperatures. Finally, we find that the

vibrational entropy of mixing reduces the temperatures of the previously-calculated misci-

bility gap in PbS–PbTe by 470 K, bringing the DFT-calculated phase diagram into much

better agreement with the experimentally measured diagram and reducing the percent error

relative to experiment to 21%.

II. METHODOLOGY

A. Atomic-scale model of random alloys

To study the composition and temperature dependence of a solid solution of PbS and

PbTe with atomistic computational techniques, we need a model of the atomic-scale struc-

ture of a random alloy within the periodic boundary conditions employed by plane-wave
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electronic structure calculations. Because, we expect the effects of local atomic relaxations

due to differing nearest-neighbor coordination to play a large role in the vibrational spectra

of an alloy,21 capturing these effects in our atomic model of the random alloy is important.

The method of SQS49,50 provides an approximate model of the random alloy that allows for

atomic relaxations and is well suited to our needs.

A special quasirandom structure is a small supercell of the parent lattice with mixing

atoms placed on each lattice site in such a way that the correlation functions of the supercell

closely approximate the short-range correlation functions of a perfectly random alloy at the

same composition. Typically-considered correlation functions are pairs out to some distance

and triplets out to a smaller distance.

In this work we consider mixing on the anion sublattice of the rocksalt crystal structure.

The anion sublattice is an fcc lattice, so we can take existing fcc SQS-16 structures68 and add

in the spectator cation sublattice, which gives us 32-atom rocksalt SQS. In addition, we have

created 27-mixing-atom SQS (54-atoms total) at compositions x = 1/3 and x = 2/3 with

unit cells shaped like 3× 3× 3 supercells of the rocksalt primitive cell, which are described

in more detail in the appendix. Finally, to model dilute additions of S to PbTe or Te to

PbS, we consider 54-atom 3× 3× 3 supercells of PbS or PbTe with one anion replaced with

Te or S, respectively. With these supercells, we can approximate the structure of a random

alloy of PbS–PbTe at various compositions, which we use to calculate the composition and

temperature dependence of the free energy of mixing as described in Secs. II B and IIC.

B. Free energy of mixing

The free energy of mixing in a (pseudo-)binary random alloy, ∆Fmix(x, T ), can be written

as

∆Fmix(x, T ) = ∆Emix(x, T )− T [∆S ideal
mix (x) + ∆Sxs

mix(x, T )], (2)

where ∆S ideal
mix (x) is the ideal, mean-field configurational entropy,

∆S ideal
mix (x) = −kB [x ln x+ (1− x)ln(1− x)] , (3)

∆Emix(x, T ) is a mixing energy, and ∆Sxs
mix(x, T ) is an excess mixing entropy. The mixing

energy and excess mixing entropy terms can be composed of several different contributions:

(i) a concentration-dependent zero Kelvin mixing energy ∆E0K
mix(x) and associated with it a
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non-ideal configurational entropy ∆Sxs
config(x), (ii) the energy and entropy of electronic exci-

tations ∆Eel
mix(x, T ) and ∆Sel

mix(x, T ), (iii) the energy and entropy of magnetic configurations

∆Emag
mix (x, T ) and ∆Smag

mix (x, T ), and (iv) the energy and entropy of vibrational excitations

∆Evib
mix(x, T ) and ∆Svib

mix(x, T ). Of these four contributions to the excess free energy of mix-

ing, we expect terms (i) and (iv) to play the largest role in PbS–PbTe. Terms (ii) and (iii)

should be negligible due to the semiconducting and non-magnetic nature of the material.

In addition, the dominant contributions to ∆E0K
mix(x) come from long-range strain effects,14

which tend to make the excess configurational entropy less important than the ideal con-

figurational entropy.19 Finally, as will be discussed in Sec. IIC, the vibrational energy of

mixing is approximately zero above room temperature and all of the effects of vibrations

on the thermodynamics of mixing are due to a largely T -independent vibrational entropy of

mixing. Based on these considerations, we can approximate the free energy of mixing as

∆Fmix(x, T ) ≈ ∆E0K
mix(x)− T [∆S ideal

mix (x) + ∆Svib
mix(x)]. (4)

To model the composition dependence of ∆E0K
mix(x) and ∆Svib

mix(x) we continue to use the

mean-field approach and approximate each function as a solution model based on Redlich-

Kister (RK) polynomials.69 These solution models take the form

∆Qk
mix(x) = x(1− x)

[

k
∑

i=0

Li(1− 2x)i

]

(5)

where ∆Qk
mix is an excess-mixing quantity, k is the order of the solution model (k = 0, 1,

and 2 are called regular, subregular, and subsubregular solution models, respectively), and

Li are quantity-dependent parameters which are fit to DFT-calculated data as described in

Sec. III B. Assuming a subregular solution model form for both ∆E0K
mix(x) and ∆Svib

mix(x),

this approach gives us an analytical free energy of mixing which can be expressed as

∆Fmix(x, T ) = x(1−x)[(L0K
0 −TLvib

0 )+(L0K
1 −TLvib

1 )(1−2x)]+kBT [x ln x+(1−x)ln(1−x)],

(6)

and from this free energy we can calculate the solvus boundaries of PbS–PbTe.

The equilibrium phase diagram of an alloy system can be determined from a common-

tangent construction, where the chemical potentials of each chemical species are the same

in every phase coexisting in equilibrium. We treat PbS and PbTe as the chemical species
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in the pseudo-binary system PbS–PbTe. For a system which thermodynamically separates

into two different phases α and β, we can write the free energy of each phase ∆F α
mix and

∆F β
mix as the free energy in Eq. (6) with different compositions, xα and xβ. We can then

determine the equilibrium values of these compositions at a given temperature T by solving

the system of equations

∂

∂xα
∆F α

mix(xα, T ) =
∂

∂xβ
∆F β

mix(xβ , T ) =
∆F β

mix(xβ , T )−∆F α
mix(xα, T )

xβ − xα
. (7)

The miscibility gap calculated from Eq. (7) has a chemical spinodal Tsp(x), defined by

∂2

∂x2∆Fmix(x, T ) = 0. The maximum miscibility gap temperature TG occurs where d
dx
Tsp = 0.

For the functional form given by Eq. (6), Tsp can be written as

Tsp =
x(1 − x)[2L0K

0 + 6L0K
1 (1− 2x)]

kB + x(1 − x)[2Lvib
0 + 6Lvib

1 (1− 2x)]
. (8)

C. Vibrational thermodynamics

The vibrational free energy of a compound in the harmonic approximation can be ob-

tained from the phonon density of states (DOS) g(ν) by20,70

F vib = kBT

∫ ∞

0

g(ν)ln

[

2 sinh
hν

2kBT

]

dν. (9)

At high temperatures (above the Debye temperature of the material), the vibrational en-

ergy of a compound Evib is equal to 3kBT . The vibrational free energy of mixing at high

temperatures is therefore only due to the vibrational entropy of mixing. In the high-T limit,

the vibrational entropy of mixing ∆Svib
mix is temperature independent and given by

∆Svib
mix(x) = −kB

∫ ∞

0

∆g(ν, x)ln(ν)dν, (10)

where the phonon DOS of mixing ∆g(ν, x) is

∆g(ν, x) = gA(B1−xCx)(ν)− (1− x)gAB(ν)− xgAC(ν), (11)

and gA(B1−xCx), gAB, and gAC are the phonon densities of states for a pseudo-binary solid

solution and constituent compounds, respectively.
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D. Low-T phase transitions

To model the low-T thermodynamics of a soft-mode ferroelectric system (as has been

proposed for the PbS–PbTe solid solution38,39), we follow Ref. 67 and consider a system with

an unstable phonon mode leading to a double-well potential energy, V (φ) = −1
2
κ2φ

2+ 1
4
κ4φ

4,

as a function of the soft-mode normal coordinate φ. The high-T phase exists at φ = 0, while

the low-T phase exists at non-zero φ. We can define a Hamiltonian for the high-T phase

which a potential energy contribution composed of (i) the soft-mode potential energy, (ii) a

summation over the stable phonon modes, and (iii) an anharmonic coupling between the

stable phonon modes and the soft-mode normal coordinate:67

H = V (φ) +
1

2

∑

i

ν2
i Q

2
i +

1

4

∑

i

αiφ
2Q2

i , (12)

where Qi is the normal coordinate of phonon mode i, νi is the frequency of mode i, and

αi is anharmonic coupling constant for mode i. This Hamiltonian can be rewritten as a

pseudo-harmonic Hamiltonian to renormalize the phonon frequencies in the low-T phase.

These renormalized phonon frequencies are given by67

ν̃2
i (φ) = ν2

i +
1

2
αiφ

2. (13)

We can use Eq. (13) along with DFT-calculated Γ-point phonon frequencies of the

dynamically-unstable high-T phase and stabilized low-T phase to determine, at least quali-

tatively, the anharmonic coupling parameters αi. The bare frequencies νi come directly from

the harmonic frequencies of the dynamically-unstable high-T phase. At the maximum value

of the unstable mode displacement φmax, the system is in the geometric configuration of the

low-T phase. We find the renormalized harmonic frequencies at this value of the soft-mode

displacement ν̃i(φmax) using the dynamical matrix of the system in the low-T phase, DLT.

Because the normal modes of the low-T and high-T phases do not correspond exactly to one

another, we approximate ν̃2
i (φmax) as the effective squared phonon frequencies of the low-T

phase along directions corresponding to the normal mode displacements of the high-T phase,

|ei〉:

ν̃2
i (φmax) ≈ 〈ei|DLT |ei〉 . (14)

Inserting Eq. (14) into Eq. (13) at φ = φmax and solving for αi, we find

αi =
2

φ2
max

(

〈ei|DLT |ei〉 − ν2
i

)

. (15)
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Once the anharmonic coupling constants have been determined using Eq. (15), we can

use the Hamiltonian defined in Eq. (12) to define a vibrational free energy for the system,67

F (φ, T ) = V (φ) + kBT
∑

i

ln

[

2 sinh
hν̃i(φ)

2kBT

]

, (16)

which we can minimize with respect to φ as a function of T to find φ(T ) and Tc, the

temperature at which φ → 0 and the system undergoes a phase transition between the low-

and high-T phases.

E. Computational methodology

Structural relaxations and finite-displacement phonon calculations were performed within

DFT using the Vienna Ab-initio Simulation Package (VASP)71–74. All calculations were

performed with projector augmented wave (PAW)75,76 potentials and the generalized gra-

dient approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE)77 for the exchange-

correlation functional. The potentials used had the 6s26p2, 3s23p4, and 5s25p4 electrons as

valence for Pb, S, and Te, respectively. Spin-orbit interactions have been found to have

minimal effect (∼ 0.1%) on the lattice constants of the lead chalcogenides52 and require

significant computational expense, therefore we do not include them in our calculations.

Structural relaxations were carried out on 54-atom, 3× 3× 3 supercells of pure PbS and

PbTe as well as the SQS described in Sec. IIA using 500 eV energy cutoffs Monkhorst-Pack

(MP) k-point meshes78 with 5000 k-points per reciprocal atom (KPPRA) (8×6×4 meshes for

SQS-16 cells and 6×6×6 meshes for SQS-27, dilute-impurity, and pure 3×3×3 supercells),

and Gaussian smearing of electronic occupations with a 0.1 eV smearing width. To ensure

accurate forces during the relaxation, calculations were performed with “high” precision, an

additional support grid was added to increase the accuracy of the calculation of augmentation

charges, and self-consistent cycles were iterated until changes in the electronic energy were

less than 10−8 eV. Ionic relaxations were carried out with a quasi-Newton algorithm79 to

minimize the forces and stresses on each structure, with the relaxations occurring until forces

were less than 10−3 eV/Å. To ensure accurate relaxations and energies, for each structure

two relaxations were performed, followed by a static calculation.

Frozen phonon calculations were performed for each fully relaxed structure using the

methodology of Ref. 80. Each inequivalent atom was displaced along symmetrically distinct
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directions in a ballistic trajectory [using constant-velocity molecular dynamics (MD)] con-

sisting of 5 evenly distributed displacements from −0.6 Å to +0.6 Å centered around the

equilibrium position. The dynamical matrix was fit to the resulting forces, which was then

diagonalized to obtain phonon mode eigenvectors and eigenvalues. Force constant matrices

were calculated by reverse Fourier transforming the dynamical matrices, and phonon DOSs

were obtained by extrapolating the force constant matrix onto 10× 10× 10 q-point meshes

and calculating phonon frequencies, which were broadened using Gaussian peaks with 1

cm−1 broadening widths.

Due to a relaxation criteria of zero forces instead of a minimized energy, some SQS and

dilute-defect calculations relaxed to saddle-points in their energy landscapes, resulting in

imaginary phonon modes. For these structures, energy vs. phonon mode displacement calcu-

lations were performed to identify the minimum-energy wells neighboring the saddle-points.

These structures were moved to these minimum-energy configurations, and damped-MD re-

laxations were performed to relax the structures within these wells. Once the structures

were re-relaxed, finite-displacement phonon calculations were performed.

III. RESULTS AND DISCUSSION

A. Vibrational properties of PbS–PbTe solid solutions

We first present the results of our frozen-phonon calculations for PbS, PbTe, and PbS–

PbTe SQS with compositions xPbTe = 1/27, xPbTe = 1/4, xPbTe = 1/3, xPbTe = 1/2,

xPbTe = 2/3, xPbTe = 3/4, and xPbTe = 26/27. Quasi-Newton force relaxations of several

SQS relaxed the structures to low-energy saddle-points of the energy landscape rather than

energy minima. Γ-point frozen phonon calculations of these systems gave harmonic phonon

modes with imaginary frequencies. The systems with these dynamical instabilities, and their

imaginary-mode frequencies are shown in Table I. To better understand the complexity

of the energy landscapes of these PbS–PbTe alloys, we plot the unstable phonon-mode

trajectories of these ‘saddle-point’ structures in Fig. 1. The energy landscapes of these

unstable phonon modes all correspond to double-well structures with the relaxed structure

lying at the saddle-point of the double well. The double-well structures have energy barriers

of 1.6, 0.41, 0.40, and 0.11 meV/cation, respectively.
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TABLE I. List of SQS compositions of PbS–PbTe alloys with unstable phonon modes. Imaginary

mode frequencies are given as positive numbers.

xPbTe ν × (−i) (cm−1)

1/3

51.11 48.16 46.88

42.97 41.40 35.68

33.43 31.81

1/2 14.21

2/3 33.08

3/4 35.05

26/27 24.01 24.01 24.01

Insets in each panel of Fig. 1 show the atomic displacements corresponding to the energy

wells of each structure. The displacements of the xPbTe = 1/3 structure consist of eight

S ions (out of 27 anions) moving along their 1st NN Pb–S bonds or in between two Pb–S

bonds. The displacements of the xPbTe = 2/3 structure consist of two S ions (out of 27

anions) oriented linearly in chain moving along that line. Similarly, the displacements of the

xPbTe = 3/4 structure consist of one S ion and one neighboring Pb ion moving in opposite

directions along their connecting bond. Finally, the displacements of the xPbTe = 26/27

structure consist of the single S ion and two opposing Pb NN ions moving along their

connecting bonds.

Displacement of the xPbTe = 1/3 and xPbTe = 2/3 SQS along their unstable mode tra-

jectories and subsequent relaxations resulted in Γ-point harmonic phonon modes that were

all stable. The total phonon DOS (g) of these re-relaxed structures, as well as the other

systems with stable phonon modes are presented in Fig. 2, along with the composition-

weighted sum of the phonon DOSs of PbS and PbTe [xgPbTe + (1− x)gPbS] and the phonon

DOS of mixing ∆g. We also compare our calculated phonon DOSs for PbS and PbTe with

phonon DOSs derived from experimental neutron diffraction data81,82 in Fig. 2 and find the

DFT-calculated phonon DOSs give good agreement with the experimentally-derived DOSs.

To obtain the vibrational entropy of mixing, ∆Svib
mix, for the dynamically stable PbS–

PbTe SQS, we calculate the logarithmic moment of the phonon DOS of mixing ∆g shown in

Fig. 2 using Eq. (10). The resulting vibrational entropies of mixing are provided in Table II
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FIG. 1. (Color online) Energy vs. imaginary normal-mode coordinate for PbS–PbTe SQS with

compositions (a) xPbTe = 1/3, (b) xPbTe = 2/3, and (c) xPbTe = 3/4, and (d) xPbTe = 26/27.

Data points are DFT-calculated energies and curves are polynomial fits to data. Insets show

atomistic models of SQS (Pb atoms in gray, S atoms in yellow, and Te atoms in brown) with

atomic displacement vectors corresponding to each normal mode. These double-well potential

energy landscapes have barrier heights of 1.6, 0.41, 0.40, and 0.11 meV/cation, respectively.

13



xPbTe = 1�27

xPbTe = 1�3

xPbTe = 2�3

xPbTe = 0

xPbTe = 1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

g,
D

g
H#

st
at

es
�c

at
io

n
cm
-

1
L

0 50 100 150 200 250

Ν Hcm-1L

FIG. 2. (Color online) Phonon DOS of mixing for PbS–PbTe SQS. Total phonon DOSs (g) for

each SQS are shown as solid black lines. Composition-weighted averages of the phonon DOS of

PbS and PbTe [xgPbTe + (1 − x)gPbS] are shown at each SQS composition as dashed gray lines.

The difference between these curves, the phonon DOS of mixing (∆g), defined in Eq. (11), are

shown as solid colored lines for 54-atom SQS with stable phonon modes. Phonon DOSs derived

from experimental neutron-diffraction data for PbS82 and PbTe81 are shown as solid gray lines.

Each phonon-DOS is offset along the vertical axis for clarity; dashed lines indicate the zero for

each phonon-DOS.

TABLE II. Vibrational entropies of mixing, ∆Svib
mix of PbS–PbTe solid solutions obtained from

∆g(ν) using Eq. (10). For comparison, values of the ideal configurational entropy of mixing [Eq. (3)]

are shown at the same compositions.

xPbTe ∆Svib
mix (kB/cation) ∆Sideal

mix (kB/cation)

1/27 0.10 0.16

1/3 0.17 0.64

2/3 0.22 0.64

along with the values of the ideal entropy of mixing at the same compositions. We find the

vibrational entropies of mixing to be positive, favoring the solid solution over the phase-

separated state. In Sec. III B we will consider the quantitative effects that the vibrational

entropy of mixing has on the free energy of mixing and phase stability in PbS–PbTe alloys.
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TABLE III. Sub-regular solution model parameters [Eq. (5)] for the mixing energy and vibrational

entropy of mixing of PbS–PbTe solid solutions.

L0 L1

∆E0K
mix (meV/cation) 301.13 53.16

∆Svib
mix (kB/cation) 0.90 0

B. Contributions to the free energy of mixing in PbS–PbTe

To quantify the terms in the free energy of mixing [Eq. (6)], in Fig. 3 we plot the mixing

energies ∆E0K
mix and vibrational entropies of mixing −T∆Svib

mix at T = 700 K for PbS–PbTe

SQS as green and red data points, respectively. The PbS–PbTe SQS mixing energy is defined

as

∆E0K
mix(x) = ESQS(x)− xEPbTe − (1− x)EPbS, (17)

where ESQS, EPbS, and EPbTe are the DFT total energies of the SQS, PbS, and PbTe, re-

spectively. The mixing energies for xPbTe = 1/4, 1/2, and 3/4 are consistent with previously

calculated values.14 In Fig. 3 we also show least-squares fits of the RK polynomial solu-

tion model of Eq. (5) to the SQS mixing energies and SQS vibrational entropies of mixing

as green and red lines, respectively. Shaded regions around each line are 90% confidence

intervals for the least-squares fits. Figure 3 also shows the ideal mixing entropy [Eq. (3)]

as −T∆S ideal
mix at T = 700 K as a blue line and the combined free energy of mixing ∆Fmix

[Eq. (6)] as a black line with the combined 90% confidence interval of ∆E0K
mix and ∆Svib

mix

shown as an estimate of the error of our free energy of mixing.

The least-squares fits to ∆E0K
mix and ∆Svib

mix give R
2 values of 0.996 and 0.934, respectively.

The solution model parameters corresponding to these fits are shown in Table III. The order

of the solution model for each quantity is chosen based on a leave-one-out cross-validation

(CV) comparison. The CV scores of solution models of order 0, 1, and 2 for ∆E0K
mix are 6.35,

5.22, and 6.12 meV/cation, respectively and for ∆Svib
mix are 0.06, 0.35, and 0.11 kB/cation,

respectively. From this analysis we conclude that (i) while all three solution models are

good predictors of PbS–PbTe SQS mixing energies, the subregular solution model (order

1) provides more predictive power than the other two models and (ii) the regular solution

model (order 0) provides the best predictive power for PbS–PbTe SQS vibrational entropies
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FIG. 3. (Color online) Contributions to the free energy of mixing ∆Fmix [Eq. (4)] at 700 K:

zero Kelvin mixing energetics ∆E0K
mix (green), vibrational entropy of mixing −T∆Svib

mix (red), and

ideal entropy of mixing −T∆Sideal
mix (blue). Green data points and solid line show DFT-calculated

energetics and a subregular solution model fit to this data, respectively. Red data points and solid

line show vibrational entropies of mixing calculated from ∆g(ν) and a regular solution model fit

to this data, respectively. Shaded regions show 90% confidence intervals for fits to ∆E0K
mix, ∆Svib

mix,

and their summed contribution to ∆Fmix.

of mixing. Thus we use RK polynomials of order 1 (subregular) and 0 (regular) to model

∆E0K
mix and ∆Svib

mix, respectively.

C. Structural properties of PbS–PbTe SQS

In Figs. 4 and 5 we show the average (cubic) lattice parameter of PbS–PbTe SQS and

various short-distance bond lengths in the SQS as functions of xPbTe, respectively. From

Fig. 4 we see that average lattice parameter of PbS–PbTe solid solutions tends to be a

composition-weighted average of the lattice parameters of PbS and PbTe, in agreement

with Vegard’s law.83 Figure 5 highlights several points relevant to the observed low-T phase

transitions in this alloy: (i) on average, the Pb–S and Pb–Te NN bonds retain lengths close to

those of the constituent PbS and PbTe compounds, however (ii) there is considerable spread

in the Pb–S bond lengths (as indicated by vertical bars in Fig. 5), especially compared to

the Pb–Te bond lengths. (iii) The average cation–cation and anion–anion bond lengths

are identical and follow Vegard’s law similarly to the lattice parameters shown in Fig. 4,
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FIG. 4. Volume-averaged lattice parameters of PbS–PbTe SQS as a function of xPbTe. Rocksalt

lattice parameters are calculated for each SQS by taking 3
√

8VSQS, where VSQS is the volume-per-

atom of an SQS. Solid circles show lattice parameters for SQS fully relaxed to their energy minima,

while open circles show lattice parameters for SQS at saddle-points in their energy landscape. The

dashed line is a linear interpolation between the lattice parameters of PbS and PbTe.

however, (iv) there is much more variation in the Pb–Pb bond lengths than the anion–anion

bond lengths. This data suggests that the Pb and S ions are displaced significantly more

from their ideal lattice sites than are the Te ions.

The calculated bond-length data are also in good agreement with experimental X-ray

absorption fine structure (XAFS) measurements made at 30 K on PbS–PbTe alloys,42 which

show two distinct Pb–S bond lengths and one Pb–Te bond length (shown as blue and red

squares in Fig. 5, respectively). The experimental Pb–S bond lengths lie within the standard

deviations of Pb–S bond lengths of SQS with nearby compositions. The experimental Pb–

Te bond lengths also lie within a standard deviation of the calculated Pb–Te average bond

length.

To investigate these deviations in 1st and 2nd NN bond lengths from their ideal lengths

in more detail, in Fig. 6 (a)–(d) we plot the distribution of Pb–S, Pb–Te, Pb–Pb, and

anion–anion bonds for each PbS–PbTe SQS, respectively [panels (a) and (b) have the same

horizontal plot range, as do panels (c) and (d)]. Bond-length distributions were obtained

from the bond lengths of each SQS by fitting them to a Gaussian kernel.84 The bond-length

distributions for each SQS are shown off-set from one another along the y-axis for clarity,

and distributions of structures fully relaxed to their minimum energy are shown as solid
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FIG. 5. (Color online) Average bond lengths in PbS–PbTe SQS as functions of the alloy com-

position, xPbTe. Pb–S (green), Pb–Te (orange), Pb–Pb (black), and anion–anion (purple) bond

lengths are shown, with average bond lengths of SQS at their energy minima shown as closed circles

and average bond lengths of SQS at saddle-points shown as open circles. Vertical bars show the

standard deviation of each average bond length. The green and orange dashed lines indicate dPb–S

and dPb–Te in pure PbS and PbTe, respectively. The black dashed line indicates the composition-

weighted average of dPb–Pb (and equivalently dan–an) for PbS and PbTe. The variance in dPb–S and

dPb–Pb are much greater than the variance in dPb–Te and dan–an. Experimental data for Pb–S and

Pb–Te bond lengths at 30 K from Ref. 42 are shown as blue and red squares, respectively.

lines while distributions of structures at saddle-points in their energy landscape are shown

as dashed lines. For comparison, the corresponding bond lengths of bulk PbS and PbTe are

shown in each panel of Fig. 6.

From Fig. 6 we can make several observations. First, the Pb–S and Pb–Te distributions

are bimodal at concentrations close to xPbTe = 0.5, with the peaks in the Pb–S bond-length

distribution occurring near the bulk PbS and PbTe bond lengths. Second, the Pb–Pb bond

lengths are very broad, spanning a range of values from the bulk PbS Pb–Pb bond length to

the bulk PbTe Pb–Pb bond length. Finally, while the anion–anion bond-length distributions

are broader than the Pb–Te bond-length distributions, they are considerably more peaked

than the Pb–Pb distributions, and their peaks follow the composition-weighted average of

the S–S and Te–Te bond lengths of PbS and PbTe. From this data we conclude that the

large lattice mismatch between PbS and PbTe is accommodated in the solid solution by
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FIG. 6. (Color online) Distribution of bond lengths in PbS–PbTe SQS. Bond lengths shown are

1NN (a) Pb–S (dPb–S) and (b) Pb–Te (dPb–Te) bonds, and 2NN (c) Pb–Pb (dPb–Pb) and (d) anion–

anion (dan–an) bonds. Bond-length distributions of SQS in their energy minima are shown as solid

lines and bond-length distributions of SQS at saddle-points in their energy landscapes are shown as

dashed lines. Arrows indicate the corresponding bond lengths in bulk PbS and PbTe. Distributions

are offset along the y-axis for clarity (with corresponding x-axes shows as horizontal dashed lines).

distortions of the Pb cation sublattice, with some smaller distortions of the S ions as well.

D. Low-T phase transitions

The low-energy double-well potentials of the PbS–PbTe SQS shown in Fig. 1 provide

support for the idea that there exists a phase transition in these alloys at low tempera-

tures: the double-well structures of the energy landscapes suggest a Landau-type phase

transition67,70 may be occurring, similar to displacive ferroelectric phase transitions in other

IV–VI compounds and alloys such as SnTe,85,86 GeTe,87,88 PbTe–SnTe,89 SnTe-GeTe,90 and

PbTe–GeTe.91–93 The imaginary, or ‘soft,’ modes correspond primarily to displacements of S

ions suggesting that the phase transition is due to the off-centering of these ions, as has been

observed in the alkali-halides43,44,94 and has been suggested to be the cause of the observed

low-temperature behavior in PbS–PbTe alloys.38–42

We use our calculated phonon normal-mode frequencies in both the stable, ‘well-bottom’

configuration and the unstable ‘saddle-point’ configuration of the xPbTe = 1/3 and xPbTe =

2/3 SQS to model low temperature behavior of the PbS–PbTe alloys, following Ref. 67, as
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discussed in Sec. IID. We determine anharmonic coupling constants between the phonon

modes of the ‘well-bottom’ and ‘saddle-point’ configurations via Eq. (15). These anharmonic

coupling constants are used to obtain a set of renormalized phonon frequencies for the low-T

phase which depend on the magnitude of the unstable mode displacement, φ, as in Eq. (13).

Using these renormalized phonon frequencies, we minimize the vibrational free energy of

the system F [Eq. (16)] with respect to φ as a function of T to determine the equilibrium

values of the soft-mode displacement as a function of temperature and find the transition

temperature Tc where φ goes to zero.

In Fig. 7, we show the free energy in Eq. (16) as ∆F (φ, T ) = F (φ, T ) − F (0, T ) as a

function of φ at various temperatures for the (a) xPbTe = 1/3 and (b) xPbTe = 2/3 PbS–

PbTe SQS. Closed circles connected by dashed lines indicate the values of φ that minimize

the free energy at each temperature. Insets in each panel of Fig. 7 show the minimum-

free-energy values of φ as functions of temperature, with dashed vertical lines indicating the

T at which φ = 0. By the construction of the model, the phase transitions in Fig. 7 are

continuous,67 with critical transition temperatures, Tc, of 46 K for xPbTe = 1/3 and 104 K

for xPbTe = 2/3. The calculated transition temperatures are compared with experimentally

observed transition temperatures in Sec. III E.

E. PbS–PbTe phase diagram

In Sec. III B we quantified the contributions to the free energy of mixing in PbS–PbTe

solid solutions at high temperatures, and in Sec. IIID we semi-quantitatively modeled the

low-temperature displacive behavior of S ions in PbS–PbTe solid solutions. In this section,

we construct the high- and low-temperature phase diagrams of PbS–PbTe based on these

free energies and compare them to experimental data. Using Eqs. (6) and (7) we construct

a miscibility gap for PbS–PbTe from ∆Fmix, shown in Fig. 3. This calculated miscibility

gap is shown as a solid black line in Fig. 8. Using Eq. (7) we also calculate miscibility

gaps corresponding to the bounds of the 90% confidence interval of Fig. 3, which is shown

as a shaded region in Fig. 8. In Fig. 8 we also show a previously calculated miscibility

gap for PbS–PbTe that neglects ∆Svib
mix as a dashed, blue line.14 Experimental data for the

miscibility gap of PbS–PbTe are shown as open11 and closed12 circles. Our calculated low-T

phase-transition temperatures for PbS–PbTe with compositions xPbTe = 1/3 and 2/3 are
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FIG. 7. (Color online) Difference in free energy between F (φ, T ) and F (0, T ) as a function of φ at

various T between (a) 0 and 60 K for xPbTe = 1/3 and (b) 0 and 120 K for xPbTe = 2/3. Closed

circles connected by dashed lines indicate the values of φ which minimize F (φ, T ) at each T . Insets

in each panel show φ(T ) as closed circles and Tc as vertical dashed lines for each system.

shown as red squares in Fig. 8. Finally, experimental data for low-T phase transitions in

PbTe-rich PbS–PbTe alloys are shown as open squares in Fig. 8.38

Our calculated miscibility gap has a maximum temperature TG of 1300 K, 470 K lower

than the previously calculated TG (without vibrational contributions) of 1770 K.14 Both of

these temperatures are higher than the experimental TG which is 1070 K.11,12 However, we

see that the effect of the vibrational entropy of mixing in PbS–PbTe is to stabilize the solid

solution relative to phase-separated PbS and PbTe, lowering the miscibility gap temperatures

and improving the agreement of our calculated values to experiment. Our calculated low-

T soft-mode phase-transition temperatures of 46 and 104 K compare favorably with the

experimentally measured temperatures, which show a maximum Tc of 92 K at xPbTe of 0.8.
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FIG. 8. (Color online) Calculated high- and low-T solid-state phase diagrams of PbS–PbTe. The

solid black line shows the miscibility gap calculated using Eq. (6), with gaps calculated from

the 90% confidence interval of the free energy fit shown as the gray shaded region. The dashed

blue line shows a previously calculated miscibility gap for PbS–PbTe that neglects ∆Svib
mix.

14 Red

squares show calculated low-T phase transition temperatures. Open11 and closed12 circles show the

experimentally measured miscibility gap of PbS–PbTe, and open squares38 show the experimentally

measured low-T phase transition temperatures of PbS–PbTe.

The experimental work only investigated PbTe-rich compositions, however our calculations

predict the existence of low-T phase transitions at PbS-rich compositions as well.

IV. CONCLUSIONS

In this work, we used first-principles DFT calculations to investigate the role that vi-

brations play in the thermodynamics of PbS–PbTe alloys. We used special quasirandom

structures (SQS) to approximate the atomic structure of the solid solution of PbS–PbTe

alloys. These SQS were then relaxed within DFT and their vibrational spectra were calcu-

lated with the frozen-phonon method. We found that several of these SQS had relaxed to

saddle points in their energy landscapes, leading to unstable phonon modes with double-well

energy vs. phonon mode displacement curves. These phonon modes corresponded to mo-

tion of S ions within the rocksalt lattice, providing theoretical support for the experimental

observations of phase transitions in PbS–PbTe alloys at low temperatures. In addition to

the dynamic displacements of S ions, structural analysis of the PbS–PbTe SQS showed that
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the Pb cations are statically displaced from their ideal lattice sites due to the size mismatch

between PbS and PbTe. These observations may relate to the proposed off-centering of Pb

ions in pure PbS and PbTe with increasing T ,27,29,31,34 though anharmonic effects seem to

account for the experimentally observed phenomena in the pure compounds.28,35,36

From the calculated vibrational spectra of dynamically stable PbS–PbTe SQS we obtained

phonon DOSs and used them to determine the high-temperature vibrational entropy of

mixing in PbS–PbTe solid solutions. We combined these entropies with the zero Kelvin

SQS mixing energies to obtain the Helmholtz free energy of mixing for PbS–PbTe. We used

this free energy to calculate the solid-solid phase diagram for PbS–PbTe, which we found

to have a miscibility gap in agreement with experiment. We found that the inclusion of the

vibrational entropy of mixing in the free energy brought the calculated miscibility gap into

better agreement with experiment. We also used the calculated vibrational spectra of the

SQS at xPbTe = 1/3 and 2/3 to determine low-T displacive phase transition temperatures,

which we found to be in good qualitative agreement with experimental data at compositions

near xPbTe = 1/3. Based on our calculation of a transition at xPbTe = 2/3, we predict that

PbS–PbTe alloys should undergo displacive phase transitions at PbS-rich compositions as

well. We find the vibrational properties of PbS–PbTe alloys to play an important role in

the thermodynamics of these materials, and their inclusion in the free energy of mixing is

crucial to a quantitative description of the phase transitions in these alloys.
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TABLE IV. Description of the 27-atom SQS supercells for x = 1/3 and x = 2/3.

SQS-27 (x = 1/3) A3BC2

Lattice vectors

a1 = (0.0, 1.5, 1.5) a2 = (1.5, 0.0, 1.5) a3 = (1.5, 1.5, 0.0)

Atomic Positions

fcc-mixing atoms rocksalt spectator cation atoms

B—(0.0, 0.0, 0.0) A—(0.5, 0.5, 0.5)

B—(0.0, 0.5, 0.5) A—(0.5, 1.0, 1.0)

B—(0.0,−0.5,−0.5) A—(0.5, 0.0, 0.0)

B—(0.5, 0.0, 0.5) A—(1.0, 0.5, 1.0)

B—(−0.5, 0.5, 0.0) A—(0.0, 1.0, 0.0)

B—(−0.5, 0.5,−1.0) A—(0.0, 1.0,−0.5)

B—(−0.5, 0.0, 0.5) A—(0.0, 0.5, 1.0)

B—(0.0,−0.5, 0.5) A—(0.5, 0.0, 1.0)

B—(0.5, 0.5,−1.0) A—(1.0, 1.0,−0.5)

C—(0.5,−1.0,−0.5) A—(1.0,−0.5, 0.0)

C—(0.5,−0.5, 0.0) A—(1.0, 0.0, 0.5)

C—(−0.5, 0.0,−0.5) A—(0.0, 0.5, 0.0)

C—(−0.5,−0.5,−1.0) A—(0.0, 0.0,−0.5)

C—(0.5, 0.5, 0.0) A—(1.0, 1.0, 0.5)

C—(0.5,−0.5,−1.0) A—(1.0, 0.0,−0.5)

C—(0.5, 0.0,−0.5) A—(1.0, 0.5, 0.0)

C—(1.0,−0.5,−0.5) A—(1.5, 0.0, 0.0)

C—(1.0, 0.0, 0.0) A—(1.5, 0.5, 0.5)

C—(0.0, 0.5,−0.5) A—(0.5, 1.0, 0.0)

C—(0.0, 1.0, 0.0) A—(0.5, 1.5, 0.5)

C—(0.0, 0.0,−1.0) A—(0.5, 0.5,−0.5)

C—(−0.5,−0.5, 0.0) A—(0.0, 0.0, 0.5)

C—(−0.5,−1.0,−0.5) A—(0.0,−0.5, 0.0)

C—(0.0, 0.0, 1.0) A—(0.5, 0.5, 1.5)

C—(0.0,−1.0, 0.0) A—(0.5,−0.5, 0.5)

C—(−1.0,−0.5,−0.5) A—(−0.5, 0.0, 0.0)

C—(−1.0, 0.0, 0.0) A—(−0.5, 0.5, 0.5)

Appendix A: Description of 27-atom SQS

Table IV contains the unit-cell parameters and atomic positions of the mixing atoms for

the fcc SQS-27 supercells, as well as the atomic positions of the spectator cation atoms for

the rocksalt SQS-54 supercells at a composition of x = 1/3. The structure for x = 2/3

can be obtained by switching B and C atoms. Table V contains local composition and

geometric information for each Pb cation in the PbS–PbTe SQS in their low-T , well-bottom

configurations and/or high-T saddle-point configurations.
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TABLE V. Composition and geometry of Pb NN coordination. For each SQS, the number of Pb

ions with 0–6 Pb–Te NN bonds are reported along with statistics of Pb–S and Pb–Te bond lengths

for Pb ions with that Te coordination. Numbers listed without standard deviations are either single

bond lengths or bond lengths equivalent by symmetry.

System
# Pb–Te NN Bonds

0 1 2 3 4 5 6

xPbTe = 1/27

# Pb ions 21 6

〈dPb–S〉 (Å) 3.004± 0.012 3.000± 0.042

〈dPb–Te〉 (Å) 3.150

xPbTe = 1/4

# Pb ions 4 3 6 3

〈dPb–S〉 (Å) 3.038± 0.087 3.050± 0.128 3.042± 0.143 3.045 ± 0.163

〈dPb–Te〉 (Å) 3.182± 0.041 3.220± 0.042 3.204 ± 0.030

xPbTe = 1/3 well

# Pb ions 2 8 8 7 1 1

〈dPb–S〉 (Å) 3.056± 0.127 3.075± 0.191 3.073± 0.188 3.084 ± 0.196 2.950 ± 0.023 2.962

〈dPb–Te〉 (Å) 3.267± 0.072 3.225± 0.060 3.207 ± 0.061 3.196 ± 0.062 3.219 ± 0.067

xPbTe = 1/3 saddle-point

# Pb ions 2 8 8 7 1 1

〈dPb–S〉 (Å) 3.046± 0.027 3.056± 0.071 3.049± 0.079 3.060 ± 0.103 2.921 ± 0.006 2.966

〈dPb–Te〉 (Å) 3.241± 0.034 3.210± 0.036 3.193 ± 0.054 3.186 ± 0.069 3.201 ± 0.062

xPbTe = 1/2

# Pb ions 2 4 4 4 2

〈dPb–S〉 (Å) 3.050± 0.054 3.036± 0.060 3.048 ± 0.047 3.090 ± 0.052 3.059

〈dPb–Te〉 (Å) 3.211 3.248± 0.018 3.238 ± 0.033 3.233 ± 0.027 3.243 ± 0.029

xPbTe = 2/3 well

# Pb ions 1 1 7 8 8 2

〈dPb–S〉 (Å) 3.141± 0.262 3.070± 0.333 3.115 ± 0.263 3.137 ± 0.208 3.055 ± 0.119

〈dPb–Te〉 (Å) 3.260 3.438± 0.018 3.277 ± 0.065 3.260 ± 0.073 3.253 ± 0.062 3.243 ± 0.035

xPbTe = 2/3 saddle-point

# Pb ions 1 1 7 8 8 2

〈dPb–S〉 (Å) 3.107± 0.182 3.073± 0.316 3.111 ± 0.246 3.144 ± 0.235 3.045 ± 0.113

〈dPb–Te〉 (Å) 3.266 3.455± 0.038 3.275 ± 0.070 3.260 ± 0.073 3.253 ± 0.065 3.242 ± 0.039

xPbTe = 3/4 saddle-point

# Pb ions 3 6 3 4

〈dPb–S〉 (Å) 3.139 ± 0.278 3.077 ± 0.118 3.098 ± 0.147

〈dPb–Te〉 (Å) 3.266 ± 0.095 3.283 ± 0.074 3.264 ± 0.067 3.253 ± 0.037

xPbTe = 26/27 saddle-point

# Pb ions 6 21

〈dPb–S〉 (Å) 3.102

〈dPb–Te〉 (Å) 3.292 ± 0.046 3.274 ± 0.013
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FIG. 9. (Color online) Calculated and measured heat capacity (at constant volume) of PbS–PbTe

alloys as functions of temperature. Curves show calculated heat capacities. Open and closed

points show experimental heat capacities of PbTe and Pbs, respectively. The inset panel shows

the calculated heat capacities of mixing for PbS–PbTe alloys. The heat capacities approach zero

around room temperature. Experimental data for PbTe were converted from CP to CV using the

thermal expansion and bulk modulus data of Ref. 96. Experimental data: a – Ref. 97, b – Ref. 98,

c – Ref. 99, d – Ref. 100.

Appendix B: Heat capacity of PbS–PbTe alloys

Figure 9 shows both calculated and experimental heat capacites at constant volume for

the PbS–PbTe alloys. Calculated heat capacities are shown as solid lines and experimental

heat capacities as points. The calculated heat capacities for PbTe and PbS (black, solid

lines in Fig. 9) are in good agreement with the experimentally measured heat capacities.

The heat capacities of the PbS–PbTe alloys all lie within the heat capacities of PbTe and

PbS. The inset of Fig. 9 shows the heat capacities of mixing, defined by

∆Cvib
V,mix(x, T ) = Cvib

V (x, T )− (1− x)Cvib
V (PbS, T )− xCvib

V (PbTe, T ), (B1)

where Cvib
V (x, T ) is the heat capacity of an alloy with composition x, Cvib

V (PbS, T ) is the

heat capacity of PbS, and Cvib
V (PbTe, T ) is the heat capacity of PbTe. The heat capaci-

ties of mixing for PbS–PbTe are all very small and decrease with increasing temperature,

approaching zero around room temperature. This negligible heat capacity of mixing gives

credence to the use of Eq. (10).
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75 P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

76 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

77 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

78 H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

79 P. Pulay, Chem. Phys. Lett. 73, 393 (1980).
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