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Abstract 

Synchrotron reflection x-ray thermal diffuse scattering (TDS) measurements, rather than 

previously reported transmission TDS, are carried out at room temperature and analyzed using a 

formalism based upon second-order interatomic force constants and long-range Coulomb 

interactions to obtain quantitative determinations of MgO phonon dispersion relations ℏωj(q), 

phonon densities of states g(ℏω), and isochoric temperature-dependent vibrational heat capacities 

cv(T). We use MgO as a model system for investigating reflection TDS due to its harmonic 

behavior as well as its mechanical and dynamic stability. Resulting phonon dispersion relations 

and densities of states are found to be in good agreement with independent reports from inelastic 

neutron and x-ray scattering experiments. Temperature-dependent isochoric heat capacities 

cv(T), computed within the harmonic approximation from ℏωj(q) values, increase with 

temperature from 0.4x10-4 eV/(atom K) at 100 K to 1.4x10-4 eV/(atom K) at 200 K and 1.9x10-4 

eV/(atom K) at 300 K, in excellent agreement with isobaric heat capacity values cp(T) between 4 

and 300 K. We anticipate that the experimental approach developed here will be valuable for 

determining vibrational properties of heteroepitaxial thin films since the use of grazing-incidence 

(θ د  θc, where θc is the density-dependent critical-angle) allows selective tuning of x-ray 

penetration depths to 10 د nm. 
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I. Introduction 

Phonons, elementary quanta of lattice vibrations, are well known to control high-

temperature transport and structural properties of crystalline solids [1–7]. As a result, the ability 

to spectrally resolve phonon energies has proven central to the understanding of fundamental 

materials properties. Techniques by which phonon energies ℏωj, in which ℏ is the reduced 

Planck constant and ωj the angular frequency of phonon branch j, may be obtained include 

Raman [8] and tunneling spectroscopy [9]. Often, however, crystal properties are strongly 

influenced by phonons with specific momenta; archetype examples are systems exhibiting 

charge density waves [2] and Kohn anomalies [1]. In such cases, a deeper understanding of 

crystalline properties requires determination of dispersion relations ℏωj(q) in which both phonon 

momenta q and energies ℏωj are resolved. Historically, ℏωj(q) curves have been determined by 

inelastic x-ray and neutron scattering. These techniques, nevertheless, require complex 

experimental equipment, long acquisition times, and, in the case of neutron scattering, large 

single crystals. The latter restriction eliminates many interesting thin-film systems such as 

highly-strained heterostructures and metastable materials. 

Recently, transmission thermal diffuse x-ray scattering (TDS) has become an efficient 

experimental alternative for determining phonon dispersion relations. TDS experiments involve 

the detection of x-ray photons which are quasi-elastically scattered from thermally-excited atoms 

vibrating about their equilibrium position. Displaced atoms break the symmetry of the ideal 

crystal, resulting in scattering away from Bragg peaks. Atomic displacements accompanying 

zone-boundary X-point phonons in face-centered cubic materials, for example, yield an 

irreducible superstructure which is double the size of the ideal unit cell. As a result, TDS 

intensities due to X-point phonons appear halfway between Bragg reflections at reciprocal space 

positions described by mixed-integer Miller indices, e.g. [0 0 1] and [1 1 0]. Pioneering work by 

Chiang, Holt, and coworkers demonstrated the capabilities of TDS measurements by determining 

hωj(q) phonon dispersion curves for Si [10], Ga-stabilized Pu [11], TiSe2 [12], and Cu [13] 

crystals. However, TDS experiments are presently carried out in transmission geometry and, as a 

result, samples are limited to bulk crystals.  

Thin films represent a technologically important class of materials for which the number 

of sample types is increasingly growing. In particular, novel metastable phases, inaccessible by 

bulk synthesis techniques, can be produced using kinetically-limited growth processes [14–21] 
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and epitaxial constraints [22–27]. Despite the importance of thin films, there are only a restricted 

number of methods [28,29] for determining phonon dispersion relations for this class of 

materials. 

Here, we introduce a TDS technique for determining phonon dispersions ℏωj(q) and 

densities of states g(ℏω) based on a reflection scattering configuration. We demonstrate the 

method using MgO as a model materials system. It is anticipate that the results presented here 

will be beneficial for selectively determining vibrational properties of heteroepitaxial thin films, 

since x-ray penetration depths may be tuned through the use of grazing incidence geometries. 

From thermal-diffuse x-ray pole figures, we determine ℏωj(q) and g(hωj) and compute, via the 

harmonic approximation, temperature-dependent isochoric MgO heat capacities cv(T). MgO is 

chosen for this study due to its nearly harmonic behavior as well as mechanical and dynamic 

stability [30]. Pole figures are measured about an 011 oriented sample normal, since this primary 

cubic direction exhibits lower symmetry, two-fold, and thus allows the sampling of a higher 

number of unique reciprocal space points than the four-fold symmetric 001 and three-fold 

symmetric 111 orientations. 

 

II. Experimental procedures 

Thermal-diffuse synchrotron x-ray pole figure measurements are collected at beamline 

33-BM of the Advanced Photon Source, Argonne National Laboratory. Experiments are 

performed with the storage ring operating in top-up mode with an electron energy of 7 GeV and 

a stored current of 100 mA. Using a double-crystal Si(111) monochromator, the wavelength of 

the x-ray probe beam is set to 0.05904 nm (21 keV). Polished MgO(011) sample wafers, 5x5 

mm2, are obtained from the MTI Corporation. To minimize air scattering during measurements, 

samples are enclosed in a Be-dome-covered stage and evacuated to 1x10-6 Torr (1.3 x10-4 Pa). 

Scattering from the Be-dome is eliminated by placing collimating slits close to the sample 

holder. The x-ray probe beam is focused onto the detector plane, yielding 1x1012 photons/s 

incident on an 800x400 μm2 area of the sample surface. Beam divergence, which is almost 

exclusively in the horizontal plane of the synchrotron, is ~ 4 mrad and has a negligible effect on 

resolution when compared the typical size of thermal diffuse features, spanning several degrees. 

All scattering experiments are performed in the vertical plane of the synchrotron to avoid 

polarization effects. Scattering intensities are recorded at each pixel of a Pilatus 100K area 
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detector to produce four hundred individual pole-figures over azimuthal angles χ = 0-80o and 

rotational angles φ = 0-360o, covering diffraction vectors ranging from q = 42.60 to 70.32 nm-1. 

The resulting data set encompasses over a million individually-sampled reciprocal space points.  

 

III. Theoretical procedures 

A. MgO phonon dispersion relations 

In order to obtain MgO phonon dispersion relations ℏωj(q), phonon densities of states 

g(ℏω), and temperature-dependent vibrational heat capacities cv(T), thermal diffuse intensities 

are computed based on an eleven-parameter Born-von-Karman model which incorporates short-

range second-nearest-neighbor interatomic interactions and long-range Coulomb interactions. 

Model parameters, including MgO high-frequency dielectric constants, Born effective charges, 

and interatomic force constants, are then iteratively adjusted using a hybrid simulated annealing 

and robust nonlinear least-squares minimization routine until the best match between theoretical 

and experimental diffracted intensities is obtained. Simulated annealing is a stochastic 

metaheuristic optimization algorithm that searches for the global minimum, while avoiding local 

minima traps. Least-squares routines utilize Hessians to converge efficiently once the 

neighborhood of a global minimum is found.  

MgO phonon dispersion relations ℏωj(q) and phonon eigenvectors εj(q), corresponding to 

vibrational energies and atomic displacements associated with specific phonon wavevectors, are 

obtained by diagonalizing dynamical matrices D(q): 

   

 D(q)εjሺqሻ = ωj
2ሺqሻεj(q). (1)

 

For crystals with n atoms in the primitive unit cell, D(q), εj(q), and ωj
2ሺqሻ are matrices with 

dimensions 3n×3n. In ionic crystals, such as MgO, dynamical matrices consist of two 

contributions:  

 

 D(q) = DI(q) + DC(q).  
(2)

DI(q) describes short-range interatomic forces and DC(q) represents long-range Coulomb 

interactions. The elements of short-range dynamical matrices are obtained by Fourier 
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transforming interatomic force constants Φ: 

 

 DI(q) ≡ Ds,s'α,βሺqሻ =
1ඥμsμs'

෍Φs,m,s',m'α,β exp [iq · Rm,m']
m'

. (3)

 

Here, s and s' are indices of the two basis atoms in the primitive fcc unit cell, m and m' 

correspond to two different primitive unit cells, and α and β are two of the three Cartesian 

directions. μs is the mass of atom s, and Rm,m' is the distance between unit cells m and m'. To 

reproduce MgO atomic vibrations with the smallest number of parameters, we consider only 

second-nearest-neighbor interactions and employ full crystal symmetry operations. This reduces 

the number of interatomic force constants from over eight hundred to only eight independent 

values.  

 In the continuum limit (i.e. q ؄ 0), Cochran and Cowley [31] showed that the long-range 

dynamical matrix, which describes Coulomb interactions and gives rise to Lyddane-Sachs-

Teller [32] splitting of transverse and longitudinal optical phonon modes (TO and LO), reduces 

to 

 

 
D෩C(q) = e2

εoV

ൣq Z*ሺsሻ൧
α
ൣq Z*ሺs'ሻ൧

β

q·ε∞·q 
. (4)

 

Z*(s) is the Born effective charge tensor of atom s, ε∞ is the high-frequency dielectric tensor, εo 

is the permittivity of free space, e the electron charge, and V the unit-cell volume. For cubic 

materials, Z* and ε∞ are scaled identity matrices. In order to simulate the effect of Coulomb 

interactions throughout the Brillouin zone, long-range dynamical matrices are constructed using 

a Fourier interpolation scheme based on Cochran and Cowley's results [33]: 

 

 
DCሺqሻ = D෩Cሺqሻ ൝cos ቆ |q|

qmax
ቇrൡ . (5)

 

The term in curly brackets is an interpolating function, qmax is the magnitude of the largest 

wavevector in the first Brillouin zone, and r is an empirical cutoff parameter describing the 
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spread of the Coulomb interaction away from the zone center.  

Together, Eqs. 1-4 fully describe the wavevector and energy dependence of all MgO 

lattice vibrations via eleven material parameters: the Born effective charge, the high-frequency 

dielectric constant, a Coulomb interaction cutoff parameter, and eight second-nearest-neighbor 

interatomic force constants.  

 

B. Thermal diffuse scattering intensities 

Thermal diffuse scattering intensities are computed using the relationship [10,34] 

 

 
Iሺqሻ = A ቎ℏNIe

2
෍ 1ℏωjሺqሻ coth ቆℏωjሺqሻ

2kBT
ቇ หFjሺqሻห2

j

቏ + B, (6)

 

in which N is the number of unit cells in the crystal, Ie the scattering intensity from a single 

electron [35], and kB is Boltzmann's constant. The summation is carried out over phonon branch 

indices j. The term in square brackets corresponds to first-order thermal-diffuse scattering 

intensities; higher-order terms, together with Compton scattering effects [35,36], are included via 

the empirical parameter B. The scaling parameter A controls the relative strength of first-order 

diffuse scattering intensities. In the limit of small phonon energies ℏωj(q), the hyperbolic 

cotangent term describing the increasing phonon thermal population increases as 2kBT/ℏωj(q) 

causing the intensity to increase at wavevectors close to Γ Brillouin-zone centers, i.e. Bragg 

reflections, where low-energy phonons exist in large populations: I(q) ן  1/[ℏωj(q)2 + β]. β 

accounts for the fact that the thermal population around Γ is always finite.   

The structure factor for the jth phonon branch is 

 

 
Fjሺqሻ = ෍ fsඥμs

expሾ-Msሺqሻሿ
s

ൣq · εj,sሺqሻ൧exp(-iq · τs), (7)

 

in which fs, τs,, and Ms(q) are the atomic scattering factor, atomic coordinates, and Debye-Waller 

factor of atom s [35]. εj,sሺqሻ is the component of the eigenvector corresponding to atom s and 

phonon j. 
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Thus, MgO thermal-diffuse pole figure intensities depend on an eleven-parameter model, 

Eqs. 1-5, and two empirical parameters, A and B. By comparing computed thermal-diffuse pole 

figure intensities to measured values and refining the parameters until the best fit between 

measured and simulated values is obtained, MgO vibrational properties, including phonon 

dispersion relations and temperature-dependent isochoric heat capacities, are determined. All 

subsequent discussion and results are based on the refined material parameters.  

 

III. Results and discussion 

Typical synchrotron x-ray diffraction pole-figures acquired from MgO(011) over the 

range φ = 180-360o with diffracting-vector magnitudes q = 57.82, 62.61, 64.42, and 68.58 nm-1 

are presented in Figures 1(a)-(d) as stereographic projections with logarithmically-scaled 

diffracted intensities corrected for defocus [37–39]. The experimental geometry is defined in 

Figure 1(e). Simulated thermal-diffuse intensities based on refined model parameters, which 

include descriptions of interatomic forces and Coulomb interactions, are plotted, for comparison, 

over rotational angles φ = 0-180o in Figures 1(a)-(d). Pole figures from 011-oriented cubic 

crystals are two-fold symmetric about the vertical φ axis. Reciprocal space regions probed in 

Figures 1(a)-(d) are sufficiently distant from Brillouin-zone centers to avoid Bragg reflections 

and provide diffracted intensities which arise predominately from atomic vibrations. MgO(011) 

pole figures are acquired with q = 57.82 nm-1 and shown in Figure 1(a) to exhibit two strong 

diamond-shaped features (χ = 45; φ = 90, 270o) and two diffuse triangular features (χ = 35; φ = 0, 

180o) which arise from thermal acoustic excitations around 002 and 111 Brillouin zone 

centers [40]. For q = 62.61 nm-1, intensities weaken slightly near 002 and become more diffuse 

around 111; in addition, ten features appear near 240 zone centers. With increasing q from 64.42 

to 68.58 nm-1, Figures 1(c) and (d), thermal diffuse intensities around 002 zone centers continue 

to decrease. In Figure 1(c), ten small features appear near 313 zone centers; ten additional 

features appear near 242 zone centers in Figure 1(d). Extracted profiles from measured and 

simulated thermal diffuse intensities acquired with q = 68.58 nm-1, Figure 1(d), over the range φ 

= 0-360o for χ = 20, 50, and 70o are shown on a logarithmic scale in Figure 2 to be in excellent 

agreement.  

Figures 3(a)-(f) show simulated contributions to thermal-diffuse pole-figure intensities at 

q = 68.58 nm-1 from each of the six MgO(011) phonon branches. The figures are obtained using 
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Eq. 6 to simulate each mode separately. TDS intensities arising from the lowest-energy acoustic 

phonon branch are shown in Figure 2(a) and the highest-energy optical phonon branch in Figure 

3(f). The sum of the pole-figure intensities from all six phonon branches yield the total thermal-

diffuse pole figure intensity presented in Figure 1(d). Since phonons branches are sorted by their 

eigenvalues, discontinuities in pattern intensities arise from sharp changes in phonon 

eigenvectors at points in reciprocal space where phonon branches cross. Mathematically, this 

results from the dot product in Eq. 7; physically, this indicates that lattice vibrations only 

contribute to scattering if atoms are displaced with a non-zero component parallel to the 

scattering vector. Diffracted intensities are largest for the three lowest energy phonon modes, 

Figures 3(a)-(c).  

MgO phonon dispersion curves, obtained by simulating thermal-diffuse pole-figure 

intensities and refining model parameters to match measured results, are plotted along high-

symmetry reciprocal-space directions in Figure 4(a). Results from inelastic neutron scattering 

from MgO crystals [41], shown for comparison, are in good agreement. MgO acoustic phonon 

energies increase linearly near the Γ-point Brillouin-zone center 000 and saturate toward the X 

and L zone boundaries 001 and ½½½. The increase near the zone center is greater for 

longitudinal acoustic phonons, indicating higher propagation group velocities than for transverse 

phonons. Transverse and longitudinal optical phonon energies, 50 and 90 meV, are distinct at the 

Γ-point due to long-range Coulomb interactions. While TO modes exhibit weak dispersion, i.e. 

their energies vary slowly throughout the Brillouin zone, the energies of LO modes decrease 

rapidly toward X and L zone boundaries. Along the ΧΓ [0ζζ] reciprocal-space path, where 

phonon polarization vectors point along [100] or [01ത1], both pairs of transverse acoustic and 

transverse optical phonon branches exhibit unique energies. Along ΓX [00ζ] and ΓL [ζζζ] paths, 

the polarization vectors point along symmetrically equivalent directions; as a result, the energies 

of the acoustic transverse modes, as well as the optical transverse modes, are degenerate. 

The MgO phonon densities of states g(ℏω), representing the number of vibrational states 

per eV-atom, are computed using the relationship 

 

 g(ℏω) =
1
N

෍ δ(ℏωj - ℏω
j

), (8)
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in which the δ is the Dirac delta function. Resulting g(ℏω) values are presented in Figure 5 

together with reported results from density functional theory calculations [33] and inelastic x-

ray [42] and neutron [41] scattering measurements. The curves are in good agreement. g(ℏω) 

exhibits three primary features centered near ℏω = 33, 52, and 70 meV. These arise from van-

Hove singularities in ℏωj(q) curves, i.e. points in reciprocal space where phonons have small 

group velocities and branch energies are approximately constant as a function of wavevector.  

Figure 6 shows isochoric MgO heat capacities cv(T) over the temperature range 10-400 

K. Values are calculated within the harmonic approximation through the integral transform [1,2] 

 

 
cv(T) = kB

4
න ൬ ℏω

2kBT
൰2

csch2 ൬ ℏω
2kBT

൰∞

0
gሺℏωሻdℏω (9)

 

using refined MgO model parameters obtained by fitting room-temperature thermal-diffuse pole-

figure intensities. The values obtained are in excellent agreement with reported temperature-

dependent isobaric heat capacities cp(T) plotted as squares [43] and circles [44–46] in Figure 6. 

At low temperatures (T < 50 K), for which only long-range acoustic phonons exhibiting linear 

dispersions are thermally excited, MgO heat capacities increase following a cubic power-law 

behavior: cv ן T3. At higher temperatures, cv(T) approaches the classical equipartition value, cv = 

3kB = 2.58x10-4 eV/((atom K)). For T = 400 K, the MgO heat capacity is 85% of the 

equipartition value; for T = 1700 K, 99%. MgO melts at 3125 K. The fact that MgO heat 

capacities evaluated at constant volume and measured at constant pressures agree indicates that 

anharmonic effects, including those resulting from thermal expansion, are negligible at T < 400 

K.  

As a final point, we consider extending thermal-diffuse x-ray scattering to the analysis of 

thin films. Since thermal diffuse scattering measurements are not constrained to specific 

scattering conditions, such as those fulfilling Bragg criteria, sensitivity to surface layers can be 

achieved by performing asymmetric grazing incidence measurements in which the x-ray beam is 

fixed at subcritical incidence angles with respect to the sample and diffuse scattering intensities 

are mapped in reciprocal space by moving only the detector. The x-ray/sample interaction 

volume is defined by αi, the angle between the incident x-ray beam and the surface plane. For αi 

< θc, the critical x-ray angle, total external reflection occurs resulting in evanescent waves which 
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penetrate only very shallow subsurface regions. θc depends on the electron density of the 

exposed layer and the x-ray energy. For 21 keV x-rays (λ = 0.05904 nm) impinging on MgO, θc 

= 0.10o, yielding a penetration depth of 10د nm at θ = 0.09o.  

Even with a fixed αi angle, it is possible to investigate vast regions of reciprocal space by 

moving the detector. This is illustrated by the following pair of equations which define the 

relationship between the incident αi and outgoing αf angles with respect to the surface plane, i.e. 

the real-space experimental arrangement, and the in-plane qx and out-of-plane qz reciprocal-space 

wavevector components [47,48]: q୶  ൌ  ሾcosሺα୤ሻ െ cosሺα୧ሻሿ/λ and q୸  ൌ  ሾsinሺα୤ሻ ൅ sinሺα୧ሻሿ/λ. 

Equivalently, in terms of a Bragg-Brentano configuration, ω = αi and 2θ = (αi +αf), q୶  ൌ 2sinሺθሻsinሺθ െ ωሻ/λ  and q୸  ൌ  2sinሺθሻcosሺθ െ ωሻ/λ.  Thus, comphrensive data sets which 

sample thermal diffuse scattering intensities over wide regions of reciprocal space with fixed x-

ray/sample interaction volume and selective surface sensitvity may be obtained and analyzed 

using the methods described above to quantatitively determine phonon dispersion relations for 

thin films with thicknesses as small as ~10 nm. 

 

4. Conclusions 

 We have demonstrated a new method for determining phonon dispersion relations ℏωj(q), 

phonon densities of states g(ℏω), and temperature-dependent vibrational heat capacities cv(T) of 

solids based upon synchrotron thermal-diffuse x-ray scattering pole-figure measurements carried 

out in the reflection, rather than the previously investigated transmission, geometry. We 

anticipate that the experimental techniques presented here will be valuable for determining 

vibrational properties of heteroepitaxial thin films since x-ray penetration depths can be 

selectively tuned through the use of grazing incidence. In order to illustrate the method, MgO 

was used as model materials system due to its harmonic behavior and high mechanical and 

dynamic stability. Resulting MgO phonon dispersion relations and densities of states are found to 

be in good agreement with independent reports from inelastic neutron and x-ray scattering 

experiments carried out on single crystals. Temperature-dependent heat capacities obtained 

within the harmonic approximation at constant volume agree with values measured at constant 

pressure between 4 and 300 K.  
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7. Figures 

 
 

 
Figure 1. MgO(011) thermal-diffuse x-ray pole figures acquired with scattering vector q equal to 
(a) 57.82, (b) 62.61, (c) 64.42, (d) and 68.58 nm-1. The pole figures are plotted as normalized 
logarithmic isointensity maps over azimuthal angles χ = 0-80o and polar angles φ = 0-360o. The 
left side of each pole figure (180 < φ < 360o) is determined using synchrotron radiation; the right 
side (0 < φ < 180o) is computed from theoretical MgO phonon dispersion relations obtained by 
fitting experimentally-measured thermal-diffuse intensities, including those shown on the left 
side of each pole figure, to a model based on second-nearest-neighbor interatomic forces and 
long-range Columbic interactions. (e) An illustration defining azimuthal χ, rotational φ, and 
Bragg 2θ angles with respect to the MgO crystal and an area detector. 
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Figure 2. Typical MgO synchrotron thermal-diffuse x-ray intensity profiles (circles), plotted as a 
function of φ between 0 and 360o with χ = 20, 50, and 70o, obtained from the pole figure shown 
in Figure 1(d) acquired at scattering vector q = 68.58 nm-1. Simulated diffracted intensities (solid 
lines) calculated using MgO phonon dispersion relations obtained by fitting the measured pole-
figure intensities using a model based on second-nearest-neighbor interatomic forces and long-
range Columbic interaction parameters.  
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Figure 3. Simulated individual contributions from each phonon branch to MgO(011) thermal-
diffuse pole-figure intensities acquired with scattering vector q = 68.58 nm-1. The panels (a), (b), 
(c), (d), (e), and (f) are in order of increasing phonon energy, with (a) corresponding to the 
lowest acoustic phonon branch, and (f) the highest optical branch. Plots are presented as 
logarithmic isointensity maps over azimuthal angles χ = 0-80o and rotational angles φ = 0-360o. 
The sum of intensities in (a)-(f) yields the diffracted thermal-diffuse intensity pole-figure plot 
shown Figure 1(d). 
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Figure 4. (a) MgO phonon dispersion relations (solid lines) obtained by fitting synchrotron 
reflection x-ray diffraction thermal-diffuse pole-figure intensities (Figures 1-2) using a model 
based upon second-order-interatomic forces and long-range Coulomb interactions. Points from 
inelastic neutron scattering (INS) experiments, Ref. [41], are shown for comparison. (b) The first 
Brillouin-zone of MgO showing high symmetry points corresponding to Γ [000], X [100], L 
[½½½], W [½10], U [¼1¼], and K [¾¾0]. Indices are in units of 2π/a in which a is the MgO 
lattice parameter. b1, b2, and b3 are reciprocal lattice vectors. 
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Figure 5. MgO phonon density of states g(ℏω) (black line, lower TDS curve) obtained by fitting 
synchrotron x-ray diffraction thermal-diffuse pole-figure intensities (Figures 1-2) using a model 
based on second-order-interatomic forces and long-range Coulomb interactions. For comparison, 
g(ℏω) curves from inelastic neutron-scattering experiments (green line, lower-middle INS 
curve) [41], inelastic x-ray scattering measurements (blue line, upper-middle INX curve) [42], 
and density-functional theory calculations (red line, upper DFT curve) [33] are also shown.  
 
 
 
 

 
Figure 6. Temperature-dependent MgO isochoric heat capacities cv(T) (solid line) calculated by 
fitting synchrotron x-ray diffraction thermal-diffuse pole-figure intensities (Figures 1-2), 
obtained at room-temperature, using a model based upon second-order interatomic forces and 
long-range Coulomb interactions. Squares and circles are isobaric heat capacities cp(T) from 
Refs. [43] and [44–46], respectively. 


