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The analytical solution for the low-temperature 1/f noise in the microwave dielectric constant
of amorphous films at frequency ν0 ∼ 5GHz due to tunneling two-level systems (TLSs) is derived
within the standard tunneling model including the weak dipolar or elastic TLS-TLS interactions.
The 1/f frequency dependence is caused by TLS spectral diffusion characterized by the width
growing logarithmically with time. Temperature and field dependencies are predicted for the noise
spectral density in typical glasses with universal TLSs. The satisfactory interpretation of the recent
experiment by Burnett et al. [J. Burnett et al., Nat. Commun. 5, 4119 (2014)] in Pt capped Nb
superconducting resonator is attained by assuming a smaller density of TLSs compared to ordinary
glasses, which is consistent with the very high internal quality factor in those samples.
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I. INTRODUCTION

1/f noise exists in a variety of physical systems [1–4],
and it dramatically restricts the performance of modern
electronic and quantum nanodevices [5–7]. The inverse
frequency dependence of the noise power spectral den-
sity, S(f) ∝ 1/f , is a consequence of a logarithmically
slow relaxation often associated with a random ensemble
of fluctuators possessing a logarithmically uniform spec-
trum of relaxation times [2, 3, 8–10]. Such fluctuators do
exist in amorphous solids in the form of universal tunnel-
ing two-level systems (TLSs, see Fig. 1) [11]. With the
advent of superconducting quantum bits (qubits) based
on Josephson junctions [7, 12], a comprehensive study
of the noise properties due to TLSs has become cru-
cial for the achievement of high-fidelity quantum com-
putation. TLSs are ubiquitous, appearing in wiring di-
electrics, Josephson junction barriers and other disor-
dered insulating regions. The deleterious effects of the
coupling of TLSs to the qubit are associated with the
absorption of qubit energy in the microwave frequency
range, and with the low-frequency noise in the microwave
dielectric constant [7], resulting in qubit decoherence.

The noise in superconducting resonators has been ex-
tensively studied [13–17]. Recently, 1/f noise has been
investigated in Pt capped Nb superconducting resonators
[16]. It was found that the noise power spectral density
increases with decreasing temperature as T−1−η, with
η ≈ 0.3. This dependence was considered as being in-
compatible with the standard tunneling model (STM)
[16, 18]. To explain this observation, the qualitative
theoretical model proposed in Refs. [16] and [18] sug-
gests an energy-dependent TLS density of states (DOS),
g(E) ≈ Eη, in contrast with the STM which assumes
a constant DOS [11]. This assumption of the STM is
supported by earlier experimental data in ”ordinary”
amorphous solids showing logarithmic temperature de-

pendence of the dielectric constant and sound velocity
[19, 20], as expected from an energy-independent DOS.
In this paper we investigate the noise in the microwave

dielectric constant of amorphous insulators containing
TLSs described by the STM [11, 19] including weak TLS-
TLS dipolar interactions, of the form Uij ∼ U0/R

3
ij . Here

U0 is the interaction constant and Rij is the distance be-
tween TLSs. A general expression for the noise power
spectral density, Sy(f ;T, Fac), as function of temperature
(T ) and external electric field at microwave frequency
(Fac) is derived. The noise has a 1/f spectral density as
a consequence of the logarithmic broadening of the en-
ergy splitting of resonant TLSs with time due to spectral
diffusion [21]. We then analyze the general expression
obtained assuming typical amorphous dielectrics charac-
terized by the universal value χ ≈ 10−4 − 10−3 of the
parameter χ = P0U0, where P0 is the homogeneous DOS
of TLSs. In these systems one expects the broadening of
the resonance due to spectral diffusion to dominate over
the broadening due to relaxation processes. At low tem-
peratures, T ≪ ~ω0/kB ≈ 0.2− 0.3K, the zero field limit
is shown to behave as Sy(f ;T, Fac → 0) ∝ f−1T−1−η,
similarly to the temperature dependence observed in Ref.
[16]. The inverse temperature dependence is associated
with the spectral diffusion width as has been pointed out
in Ref. [18]. The additional exponent η ∼ 0.25 is as-
sociated with the logarithmic temperature dependence
of the spectral diffusion width [21] (see Fig. 4 in Sec.
IVA). However, this result cannot be used to fit the
experimental data of Ref. [16] at T ≥ 0.1K, where the
theory predicts much stronger temperature dependence.
We suggest an alternative interpretation of the experi-
ment in Sec. IVB (see Figs. 6 and 7) assuming that the
relaxation rate of the TLSs is larger than their spectral
width. This can be a result of an anomalously small
amount of TLSs, which is consistent with the high inter-
nal quality factor of the experimental setup of Ref. [16]
compared to ordinary glasses, or to an increased relax-
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ation coming from interaction with conduction electrons
in the Pt capping layer. Using this assumption, we show
that the temperature dependence at T ≥ 0.1K of the 1/f
noise reported in Ref. [16] may be explained within the
STM.
One should notice that the STM may not be applicable

to TLSs in some recently developed superconducting res-
onators as seen, for example, from often observed anoma-
lous field dependence of the loss tangent (see discussion in
Refs. [16, 18, 22] and references therein). Therefore, we
cannot exclude that deviations from the STM take place
in some materials, including deviations from a homoge-
neous DOS [22]. Yet, our main target here is to describe
the low-frequency noise in the microwave dielectric con-
stant in the simplest possible model and attempt to fit
the existing experimental data [16] without major modi-
fications of the STM, that is by assuming a homogeneous
DOS.
The paper is organized as follows. In Sec. II we define

the noise, introduce the STM, review earlier results for
TLS relaxation, decoherence and spectral diffusion, and
describe the TLS contribution to the dielectric constant
at microwave frequency. In Sec. III we derive the analyt-
ical solution for the power spectral density of the noise in
the microwave dielectric constant. The frequency, tem-
perature and field dependencies of the noise are consid-
ered in Sec. IV for ordinary glasses (Sec. IVA) and in the
limit of anomalously small density of TLSs (Sec. IVB),
possibly corresponding to the recent experiment of Bur-
nett et al. [16]. We conclude with a brief summary of
the results in Sec. V.

II. BASIC DEFINITIONS

A. Definition of noise

The noise measured in superconducting resonators [16]
is given by the correlation function of fluctuations of the
cavity resonance frequency at different times,

Sy(t) ≡
〈δω0(t)δω0(0)〉

ω2
0

, (1)

where ω0 = 〈ω0(t)〉 is the average resonance frequency
and δω0(t) = ω0(t)−ω0 is its fluctuation at time t. Equa-
tion (1) can also be expressed in terms of fluctuations of
the cavity dielectric constant at frequency ω0,

Sy(t) =
〈δǫ(t)δǫ(0)〉

ǫ2
, (2)

with ǫ = 〈ǫ(t)〉 and δǫ(t) = ǫ(t) − ǫ. The noise spectral
density of interest is determined by the Fourier trans-
form of this correlation function at very low frequencies,
f ≤ 1Hz, corresponding to long time tf ∼ 1/(2πf).
Specifically, for the frequency f ∼ 0.1Hz studied in Ref.
[16], one has tf ∼ 1 s. The only known excitations in
amorphous solids possessing such long relaxation times

are TLSs with sufficiently small tunneling amplitude ∆0

(see Fig. 1), because the relaxation time of TLSs is pro-
portional to ∆−2

0 [see Eqs. (6) and (7)]. Since TLSs pos-
sess the logarithmically uniform distribution with respect
to their tunneling amplitudes [11],

P (∆,∆0) =
P0

∆0

, (3)

it is indeed expected that TLSs with small tunneling am-
plitude will be responsible for 1/f noise at low frequencies
[10].

∆
∆

0

FIG. 1: Tunneling two-level system (TLS) characterized by
well asymmetry ∆ and tunneling amplitude ∆0.

However, these TLSs cannot contribute directly to the
fluctuations in the dielectric constant at microwave fre-
quencies (e.g., at frequency ν0 ∼ 5GHz as in Ref. [16])
because their relaxation time (∼ 1 s) is much longer
than the field oscillation period. At microwave fre-
quencies the most significant contribution to the dielec-
tric constant is associated with resonant TLSs having
∆ ∼ ∆0 ∼ hν0 = ~ω0 [19]. Therefore, we assume that
the contribution of slowly relaxing TLSs to the dielec-
tric constant noise is indirect; they affect resonant TLSs
contributing to the dielectric constant due to their inter-
action capable of bringing them in and out of resonance
with the external field [23, 24].
In Sec. II B we describe the resonant contribution of

TLSs to the dielectric constant and then expound on the
various parameters affecting this contribution, namely
TLS time-dependent energy splitting due to spectral dif-
fusion, relaxation and decoherence rates (Secs. II C-IIE).

B. Time-dependent dielectric constant at high
frequency

We are interested in the contribution of TLSs to the
dielectric constant measured by an external electric field,
F = ezFac cos(ωt), applied along the z axis (here ez is
a unit vector along the z direction) at a frequency ω
close to the cavity resonant frequency ω0 ∼ 2π · 5GHz.
The TLSs possess dipole moments and therefore interact
with the external field. The TLS-field interaction can be
represented by the Hamiltonian [19, 24]

ĥ = −∆Sz −∆0S
x − 2pzS

zFac cos(ωt), (4)

where the operator Sz = ±1/2 describes the TLS posi-
tion either in the right or in the left potential well (see
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Fig. 1), and pz is the z-axis projection of the TLS dipole
moment. The energy splitting of an unperturbed TLS is
E =

√

∆2
0 +∆2. Due to this interaction TLSs respond

to the external AC field and contribute to the dielectric
constant.
Consider the dielectric constant at high frequency

ω ∼ 2π · 5GHz corresponding to the cavity resonant mi-
crowave frequency. In this regime the TLS relaxation
time T1 ∼ 1µs (see Eq. (6) and Refs. [25, 26]) is much
larger than the field oscillation period, i.e. ωT1 ≫ 1, and
the TLS contribution to the dielectric constant is of res-
onant nature [19]. This contribution can be expressed in
the form [18, 19, 27, 28]

ǫTLS(t)

ǫ
=

4π

V ǫ

∑

i

tanh

(

Ei

2kBT

)

×
(Ei(t)− ~ω)

∆2
0i

E2
i

p2iz

(Ei(t)− ~ω)2 + 1
T 2
2i

[

1 +
(

∆0i

Ei

)2
p2
izF

2
acT1iT2i

~2

] , (5)

where V represents the sample volume and the summa-
tion is taken over all TLSs i having dipole moments pi,
relaxation and decoherence times T1i and T2i, respec-
tively, and time-dependent energies Ei(t) [Eq. (8)]. The
time dependence of the energies is induced by the spectral
diffusion caused by dipolar or elastic TLS-TLS interac-
tions [18, 21]. The TLS relaxation and decoherence rates
are defined in Secs. II C and II E below. The time de-
pendence of the TLS energy splitting is discussed in Sec.
II D.
In general, another indirect relaxational contribution

of slow TLSs to the noise can exist due to their non-
resonant interactions with other TLSs or polarized vi-
brations. One can expect that this contributions shows a
linear temperature dependence (see Ref. [10]). It can be
responsible for the increase of 1/f noise power spectral
density with temperature at T ∼ 0.5K (see Figs. 6, 7,
Ref. [16] and discussion in Sec. IVB).

C. Relaxation

In dielectric glasses the relaxation of TLSs is caused by
phonon emission or absorption, with the relaxation rate
[19, 21, 26]

1

T1i,ph

= A

(

∆0i

Ei

)2 (
Ei

kB

)3

coth

(

Ei

2kBT

)

, (6)

where A = γ2
(

v−5
l + 2v−5

t

)

/2π~4ρ, with γ being the
coupling of TLSs to the strain field, ρ the mass den-
sity, and vl, vt the longitudinal and transverse sound
velocities, respectively. Note that, in general, the cou-
pling constant γ may vary among different TLSs (and
also phonon polarizations). Below we assume a single
value of γ ∼ 1eV for which A ∼ 108 s−1K−3 [26].

In metallic glasses TLSs can also relax via their inter-
action with conduction electrons. In this case the TLS
relaxation rate is [19]

1

T1i,e

= Ae

(

∆0i

Ei

)2
Ei

kB
coth

(

Ei

2kBT

)

, (7)

where Ae = π [n(EF)K]
2
/~, with n(EF) being the elec-

tronic density of states at the Fermi energy, EF, and K is
the TLS-electron coupling constant. In metallic glasses
this relaxation mechanism is usually much faster than
the phonon-induced relaxation, Eq. (6). As shown in Sec.
IVB, this relaxation mechanism may also be relevant in
the experimental setup of Ref. [16], in which TLSs can
interact with conduction electrons belonging to the Pt
capping layer.

D. Spectral Diffusion

The spectral diffusion is the fluctuation of the TLS
energy splitting Ei with time due to its interaction with
neighboring TLSs. This interaction can bring the TLS in
and out of resonance with the external field. The spec-
tral diffusion theory has been developed by Black and
Halperin [21] and below we briefly summarize their re-
sults which will be used later to study 1/f noise.
The time dependence of a TLS energy splitting due

to its interaction with neighboring TLSs, enumerated by
the index j, reads [21]

δEi(t) =
∆i

Ei

∑

j

∆j

Ej

UijS
z
j (t). (8)

Here the interaction Uij represents elastic or electric
dipole-dipole interaction and its average absolute value
can be written as 〈|Uij |〉 = U0/R

3
ij , where U0 is the

TLS-TLS interaction constant. The neighboring TLSs
j responsible for the spectral diffusion are thermal TLSs

(sometimes called fluctuators), i.e. TLSs for which E .
kBT [21]. Such TLSs undergo random transitions due to
relaxation process [Eqs. (6) and (7)], causing fluctuations
of the energy Ei of the considered TLS.
Assume that at time t = 0 the TLS energy was equal

to a certain value E(0). Then according to Black and
Halperin [21] [see Eq. (16) there], in the case of inter-
action which falls off with distance as 1/R3, the en-
ergy change δE(t) = E(t)−E(0) is characterized by the
Lorentzian distribution function

D(δE, t) =
1

π

~W (t)

~2W 2(t) + (δE)2
, (9)

with a characteristic width W (t) = W0(t)|∆|/E, where
W0(t) is given in frequency units by

W0(t) =
2π2χkBT

3~

∫ ∞

0

dµ

cosh2 µ

∫ 1

0

1− e
− x2t

T
1
(µ)

x
dx. (10)
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Here we defined the dimensionless variables µ = E/2kBT
and x = ∆0/E, and the maximum relaxation rate
T−1
1 (µ) is defined in accordance with Eq. (6) as

T−1
1 (µ) = 8AT 3µ3 cothµ. The dimensionless parameter

χ = P0U0 ∼ 5 · 10−4 represents the product of the TLSs
DOS, P0 in Eq. (3), and their 1/R3 interaction strength,
U0 [26, 29]. The product χkBT in Eq. (10) represents the
typical interaction of the given TLS with thermal TLSs.
Low-frequency 1/f noise is determined by long times

t ≥ 1 s ≫ (AT 3)−1 [16], where (AT 3)−1 estimates the
minimum relaxation time of thermal TLSs. In this limit
the width of the distribution W0(t) grows logarithmically
with time and can be approximated as

W0(t) ≈
π2

3~
χkBT ln

(

3.3 · AT 3t
)

. (11)

This logarithmic time dependence is responsible for the
appearance of 1/f noise. In addition, the logarithmic
temperature dependence in Eq. (11) determines the tem-
perature dependence of the noise power spectral density
for typical glasses at small fields (see Sec. IVA). In par-
ticular, at low temperatures, T ≪ ~ω/kB, it gives rise to
the power law dependence Sy(f) ∝ T−1−η, reminiscent
of the 1/f noise temperature dependence observed in Ref.
[16] and explained in terms of an energy-dependent DOS.
We note that in restricted geometries deviations from the
functional form of the time dependence in Eq. (11) may
appear, e.g. as a result of the discreteness of the phonon
spectrum [30]. Such fluctuations, however, would have
only a minor quantitative effect on our results.

E. Phase decoherence

The TLS decoherence rate T−1
2 determines the instan-

taneous resonance width in Eq. (5). It is affected by both
TLS relaxation, Eqs. (6) and (7), and spectral diffusion,
Eq. (8) [19, 24, 26]. Thus, the decoherence rate is com-
posed of the contributions of relaxation and pure phase
decoherence,

T−1
2i = (2T1i)

−1
+ T−1

ϕ,i . (12)

The pure phase decoherence rate T−1
ϕ,i is determined by

TLS spectral diffusion induced by its interaction with
neighboring thermal TLSs. This rate can be written as
[21, 26]

1

Tϕ,i

=

√

40
|∆i|
Ei

χkBT ·AT 3

~
. (13)

Although the use of Eq. (13) in the expression for the
dielectric constant [Eq. (5)] is not well justified theoret-
ically, its approximate relevance was demonstrated ex-
perimentally [28]. However, the limited relevance of Eq.
(13) is not important for most of the consideration except
for the strong AC field limit [see Eq. (24) in Sec. IVA].
Otherwise the noise power spectral density depends on
TLS decoherence rate only logarithmically [see Eqs. (22)
and (25)]. For the experiment of interest [16] we assume
a very weak TLS-TLS interaction and the phase deco-
herence contribution to the decoherence rate is expected
to be smaller than the contribution of the relaxation, i.e.
T2,i ≈ 2T1,i.

III. DERIVATION OF THE NOISE SPECTRAL
DENSITY

The noise is given by the time-dependent correlation
function of the dielectric constant fluctuations, Eq. (2).
This expression can be simplified by invoking the reso-
nant approximation, in which one sets E ≈ ~ω in the
relaxation and decoherence rates [Eqs. (6), (7) and (13)],
and in the spectral diffusion [Eq. (8)]. The resonant ap-
proximation is applicable at typical experimental tem-
peratures T < 1K since all broadenings of the resonance,
caused by relaxation, decoherence and spectral diffusion,
are much smaller than the resonance frequency ω [31].
Setting E = ~ω, these broadenings can be rewritten us-
ing the dimensionless parameter xi = ∆0i/~ω as

1

T1i,ph

= Ax2
i

(

~ω

kB

)3

coth

(

~ω

2kBT

)

,

1

T1i,e

= Aex
2
i

~ω

kB
coth

(

~ω

2kBT

)

,

T−1
2i = (2T1i)

−1
+ T−1

ϕ,i ,

1

Tϕ,i

=

√

40
√

1− x2
i

χkBT ·AT 3

~
,

Wi(t) ≈
π2

3~
χkBT ln

(

3.3 ·AT 3t
)

√

1− x2
i . (14)

Moreover, correlations between different resonant TLSs
contributing to the noise can be neglected because of the
weakness of the TLS-TLS interactions (see, for example,
Ref. [29]). Then the leading order contribution in the
resonant approximation is a sum of average squared con-
tributions of individual TLSs,
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Sy(t) =
(4π)

2

V 2ǫ2

∑

i

(

∆0i

~ω

)4

p4iz tanh
2

(

~ω

2kBT

)

×
〈

Ei(t)− ~ω

(Ei(t)− ~ω)2 + 1
T 2
2i

[

1 +
(

∆0i

Ei

)2
p2
izF

2
acT1iT2i

~2

] · Ei(0)− ~ω

(Ei(0)− ~ω)2 + 1
T 2
2i

[

1 +
(

∆0i

Ei

)2
p2
izF

2
acT1iT2i

~2

]

〉

. (15)

Averaging of each term involves several integrations, in-
cluding the integration over the uniform distribution of
the initial energy Ei(0), the integration over the energy
Ei(t) = Ei(0) + δE(t) using the Lorentzian distribu-
tion in Eq. (9) and the integrations over the dimension-
less tunneling parameter x = ∆0/~ω and dipole mo-
ment projection pz. A further averaging over the re-

laxation rate parameter A should be performed if one
considers its variation among different TLSs. The in-
tegration over energies can be performed analytically
by expanding to partial fractions and using the identity
∫∞
−∞

dx
(x+y+ia)(x−ib) = 2πθ(ab)

|a+b|−iy sign(a) . Then one ends up

with

Sy(t) = tanh2
(

~ω

2kBT

)

4π3P0

~V ǫ2

∫ 1

0

dx

x(1 − x2)

〈

p4zx
4

W0(t) +
2

T2(x)
√
1−x2

√

1 +
(xpzFac)

2T1(x)T2(x)
~2

〉

. (16)

The remaining average in Eq. (16) should be performed
over the dipole moment projection pz and the relaxation
rate parameter A.
The noise power spectral density, Sy(f), can be eval-

uated as a Fourier transform of Eq. (16) in the low-
frequency limit fT1, f/W0(tf ) ≪ 1 with tf = 1/(2πf)

being a typical 1/f noise measurement time. It has
the pure 1/f spectrum if the function Sy(t) depends
on time as A − B ln |t|, which has a Fourier transform

B/2f at f 6= 0. The correlation function Sy(t) can
be expanded near |t| = tf in the approximate form

Sy(|t|) ≈ Sy(tf ) +
dSy(tf )

d ln t
f

ln(|t|/tf) (higher order expan-
sion terms are smaller by the factor ln−1(AT 3/f) ≈ 0.1
for the low frequency of interest, f ≈ 0.1Hz). Therefore,
the noise power spectral density can be approximated as
Sy(f) ≈ −(1/2f)dSy(tf )/d ln tf , i.e.

Sy(f) =
1

2f
tanh2

(

~ω

2kBT

)

4π3P0

~V ǫ2

∫ 1

0

dx

x(1 − x2)

〈

p4zx
4 π2

3~χkBT
[

W0(tf ) +
2

T2(x)
√
1−x2

√

1 +
(xpzFac)

2T1(x)T2(x)
~2

]2

〉

. (17)

The noise power spectral density has approximately 1/f
dependence which is a consequence of the logarithmic
time dependence of the width W0(t) [Eq. (11)] of the
energy broadening distribution [Eq. (9)]. The deviation
from 1/f spectrum due to the logarithmic term in the
denominator of Eq. (17) is small, as discussed in Sec. IV

below.
For a quantitative comparison of the theory with ex-

periments it is convenient to introduce a volume indepen-
dent parameter in a similar way to the experimentally
determined Hooge’s constant for 1/f conductivity noise
in semiconductors [32]. We define this parameter as

αTLS ≡
P0V kBTfSy(f)

tan2 δ
=

9π

8〈p2〉2~2
∫ 1

0

dx

x(1− x2)

〈

p4zx
4χ(kBT )

2

[

W0(tf ) +
2

T2(x)
√
1−x2

√

1 +
(xpzFac)

2T1(x)T2(x)
~2

]2

〉

, (18)
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namely as the ratio of the noise power spectral
density multiplied by the number of thermal TLSs,
NT = P0V kBT , to the squared average loss tangent due
to TLSs,

tan δ =
〈ǫ′′〉
ǫ

=

(

4π2

3ǫ

)

P0〈p2〉 tanh
(

~ω

2kBT

)

. (19)

Here 〈p2〉 is an average of the squared magnitude of the
dipole moment.
Equations (17) and (18) contain a full description of

the contribution of TLSs to the low-frequency 1/f noise.
This is the main result of the present paper. The cur-
rently available experimental data do not permit a direct
quantitative comparison of experiments with Eq. (18).
Yet, we hope this result will be used in future when such
data will be available together with other data needed to
estimate the quantitative noise parameter αTLS, partic-
ularly the TLS DOS, dipole moment and loss tangent.
In Sec. IV we discuss the temperature and frequency de-
pendence of Eqs. (17) and (18) in different regimes of
interest.

IV. FIELD AND TEMPERATURE
DEPENDENCE OF 1/f NOISE

The noise power spectral density, Eq. (17), is sensitive
to the relations between the various parameters which
determine the broadening of the resonance. The broad-
ening due to the interaction with phonons can be esti-
mated using the TLS relaxation rate, Eq. (6), whereas
the interaction-induced broadening can be estimated us-
ing the spectral diffusion width W0(t), Eq. (11). This
width is time dependent and we can use it at time t =
tf = 1/(2πf) to characterize the noise at frequency f [see

Eq. (17)], which we set in all estimates to be f = 0.1Hz
similarly to the experiment [16]. Assuming typical pa-
rameters for amorphous solids, A ∼ 108 s−1K−3 and
χ ∼ 5× 10−4 [26, 29], for resonant TLSs (∆0 ≈ E ≈ hν0
with ν0 ≈ 5GHz) one can estimate the typical broaden-
ings as

1

T1

≈ 1.2 · 106 coth
(

0.11K

T

)

s−1,

W0(tf ) ∼ 2 · 108 T

0.1K
s−1. (20)

Comparing these two expressions one concludes that in
a ”typical” amorphous solid at temperatures exceeding
1mK the most important contribution to the resonance
broadening comes from spectral diffusion.
It should be emphasized that the regimeW0(tf )T1 ≫ 1

is applicable for ”typical” amorphous solids, for which
χ ≈ 10−3 − 10−4. Such amorphous solids are char-
acterized by a universal value of the quality factor
Q ≈ 103 − 104 [19, 29, 33]. However, this is not the case
in the experiment by Burnett et al. [16], where the sys-
tem under investigation is characterized by a very high

quality factor Q ≥ 106. If this enhancement of the qual-
ity factor is a consequence of a smaller density of TLSs,
P0, or their interaction, U0, then the resonance broaden-
ing due to spectral diffusion may be two or three orders of
magnitude smaller than the estimate in Eq. (20). More-
over, the relaxation rate of TLSs can be larger than in or-
dinary glasses because of the contribution of conduction
electrons (see Sec. IVB). Accordingly, in this case one
can assume the opposite regime, that is W0(tf )T1 ≪ 1.
Below we study the frequency, temperature and field

dependencies of the noise power spectral density in the
two regimesW0(tf )T1 ≫ 1 (Sec. IVA) andW0(tf )T1 ≪ 1

(Sec. IVB). For W0(tf )T1 ≫ 1, a regime corresponding
to ”typical” amorphous solids, the results are presented
in terms of the parameter αTLS [Eq. (18)]. These results
can be directly compared with experimental studies to
be performed in the future. In Sec. IVB we analyze
the experimental data of Ref. [16] assuming the oppo-
site regime, W0(tf )T1 ≪ 1, and show that a consistent
interpretation of the experiment can be attained within
the model of Sec. III.

A. 1/f noise in a ”typical” amorphous solid

According to Eq. (20), in typical amorphous solids at
temperatures above 1mK the broadening of the reso-
nance due to spectral diffusion exceeds other resonance
widths, at least in the limit of small external field,
pFac

√

T1T2/~ ≪ 1. In this case the integral over the
dimensionless tunneling parameter x in Eq. (18) can be
evaluated with logarithmic accuracy by neglecting the
decoherence rate term in the denominator for

√
1− x2 >

1/[W0(tf )T2(x)] and using the value of x = xc, where
√

1− x2
c = 1/[W0(tf )T2(xc)], as the upper cutoff of the

integral over x. Then we obtain

αTLS ≈ 9πχ(kBT )
2

16〈p2〉2~2

〈

p4z ln[W0(tf )T1,res]

W 2
0 (tf )

〉

,

1

T1,res

= A

(

~ω

kB

)3

coth

(

~ω

2kBT

)

. (21)

Using the definition of the spectral diffusion width W0(t)
[Eq. (11)] and performing the average over the dipole
moment orientations 〈p4z〉 = 〈p4〉/5, we obtain

αTLS ≈ 81

80π3χ

〈p4〉
〈p2〉2

〈

ln[W0(tf )T1,res]

ln2
(

3.3AT 3

2πf

)

〉

. (22)

The frequency dependence of the parameter αTLS is
identical to the frequency dependence of the product
fSy(f) [see Eq. (18)]. For a pure 1/f noise this prod-
uct should be frequency-independent. However, the noise
parameter in Eq. (22) shows a logarithmic frequency de-
pendence. To characterize this dependence we evaluated
the integral in Eq. (18) numerically, assuming a constant
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dipole moment p = 5D and TLS relaxation rate parame-
ter A = 108 s−1K−3 [7, 17, 25]. The TLS dipole moment
is chosen as 5D following the earlier estimates for alu-
minum oxide and silicon nitride glasses used in previous
noise measurements [7, 17], though it may be smaller in
other glasses [24]. This dependence is shown in Fig. 2
for χ = 5 · 10−4 as in typical glasses and χ = 10−6 to
characterize the case of small number of TLSs to be dis-
cussed in Sec. IV. The typical temperature T = 0.1K
and frequency ω = 2π · 5GHz have been assumed.

f (Hz)
10-2 10-1 100 101

α
T

LS

100

101

typical glass, χ=5· 10-4

Fit using f0.12 

χ = 10-6

Fit using f0.03

FIG. 2: (Color online) Frequency dependence of the noise
parameter αTLS for typical glasses with χ = 5 · 10−4 (red)
and for glasses with a smaller density of TLSs, with χ =
10−6 (blue). The curves with diamond markers describe the
numerical evaluation of the integral in Eq. (18) with T =
0.1K, ω = 2π · 5GHz, p = 5D and A = 108 s−1K−3. Dashed
lines are fit to αTLS ∝ fβ .

At the frequency of interest, f ≈ 0.1Hz, the fre-
quency dependence of the noise parameter αTLS is very
weak and estimated as αTLS ∝ f0.12 for typical glasses
and αTLS ∝ f0.03 in the case of a small number of
TLSs. The corresponding noise power spectral density
is Styp

y ∝ f−0.88 and Ssm
y ∝ f−0.97, respectively. Thus,

the theory predicts an experimentally recognizable 1/f
noise spectrum.
The temperature dependence of the noise parameter

αTLS at frequency f = 0.1Hz for typical glasses is shown
in Fig. 3. The temperature dependence is remarkable
even though it is logarithmic [Eq. (22)]. As Fac → 0, it
can be approximated by a power law T−η with η ≈ 0.25
at temperatures T . 0.05K. As a result, the temperature
dependence of the noise power spectral density Sy(f) is

predicted to be Sy(f) ∝ αTLS/T ∝ T−1−η at low tem-
peratures, T ≪ ~ω/kB. Interestingly, this is the same
temperature dependence observed in Ref. [16]. However,
this result is not applicable to the measurements of Ref.
[16] which are reported at temperatures T ∼ ~ω/kB (that
is, above 0.1K). As we show in Sec. IVB, the tempera-

T (K)
10-2 10-1

α
T

LS

10-2

10-1

100

 F
ac

=0

 α
TLS

∝ T-0.25

 F
ac

=10
 F

ac
=30

 F
ac

=100
 F

ac
=300

FIG. 3: (Color online) Temperature dependence of the noise
parameter αTLS in typical glasses (χ = 5 · 10−4) at frequency
f = 0.1Hz for various electric fields. Other parameters are
the same as in Fig. 2. Dashed line is a fit of the zero field
curve to αTLS ∝ T−η. The values of the field Fac are in units
of V/m.

ture dependence of the 1/f noise observed in Ref. [16]
may be explained within the STM by assuming a smaller
density of TLSs than in typical glasses, as suggested by
the much higher quality factor of the resonator.
Finally, consider the field dependence of the noise pa-

rameter αTLS in a typical glass. Based on Eq. (22) one
can specify three different regimes of Fac with distin-
guishable behaviors. The pure linear regime takes place
for Fac ≪ F1, where F1 is the non-linear absorption
threshold defined by the condition pF1

√

T1T2/~ ≈ 1 [19].
At T < 0.1K both relaxation times are of the order of
1µs and one can estimate the critical field using the typ-
ical TLS dipole moment p ∼ 5D [25] as

F1 =
~

p
√

T1T2

≈ 10V/m. (23)

For Fac ≪ F1 the field dependence is negligible.
The field dependence remains relatively weak for Fac >

F1 until the associated contribution to the resonance

broadening, (pFac/~)
√

T1/T2, becomes comparable to
the spectral diffusion width W0(tf ) [Eq. (11)]. This oc-
curs at Fac ≈ F2 where the second threshold field, F2,
can be estimated as

F2 ≈ π2χkBT

3p
ln

(

3.3 · AT
3

2πf

)

. (24)

At T = 0.1K one can estimate this field as F2 ≈
200V/m. It decreases approximately linearly with de-
creasing temperature.
At intermediate fields, F1 < Fac < F2, one can esti-

mate the TLS noise parameter within the same logarith-
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mic accuracy as in Eq. (22) by

αTLS ≈ 81

80π3χ

〈p4〉
〈p2〉2

〈

ln[~W0(tf )/(pFac)]

ln2
(

3.3AT 3

2πf

)

〉

. (25)

At large fields, F2 ≪ Fac, the spectral diffusion width
can be approximately neglected in the denominator of
Eq. (18) and one can estimate the noise parameter as

αTLS ≈ 9πχ(kBT )
2

32〈p2〉F 2
ac

. (26)

In this regime the noise parameter decreases with de-
creasing temperature. All these conclusions are consis-
tent with the temperature and field dependence of the
noise parameter [Eq. (18)] shown in Fig. 3.

T (K)
10-2 10-1

S
y (

a.
 u

.)

10-3

10-1

101

103
 F

ac
=0

 F
ac

=30
 F

ac
=100

 F
ac

=300
 F

ac
=1000

 F
ac

=3000

FIG. 4: (Color online) Temperature dependence of the noise
power spectral density Sy in typical glasses (χ = 5 · 10−4) at
frequency f = 0.1Hz for various electric fields.

The temperature dependence of the noise power spec-
tral density at frequency f = 0.1Hz is shown in
Fig. 4. At low temperatures, T ≪ ~ω/kB, one has
tanh (~ω/2kBT ) ≈ 1 in Eq. (19) and the power spectral
density behaves as Sy ∝ αTLS/T [see Eq. (18)]. In the
limit of small fields it shows the power law dependence,
Sy ∝ T−1−η, discussed in Refs. [16, 18]. The inverse
temperature dependence is of similar origin and reflects
the inverse dependence on the density of thermal TLSs.
The additional exponent η is due to the logarithmic tem-
perature dependence predicted within the STM. This ex-
ponent can vary depending on the specific system under
consideration and future experiments can be compared to
the proposed theory by evaluating Eq. (18) for the spe-
cific material under consideration. The noise decreases
and its temperature dependence becomes weaker with
increasing field Fac. At large fields, Fac > 1000V/m, the
noise power spectral density decreases with decreasing
temperature.

However, the regime of low temperatures, T ≪ ~ω/kB,
in which one expects Sy ∝ T−1−η, is not applicable to
the experimental results of Ref. [16] which are reported at
temperatures T ∼ ~ω/kB. In this regime one expects the

temperature dependence of the factor tanh2 (~ω/2kBT )
to be significant. Thus, it cannot be approximated as
unity when comparing the data of Ref. [16] with theory.
For instance, at high temperatures, T ≫ ~ω/kB, the rel-

evant limit is tanh2 (~ω/2kBT ) ∝ T−2 for which Eq. (17)
as well as Refs. [16, 18] predict a strong reduction of the
noise with increasing temperature, Sy ∝ T−3−η. For in-
termediate temperatures, T ∼ ~ω/kB as in Ref. [16], one
should not use any of these approximations for the fac-
tor tanh2 (~ω/2kBT ). To show the importance of this
factor in the analysis of the data of Ref. [16], we plot
in Fig. 5 the temperature dependence of the noise power
spectral density obtained in this experiment divided by
tanh2 (~ω/2kBT ) [cf. Eq. (17)]. After this rescaling the
temperature dependence almost disappears in contrast
with the predictions of Ref. [18] and the present work for
typical glasses (which predict that this rescaled power
spectral density should behave as T−1−η). As discussed
above, we conjecture that this discrepancy is because the
material studied in Ref. [16] cannot be treated as a typ-
ical glass. In Sec. IVB we suggest the interpretation of
this experiment by assuming a small spectral diffusion
width compared to the TLS relaxation rate which may
be a consequence of a smaller density of TLSs compared
to ordinary glasses.

T (K)
0 0.1 0.2 0.3 0.4 0.5

10
-1

7 S
y/ta

nh
2
(h
ν
/k

B
T

) 
(H

z-1
)

0

200

400

600

ν=5.55 GHz

FIG. 5: (Color online) Temperature dependence of
Sy/ tanh

2 (~ω0/2kBT ) for the noise power spectral density Sy

obtained in a Pt capped Nb resonator at resonance frequency
ν0 = 5.55GHz and at the smallest measuring field [16].
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B. 1/f noise in Pt capped Nb resonator

In this section we attempt to fit the experimental data
of Ref. [16]. This experiment was performed using su-
perconducting Nb resonators. Following Refs. [34, 35] we
assume that TLSs cannot exchange energy with Nb su-
perconducting electrons because the superconductor has
a gap in energy spectrum which is much larger than
the thermal energy. We also use the model developed
above for 1/f noise due to interacting TLSs forming a
three-dimensional system. The assumption of a three-
dimensional geometry is valid until the distance between
thermal TLSs is smaller compared to the thickness of
the oxide film at the Nb surface where TLSs are lo-
cated. At low temperature this assumption fails and
two-dimensional consideration is needed. Based on the
qualitative consistency between theory and experiment
we assume that our consideration is qualitatively valid
at T > 0.1K. At low temperatures the generalization of
our theory to two-dimensional geometry may be required,
which is beyond the scope of the present paper.

In order to fit the experimental data we assume that
the relaxation rate of TLSs, 1/T1 [Eqs. (6) and (7)], ex-
ceeds the spectral diffusion width W0(tf ) [Eq. (11)]. This
could be a result of the small amount of TLSs in the
sample, as reflected by the high quality factor Q ∼ 106

[16], leading to a smaller value of W0(tf ). In addition,

the relaxation rate in the experimental setup of Ref. [16]
may be larger compared to ordinary glasses, due to in-
teraction of TLSs with conduction electrons in the Pt
capping layer. Assuming W0(tf )T1 ≪ 1, one can ignore
the contributions of spectral diffusion and decoherence in
the denominator of Eq. (17). The noise power spectral
density then takes the form

Sy(f) ∝
kBT

2f
tanh2

(

~ω

2kBT

)
∫ 1

0

x3dx

×
〈

p4z

x4 coth2
(

~ω
2kBT

)

1
τ2
min

+ x2
(

pzFac

~

)2

〉

. (27)

Here the time τmin stands for the minimum TLS relax-
ation time in the zero temperature limit. This time is
defined by τ−1

min = A (~ω/kB)
3
for the relaxation induced

by TLS-phonon interaction [Eq. (6)], or τ−1
min = Ae~ω/kB

for the relaxation induced by the interaction of TLSs with
conduction electrons [Eq. (7)].

Similarly to the previous section and to other works
[7, 25], we assume a single value p for the magnitude of
TLS dipole moment, as well as for the relaxation param-
eter A (Ae). Other assumptions (e.g., Gaussian distribu-
tion) lead to similar results and the present uncertainty of
available experimental data [16] (see Figs. 6 and 7) does
not permit us to make any specific choice. For the direct
comparison of our theory with the experimental data of
Ref. [16], expressed in terms of the average number of
photons 〈n〉 within the cavity, we write the external field

Fac in terms of the vacuum field Fvac as [37]

Fac = Fvac

√

〈n〉, Fvac =

√

4π~ω

ǫV
. (28)

The field is treated classically (〈n〉 > 1), so that the

difference between the factors
√

〈n〉 and
√

〈n〉+ 1 is ne-
glected, which is approximately satisfied for the average
number of photons 〈n〉 ≥ 3 used in the experiment [16].
Then one can evaluate the integral in Eq. (27) and

obtain the noise power spectral density in terms of the
average number of photons 〈n〉 within the cavity as

Sy(f) ∝
kBT

f
tanh4

(

~ω

2kBT

)
∫ 1

0

x4
1dx1

× ln





1 + c2〈n〉x2
1 tanh

2
(

~ω
2kBT

)

c2〈n〉x2
1 tanh

2
(

~ω
2kBT

)



 . (29)

Here the integration is over the polar angle θ (x1 = cos θ
and pz = px1) and the dimensionless parameter c is

c =
pFvacτmin

~
. (30)
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FIG. 6: (Color online) Fit of the experimental data by Bur-
nett et al. [16] at resonance frequency ν0 = 5.55GHz (mark-
ers) to Eq. (29) (solid lines).

Using the constant c as an adjustable parameter we
attempted to fit the experimental data of Burnett et al.
[16]. Only data points at temperatures higher than 0.1K
have been considered because of the strong variation of
the noise spectral density at lower temperatures. Ac-
cording to Ref. [36], this is not due to an experimental
error; we believe that it can be caused by the reduction
of the number of thermal TLSs and the narrowing of the
resonance linewidth with decreasing temperature, giving



10

rise to strong noise fluctuations if either the number of
thermal TLSs or the number of TLSs within the resonant
linewidth approaches unity (cf. Ref. [37]).
The optimum data fits were obtained with the fitting

parameters c5.55 = 0.384 for ν0 = 5.55GHz (Fig. 6) and
c6.68 = 0.348 for ν0 = 6.68GHz (Fig. 7). The theory fits
the experimental data reasonably well at temperatures
between 0.1K and 0.4K. At higher temperatures some
excess contribution is seen especially for the high fre-
quency sample. It is possibly associated with the effect
of non-resonant TLSs [10] or the elevation of the noise
floor with decreasing microwave driving-field, generally
observed across many measurements [36].
The frequency dependence of the fitting parameter c

can be used to determine the dominant mechanism of
TLS relaxation, if one assumes the sample volumes to be
identical. For the phonon-induced relaxation [Eq. (6)] the
characteristic time τmin depends on the frequency as ν−3,
leading to c ∝ ν−2.5, whereas for the relaxation due to the
interaction of TLSs with conduction electrons [Eq. (7)]
one has τmin ∝ ν−1, corresponding to c ∝ ν−0.5. The ra-
tio of the two fitting parameters c5.55/c6.68 = 1.101 scales
almost exactly as the inverse square root of the ratio
of the cavity resonance frequencies

√

6.68/5.55 ≈ 1.097.
Thus, provided that the volume of both resonators is the
same, our analysis suggests that the TLS relaxation in
the experimental setup of Ref. [16] is mainly due to inter-
action of TLSs with conduction electrons. Such electrons
may reside in the Pt capping layer used in the experimen-
tal setup of Ref. [16].
The fit of the experimental data is made with the ac-

curacy to the unknown sample-dependent, but field in-
dependent proportionality constant which cannot be es-
timated based on the present information since the TLS
density, dipole moment, and electron-TLS coupling con-
stant are unknown. Loss tangent measurements with a
time-varying bias similar to Ref. [25] can help to extract
these parameters separately. The non-linear threshold at
the number of photons 〈n〉 ∼ c−2 ≈ 10 is quite typical
for the microwave cavities under consideration (cf. Ref.
[37]).

V. CONCLUSION

In the present paper we investigated 1/f noise in
the microwave dielectric constant produced by TLSs in
amorphous solids. The noise power spectral density has
been calculated analytically within the standard tun-
neling model involving the long-range elastic or dipolar
TLS-TLS interactions. For amorphous solids character-
ized by ”typical” parameters we predict the increase of
the noise with decreasing temperature according to the
power-law behavior Sy(T ) ∝ T−1−η at low temperatures,
T ≪ ~ω0/kB, and vanishing field Fac → 0. The addi-
tional exponent η originates in the logarithmic time and
temperature dependence of the spectral diffusion width
and its specific value may vary among different materi-
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 <n>=10 (exp)
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0
=6.68 GHz

FIG. 7: (Color online) Fit of the experimental data by Bur-
nett et al. [16] at resonance frequency ν0 = 6.68GHz (mark-
ers) to Eq. (29) (solid lines).

als. This result should be verified in experiments to be
performed in the limit T ≪ ~ω0/kB and Fac → 0.

The experimental data by Burnett et al. [16], per-
formed at T ∼ ~ω0/kB, cannot be explained in terms of
our theoretical results for typical amorphous solids. In
this regime of temperatures the factor tanh2 (~ω/2kBT )
in Eq. (17) cannot be neglected and one expects a tem-
perature dependence much stronger than T−1−η with
η ≈ 0.3. Instead, we show that these data may be ex-
plained by assuming the opposite limit of small spec-
tral diffusion width compared to the TLS relaxation rate.
The general expression for the noise power spectral den-
sity then reduces to a form which fits the experimen-
tal data above 0.1K reasonably well. This expression
contains two fitting parameters for each sample, which
are independent of the field intensity. The extracted fre-
quency dependence of the TLS relaxation rate suggests
that the TLS relaxation is caused by TLS interaction
with conduction electrons. Such electrons may be avail-
able in the experimental setup of Ref. [16] due to the Pt
capping layer used in this setup. It should be noted, how-
ever, that this conclusion assumes equal volumes [as well
as other parameters in Eqs. (28) and (30)] for the two
resonators studied in Ref. [16]. Either way, the main re-
sults of this paper for the noise in the dielectric constant
do not depend on the specific relaxation mechanism.
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