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Abstract

The melting curve of osmium up to a pressure (P ) of 500 GPa is obtained from an extensive

suite of ab initio quantum molecular dynamics (QMD) simulations using the Z method. The ab

initio P = 0 melting point of Os is 3370± 75 K; this range encompasses all of the available data

in the literature and corroborates the conclusion of Arblaster that the melting temperature of

pure Os is 3400±50 K and that the 3300 K typically quoted in the literature is the melting point

of impure Os. The T = 0 equation of state (EOS) of Os and the P -dependence of the optimized

c/a ratio for the hexagonal unit cell, both to pressures ∼ 900 GPa, are obtained in the ab initio

approach as validation of its use. Although excellent agreement with the available experimental

data (P
<
∼ 80 GPa) is found, it is the third-order Birch-Murnaghan EOS with B′

0 = 5 rather

than the more widely accepted B′

0 = 4 that describes the QMD data to higher pressures, in

agreement with the more recent experimental EOS by Godwal et al. The theoretical melting

curve of Os obtained earlier by Joshi et al. is shown to be inconsistent with our QMD results,

and the possible reason for this discrepancy is suggested. Regularities in the melting curves of

Os and five other 3rd-row transition metals (Ta, W, Re, Pt, Au) could be used to estimate the

currently unknown melting curves of Hf and Ir.

PACS numbers: 31.15.A-, 31.15.E-, 64.30.Ef, 64.70.D-
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INTRODUCTION

Osmium is a material with exceptional properties. It has the largest mass density

(ρ) of all the elemental solids, namely [1, 2] 22.66 g/cc at (P, T ) = (0, 0) (iridium is

second at 22.65 g/cc) [1], high hardness (second only to chromium among all metals), and

extremely low compressibility and thermal expansion. One experimental study indicated

that osmium has a bulk modulus, B, higher than that of diamond, the hardest and least

compressible of all materials; specifically, at (P, T ) = (0, 300 K), B ∼ 460 GPa for Os

vs. ∼ 440 GPa for diamond [3]. However, this result was discredited by a subsequent

experimental study that obtained B = 415 ± 20 GPa [4]. Its unique properties make

Os a potentially important matrix material for the synthesis of superhard materials. Its

extremely high bulk modulus and low thermal expansion suggest that Os-based superhard

materials may exhibit exceptional mechanical stability under extreme P -T conditions.

The equation of state (EOS) of solid osmium has been extensively studied [5]. Most

of the existing data go up to a pressure of 75 GPa [6], and there are isothermal com-

pression data at temperatures up to 3000 K [4], but its melting curve, Tm(ρ) or Tm(P ),

has never been measured. Even the P = 0 melting temperature of Os is uncertain.

Very recently, Arblaster [7] found the P = 0 melting temperature of pure Os to be

3400 ± 50 K, which is higher than the value of 3300 K for impure Os that is usually

quoted in the literature. A theoretical melting curve to 800 GPa has been constructed

on the basis of first-principles calculations of the Grüneisen parameter, γ(ρ), and the

use of the Lindemann formula for the melting temperature as a function of density, i.e.

d lnTm(ρ)/d ln ρ = 2[γ(ρ) − 1/3] [8]; melting on the Hugoniot is predicted to occur at

∼ 450 GPa and ∼ 9200 K. Most recently, Kulyamina et al. [9] analyzed all of the

isobaric-heating data on Os available in the literature and extracted the initial slope of

the Os melting curve: dTm(P )/dP = 40.4 K/GPa. We note that their determination is

based on the Clausius-Clapeyron relation dTm/dP = ∆Vm/∆Sm, but since neither the

volume change at melt, ∆Vm, nor the melting entropy, ∆Sm, are known from experiment,

their values can only be estimated. Other, theoretical, values for this slope are 65 K/GPa

[10] and 53.4 K/GPa [11].
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QMD SIMULATIONS OF EOS AND MELTING CURVE OF OS

Comparison of the T = 0 free energies of candidate crystal structures for Os shows that

hexagonal close-packed (hcp) is the most stable structure up to at least a compression of

two (face-centered cubic, the closest structure to hcp, is ∼ 10 mRy/atom higher in energy)

[8]. The most recent experimental study [12] reveals that Os retains its hcp structure upon

compression to ∼ 800 GPa. Hence, we assume that in the pressure range considered in

this work Os is a single-phase (hcp) material.

In the present work we determine the melting curve of osmium to ∼ 500 GPa using the

Z method, which we briefly describe in the following section. Our Z method calculations

are carried out using the QMD (quantum molecular dynamics) code VASP (Vienna Ab

initio Simulation Package), which is based on density functional theory (DFT). We use

the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE)

exchange-correlation functional. We model Os using the electron core-valence representa-

tion [48Cd 4f 14] 5p6 5d6 6s2, i.e. we assign the 14 outermost electrons of Os to the valence.

The valence electrons are represented with a plane-wave basis set with a cutoff energy

of 400 eV, while the core electrons are represented by projector augmented-wave (PAW)

pseudopotentials.

We first calculated the T = 0 isotherm of Os. This was done by optimizing the value of

c/a, i.e. determining the c/a that minimizes the energy, at a fixed volume of a hexagonal

supercell, and then performing a short QMD run and extracting the corresponding value

of P . We used a 8× 8× 5 (640-atom) supercell with a single Γ-point. With such a large

supercell, full energy convergence (to
<
∼ 1 meV/atom) is already achieved, which was

verified by performing short runs with 2× 2× 2, 3× 3× 3, and 4× 4× 4 k-point meshes

and comparing their output with that of the 640-atom run with a single Γ-point. We note

that, with 14 electrons per atom in the valence, our system has ∼ 9000 electrons; to the

best of our knowledge, QMD simulations of this magnitude were undertaken only once

before: by ourselves in the study on the phase diagram of platinum [13].

In the ab initio approach, the density of osmium at (P, T ) = (0, 0) is 22.17 g/cc,

whereas the experimental value is 22.66 g/cc [1]. Specifically, VASP predicts the lattice

constants of the hexagonal unit cell to be (upon optimizing its c/a ratio) a = 2.7319 Å and

c = 4.3134 Å (c/a = 1.5789), which corresponds to 22.17 g/cc. The experimental values
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are [2] a = 2.7315 Å c = 4.3148 Å (c/a = 1.5797), and ρ = 22.661 g/cc. Alternatively,

with VASP, the experimental (P, T ) = (0, 0) density of 22.66 g/cc corresponds to (P, T ) =

(9.4 GPa, 0). This 2.2% density mismatch, or 9.4 GPa pressure mismatch, is due to

the specifc implementation of DFT, namely PBE, in our VASP simulations. In order

to directly compare our QMD results to experiment, we will apply the 2.2% density

correction (9.4 GPa pressure correction) to all VASP results in the ρ-T (P -T ) plane.

Specifically, we will multiply VASP densities by 1.022, and subtract 9.4 GPa from VASP

pressures. For instance, in Figs. 5 and 6, the system melts at a pressure of 152.8 GPa, while

the corresponding melting point is shown in Fig. 7 as having a pressure of 143.4 GPa.

Similarly, the same system has a density of 25.41 g/cc, but the corresponding melting

point is shown in Fig. 8 as having a density of 25.97 g/cc.

Our results on the T = 0 isotherm, as well as the value of c/a as a function of P,

are shown in Figs. 1 and 2, respectively. We note that each of the papers [4–6, 14] that

discuss Os EOS data uses the third-order Birch-Murnaghan (BM) EOS

P (ρ) =
3
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where B0 and B′

0 are the values of the bulk modulus and its pressure derivative at the

reference point ρ = ρ0. Since the P = 0 values of the density of Os at T = 0 and 300 K

differ by ∼ 0.3% (22.66 vs. 22.59 g/cc [1]), and T = 300 K introduces a negligibly

small thermal pressure correction, the T = 0 and T = 300 K isotherms can be described

by the same values of B0 and B′

0. Consequently, we can compare room-temperature

isotherm data to our zero-temperature isotherm as determined from QMD. A comparison

is shown in Fig. 1. The experimental results from two groups, each of which accessed

pressures P ∼ 80 GPa, were presented as BM fits with different choices for B0 and B′

0:

B0 = 421 GPa and B′

0 = 4 from [4], and B0 = 395 GPa and B′

0 = 5 from [5]. It is seen that

although excellent agreement of the QMD points with the available experimental data (up

to ρ ∼ 26 g/cc) is found for either the B′

0 = 4 or B′

0 = 5 isotherms, it is the third-order

Birch-Murnaghan isotherm with B′

0 = 5, rather than the more widely accepted B′

0 = 4,

that best fits the QMD data at densities above the experimental range. We note that for

the isotherm data of [14], where B0 = 395± 15 GPa and B′

0 = 4.5± 0.5, both values are

consistent with [5]. Our fit to the QMD data gives B0 = 415.0 GPa and B′

0 = 4.87.

Based on their experimental results on c/a as a function of P, Occelli et al. [6] sug-
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gested the existence of an isostructural phase transition in Os at about 25 GPa associated

with an anomaly in the compressibility. This anomaly was in turn associated with a

discontinuity in the first pressure derivative of the c/a ratio which may arise from the

collapse of the “small hole-ellipsoid” [6] in the Fermi surface near the L point. However,

subsequent experimental studies did not confirm this c/a anomaly. However, the very

recent experiments by Dubrovinsky et al. [12] reveal two anomalies, around 150 and 400

GPa, each of which represents a small, ∼ 0.2%, reduction in the c/a value. As discussed

in [12], the first of these two anomalies may be the signature of a topological change in

the Fermi surface for valence electrons, while the second might be related to an electronic

transition associated with pressure-induced interactions between core electrons. No such

c/a anomalies are seen in our ab initio study. In fact, as a function of density, c/a can

be fitted with a smooth curve of the form c/a =
√

8/3 + α/ρ5/3 + β/ρ2 + γ/ρ7/3 + δ/ρ8/3

(
√

8/3 is the ideal value of this ratio) over the entire density range; see Fig. 3. As noted in

[12], in the case of Os, direct comparison between theory and experiment is not legitimate,

because the calculations are carried out at T = 0 whereas the experimental data are taken

at room temperature. Moreover, for hcp metals, direct comparison between theory and

experiment is generally nontrivial: in hcp metals the effect of the electronic transitions

on the c/a ratio should become visible at finite T due to the anisotropy of the thermal

expansion of the hcp lattice.

Z METHOD CALCULATIONS

To calculate the melting curve of osmium, we used the Z method based on VASP. The

Z method was developed to calculate melting curves using first-principles based software,

specifically VASP; it was introduced and used for the first time in our paper on the

ab initio melting curve of Mo [15]. The method has since been applied to the study

of a large number of melting curves of different materials [16–18], and comparisons with

experimental data on Pb [19], Ta [20], Fe [21], and Pt at ESRF [22] show good agreement.

If a material has more than one thermodynamically stable crystal structure, the Z method

yields the solid-liquid equilibrium boundaries of those structures. The phase having the

highest solid-liquid equilibrium temperature over some pressure range is the most stable,

thus the physical melting curve, including triple points, is the envelope of the solid-liquid
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equilibrium boundaries. We note that until recently, VASP could only be run for NV E

or NV T ensembles, but with the release of the latest version, VASP5.3, we now have the

option of running NPT, hence the so-called 2-phase simulations are now an alternative

to the Z method.

Fig. 4 shows a typical Z isochore, there comprised of the three green segments AC-

CD-DE. It can be approximately mapped out by performing a sequence of QMD runs at

progressively higher temperatures and pressures, typically 6-8 points, starting in the solid

(segment AB), progressing to the superheated (SH) solid (segment BC), and finally to the

liquid (segment DE). If the total energy in a QMD run in the superheated solid is such

that the equilibrium temperature T < TC , the final state is on segment AC, but if T > TC

the system melts and the final state is a point (Pl, Tl) on segment DE above the melting

curve (dark blue); a further increase in the initial system energy moves the final state up

segment DE. Ideally, the QMD runs in the superheated solid would differ by only small

temperature increments so that the upper vertex C would be precisely determined, and

then a run starting from C would take the system to the point D on the melting curve,

but generally this cannot be achieved in practice. The standard implementation of the Z

method involves bounding the vertex D from below by the highest calculated state (Ps, Ts)

on solid segment AB, and from above by the lowest state (Pl, Tl) on liquid segment DE.

Then the melting point can be approximated as (Pm, Tm) ≈ ( (Ps + Pl)/2, (Ts + Tl)/2 ).

The true melting point must be close to (Pm, Tm) because the actual melting curve crosses

the box formed by Pm ± (Pl − Ps)/2 and Tm ± (Tl − Ts)/2.

In contrast to previous melting curve calculations based on the Z method, here the

method was utilized as closely as possible to the original concept, but at the expense

of an extensive suite of QMD simulations. We calculated eight melting points. At a

given density we performed a sequence of very long runs, each up to 25000 time steps

or 25 ps, with initial temperatures separated by relatively small increments: 150 K for

the first three points on the Os melting curve and 250 K for the remaining five points.

We performed 10 such runs for each of the first three points, and 14 runs for each of the

remaining five points for a total of 100 runs and ∼ 2 million time steps. In the course of

these extensive computer simulations, our strategy for detecting the melting point was as

follows. The conversion of the initially ordered solid state into a disordered liquid during

a QMD run was detected in one of three ways: (i) visual observation of atomic motion in
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the computational cell (vibrations around equilibrium sites in a solid vs. diffusion between

the sites in a liquid); (ii) a drop in the value of the equilibrium T and the corresponding

jump in the value of the equilibrium P ; (iii) change in the radial distribution function

(a long sequence of well-pronounced peaks in a solid vs. a few peaks in a liquid). If the

system did not melt during the 25 ps of running time, we started the next run with an

initial T higher by 150-250 K than the previous one, etc. The first run in which the system

melts during the 25 ps of running time was assumed to correspond to the upper vertex

C; during this run the complete melting process corresponding to the C→D transition in

Fig. 4 is usually observed. We refer to such a run as the melting run. With an even higher

initial T , the system melts at an earlier time than in the melting run, and the duration of

the melting process shortens; both the time when melting begins and the duration of the

process decrease with increasing T , and for a sufficiently high initial T the system melts

immediately.

In Figs. 5 and 6 we illustrate the temperature and pressure evolution of runs with initial

temperatures of 21000, 21250, and 21500 K; these runs correspond to the Os melting point

at ∼ 145 GPa in Fig. 7. In the 21000 K run, the system remains a superheated solid. In

the 21250 K run, the system starts melting at about 9 ps, and the melting process takes

approximately 3 ps. With an additional 250 K increase in the initial T , melting begins

at ∼ 4 ps and the process takes 2-2.5 ps.

We now estimate the uncertainty in the melting temperature for the computational

procedure outlined above.

First of all, changes in P are typically much smaller than that in T. For instance,

as seen in Figs. 5 and 6, which typify T and P changes during simulated melting, the

pressure changes by less than 10% while ∆T ∼ 25%. We estimate the errors in P to range

from a few GPa at low pressures to ∼ 10 GPa at the highest pressure considered; such

errors do not exceed the size of the points in Fig. 7. As a reasonable approximation, we

can ignore errors in P .

The error in the melting temperature is due to the uncertainty in the maximum tem-

perature for which the Os remains a superheated solid, i.e. the temperature at vertex C in

Fig. 4. Assume that the melting occurs from a superheated solid state C
′

which lies on the

continuation of segment BC in Fig. 4 beyond point C; the temperature at C is TSH and

that at C
′

is TSH+∆TSH . Melting from C takes the system to point D at temperature Tm,
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while melting from C
′

leaves the system in a liquid state D
′

on segment DE at tempera-

ture Tm+∆Tm. Following [23], we now consider energy balance for the virtual transitions

B→C and B→Dliq. The energy increase for B→C is CV S

(

TSH − T (B)
m

)

, where CV S is the

solid heat capacity at constant volume and T (B)
m is the melting temperature at B. The

transition B→Dliq can be decomposed into B→Dsol with energy change CV S

(

Tm − T (B)
m

)

,

and then melting at D with an energy increase of Tm∆Sm, where ∆Sm is the entropy of

melting; thus the total energy change for B→Dliq is CV S

(

Tm − T (B)
m

)

+ Tm∆Sm. Since

points C and Dliq have the same energy, we can equate the energy changes for B→C and

B→Dliq (T
(B)
m drops out):

CV S (TSH − Tm) = Tm∆Sm. (1)

Similarly, for B→C
′

and B→D
′

we have

CV S (TSH +∆TSH − Tm) = Tm∆Sm + CV L∆Tm. (2)

Here CV L is the liquid heat capacity at constant volume. It then follows from (1) and (2)

that

∆Tm =
CV S

CV L

∆TSH . (3)

In the vicinity of the melting point the solid and liquid heat capacities are known to be

approximately equal [24], hence

∆Tm ≈ ∆TSH . (4)

We have the simple result that the error in Tm is approximately equal to the difference in

the temperatures for the first run during which melting occurs and the true melting run.

The temperature difference between two solid states on segment AC in Fig. 4 is about

half of the difference of the initial temperatures in the QMD runs. This is so because

during a QMD run the initial thermal energy, which is the total system energy, is divided

almost equally into potential and kinetic energies, and the latter is the thermal energy

of the final state. Therefore, ∆TSH cannot exceed one half of the difference of the initial

temperatures for the first run during which the system melts and the last run during

which the system remains superheated. For the present Os calculations, this implies a

maximum error of ∼ 75 K for the first three points on the ab initio melting curve and

∼ 125 K for the remaining five points.
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ZERO PRESSURE MELTING TEMPERATURE AND DENSITY

The zero pressure melting temperature of Os was recently found by Arblaster to be

3400 ± 50 K [7]. However, by making use of our new QMD melting temperatures and

experimental results on the P = 0 thermal expansion of Os, which span temperatures

from 0 to 2200 K [25] and 1300 K [26], we can provide a more reliable value for the P = 0

melting temperature of Os.

We first take the three lowest-P QMD melting points and fit them with a polynomial

in the ρ-T plane. We then extrapolate the P = 0 thermal expansion data of refs. [25,

26] using a polynomial fit. The point of intersection of both fits determines the ρ-T

coordinates of the P = 0 melting point; we find Tm(P = 0) = 3370 K and ρm(P = 0) =

20.4 g/cc. We note that different fits to the first few QMD points in the P -T plane (a

polynomial fit, or a fit of the form Tm(P ) = Tm1+a(P −P1)
b where (P1, Tm1) are the P -T

coordinates of the first point, etc.) give values of Tm(P = 0) in the range 3360-3369 K,

depending on the number of points used, consistent with the above 3370 K. We therefore

take 3370 K to be the central value of the P = 0 melting temperature of osmium. Hence,

our ab initio results confirm Arblaster’s conclusion [7] that 3400±50 K is a better estimate

for Tm(P = 0) than the value 3300 K quoted in the current literature. Upon taking into

account a possible error of 75 K (see the previous section) our ab initio P = 0 melting

point of Os is

Tm(P = 0) = 3370± 75 K. (5)

THE AB INITIO MELTING CURVE OF OS

An analytic expression for the melting curve of Os in the P -T plane can be constructed

as the best fit of the Simon form, Tm(P ) = Tm(0)(1 + P/a)b, to all eight QMD points

with Tm(0) = 3370 K. The result is (T in K, P in GPa)

Tm(P ) = 3370
(

1 +
P

36.065

)0.530

. (6)

For Eqs. (5) and (6), dTm(P )/dP = (49.5±1.1) K/GPa at P = 0, in good agreement with

the values from [9–11]. The melting curve (6) is shown in Fig. 7 along with the eight QMD

melting points. The maximum errors quoted in the previous section, viz. ∼ 75 K for the
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first three points and ∼ 125 K for the remaining five points, lie within the corresponding

symbols in the figure.

We now consider the melting curve of Os in ρ-T coordinates; Tm(ρ) is useful for a

number of engineering applications (e.g., constitutive modeling). Following [27, 28], the ρ-

T melting curve is described by the Lindemann relation, d lnTm(ρ)/d ln ρ = 2 [γ(ρ)− 1/3] ,

with a Grüneisen parameter of the form γ(ρ) = 1/2+γ1/ρ
1/3+γ2/ρ

q. The three parameters

γ1, γ2 and q are determined by imposing three conditions. One of the conditions, the

equality of the ρ → ∞ limit of the melting curve as described by the above Grüneisen

parameter and the one-component plasma (OCP) limit, reduces to the equation [27, 28]

Tm v1/3m exp

{

6γ1

ρ
1/3
m

+
2γ2
q ρqm

}

=
(

4π

3

)1/3 e2

kB

Z2

Γm

,

where Tm, ρm, and vm are the P = 0 melting point, density at melt, and unit cell volume

at melt, respectively (see previous section), and Γm = 175 is the OCP coupling parameter

at melt [27, 28]. As our second condition we equate γ at ρ(T = 0, P = 0) = 22.66 g/cc to

the experimental value of 2.0 [29]. Ideally, the third condition is the equality of γ(ρm) =

1/2 + γ1/ρ
1/3
m + γ2/ρ

q
m and its value as given in terms of the initial slope of the melting

curve in ρ-T space (which follows from the above Lindemann relation):

γ(ρm) =
1

2

ρm
Tm

dTm

dρm
+

1

3
. (7)

The melting curve of Os has never been measured, and so the value of γ(ρm) is not

available from experiment. We could extract it from our ab initio ρ-T melting curve,

which would ensure that the resulting (γ1, γ2, q) melting curve agrees with the QMD

data, but instead we obtain the set of three parameters independently of QMD as a

consistency check between QMD and the (γ1, γ2, q) theoretical scheme. In lieu of using

(7) to obtain γ(ρm), our third condition is the assumption that the value of γ1 satisfies

the γ1 = γ1(Z) systematics established in [27, 28]. Specifically, the formula for γ1 as

a function of Z predicts that for Os (Z = 76), γ1 = 3.0 − 3.12; we take γ1 = 3.06.

With γ(22.66 g/cc)=2.0, the values of γ2 and q are easily found by solving the first two

conditions. In this way we determine that the values of the three parameters are

γ1 = 3.06, γ2 = 4.1 · 1015, q = 11.8 , (8)

where the units of γ1 and γ2 are (g/cc)1/3 and (g/cc)q, respectively. The ρ-T melting

curve of Os with the above set of parameters is shown in Fig. 8. As clearly seen, this
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curve is in excellent agreement with the eight QMD points also shown in Fig. 8. However,

the ρ-T melting curve of Joshi et al. [8] (dashed line in Fig. 8), which we calculated using

their Grüneisen parameter and the Lindemann formula, disagrees with our ab initio ρ-T

melting data. Also, its P -T counterpart disagrees with our ab initio P -T melting curve in

Fig. 7. In particular, at the Hugoniot melting point at 450 GPa, our melting curve gives

Tm(450 GPa) ∼ 13400 K while Joshi et al. find Tm(450 GPa)∼ 9200 K.

Although the results of Joshi et al. and ours are both based on first principles, the

density dependences of the Grüneisen parameters differ significantly. Since there is a

density mismatch of a similar magnitude to ours (3.15% vs. 2.2%) in the ab initio approach

of Joshi et al. [8], we first adjust their Grüneisen parameter accordingly in order to make

a direct comparison with ours, which is based on experimental data. Both Grüneisen

parameters are shown in Fig. 9. It is seen that their difference does not exceed ∼ 5%.

The most probable reason for the discrepancy between the melting curve of Joshi et al.

and our QMD data is their unphysical choice for the density dependence of the Grüneisen

parameter, viz. γ(η) = a+ b η + c η2 + d η3 where η ≡ ρ0/ρ, and a 6= 1/2; it follows from

the theory of the OCP that a → 1/2 as ρ → ∞ [27, 28]. Their choice for the density

dependence of the Grüneisen parameter results in the unphysical melting curve.

MELTING CURVES OF THE 3RD-ROW TRANSITION METALS

Of all the 3rd-row transition metals, only the melting curves of Hf and Ir have never

been measured or calculated. In addition to the melting curve of Os calculated in this

work, in Fig. 10 we also plot the melting curves of Ta [16, 20], W [30], Re [31], Pt

[13, 18, 22], and Au [32–34]. As seen in Fig. 10, all six melting curves have low curvature

and comparable slopes, roughly 50 K/GPa. These regularities plus approximate P = 0

melting temperatures could be used to estimate the currently unknown melting curves of

Hf and Ir.

CONCLUDING REMARKS

We have obtained the melting curve of Os using the Z method based on first-principles

QMD. We have run a total of about 2 million time steps in our QMD simulations; however,
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the high accuracy of the results and their importance to the field of phase diagram studies

justifies the computational cost. The ab initio zero-pressure melting point of Os is 3370±

75 K; this range encompasses all of the available data in the literature and corroborates

the conclusion of Arblaster. We have identified a possible reason for the disagreement

between our QMD results and the melting curve of Os obtained by Joshi et al. that is

also based on first principles. Regularities in the melting curves of Os and five other 3rd-

row transition metals could be used to estimate the currently unknown melting curves of

Hf and Ir.
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FIG. 1: The T = 0 Os EOS from VASP compared to the experimental 300 K Birch-Murnagan

(BM) EOSs with B′

0 = 4.0 and 5.0. In the experimental pressure range of 0 − 80 GPa (22.6 ≤

ρ
<
∼ 26 g/cc) both EOSs virtually coincide.
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FIG. 2: The c/a ratio as a function of P. The available experimental data are indicated with

thick line from [6].
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FIG. 3: The c/a ratio as a function of density, along with the corresponding fitting curve.
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FIG. 4: Typical isochore used in the Z methodology. Different segments of the isochore corre-

spond to solid (AB), superheated solid (BC), liquid (DE), and supercooled liquid (DF) states.

Melting corresponds to segment CD. Isochoric and isothermal solidification processes correspond

to segments FB and GH, respectively, and are used in the so-called inverse Z method [13].
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FIG. 5: Time evolution of temperature in three QMD runs with initial temperatures (TEBEGs)

separated by 250 K. The middle run is the melting run, during which T decreases from ∼ 10000 K

for the superheated state to ∼ 8000 K for the liquid at the corresponding melting point.
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FIG. 6: The same as in Fig. 5 for the time evolution of pressure. During melting P increases

from ∼ 140 GPa for the superheated state to ∼ 153 GPa for the liquid at the corresponding

melting point.
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FIG. 7: The QMD-based melting curve of Os in P -T coordinates: VASP results (bullets) and

the corresponding Simon equation, Eq. (5).
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FIG. 8: The QMD-based melting curve of Os in density-temperature coordinates vs. the two

theoretical formulations described in the text.
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FIG. 9: Comparison of the density dependences of the Grüneisen parameters in the two theo-

retical formulations described in the text.
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FIG. 10: The melting systematics of the 3rd-row transition metals based on the available ex-

perimental and/or theoretical data.
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