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Abstract 

Utilizing the notion of metamaterials, in recent years the concept of a circuit and 

lumped circuit elements have been extended to the optical domains, providing the 

paradigm of optical metatronics, i.e. metamaterial-inspired optical nanocircuitry as a 

powerful tool for design and study of more complex systems at the nanoscale. In this 

Letter we present a design for a new metatronic element, namely, a metatronic 

transistor that functions as an amplifier. As shown by our analytical and numerical 

study here, this metatronic transistor provides a gain as well as isolation between 

the input and output ports of such 2-port device. The cascadability and fan-out 

aspects of this element are also explored.  
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The recent advances in metamaterial technology have provided us with 

unprecedented control over designing materials to achieve a wide range of properties [1-

3]. The concept of lumped elements is very well established in the realms of electronics 

and microwave circuits. Extending these concepts to optical frequencies was at first 

challenging for a multitude of reasons. Firstly, to be considered a lumped element the size 

of the element should be significantly smaller than the operating wavelength and 

although this is easily achievable at low frequency and microwave frequencies it is far 

more challenging at optical frequencies, but this has been achieved using the technology 

of nanofabrication. Secondly, the material property for conductors (such as metals) is 

significantly different at optical frequencies compared to lower frequencies. This makes it 

challenging to easily switch between wave mode and circuit mode, which is fairly trivial 

at microwave frequencies due to the availability of efficient conductors, but in 

metatronics [4-15], which is a confluence of the plethora of well-established techniques 

in electronics transplanted into the much shorter wavelengths such as optical regimes [4-

7], this issue has been dealt with using the displacement currents [6-7, 11-12]. Thirdly, 

some of the well-developed active lumped elements in the radio frequency (rf) and 

microwave like semiconductor transistors and diodes may not, in principle, be extended 

exactly to optical frequencies due to the frequency limitation imposed on account of the 

finite effective mass of the charged carriers. Hence, the evident next stage in the 

evolution of the field of metatronics is to introduce active elements like transistors, 

diodes, amplifiers and oscillators.  

At microwave frequencies the systems consists of two broad categories of 

components apart from sources, the first one is the conduits that carry the energy in the 



 3

form of modes or waves. For the sake of abstraction, these conduits can be generally 

considered to be two-port (or multiple-port) structures such as waveguides or 

transmission lines. The second class of components represents the lumped elements, 

which could be single-port elements like loads and antennas or multiple-port elements 

like filters, amplifiers, etc. [16]. The conduits are described using their characteristic 

impedance and propagation constant, which correspond to the intrinsic wave impedance 

and refractive index in optical systems. The lumped elements on the other hand are 

described completely using their scattering parameters (which are also related to their 

impedances). This abstraction allows us to parameterize, i.e., “hide” the technical details 

behind the relevant parameters, which results in significant simplifications in the design 

process. With the above background, how can we conceive the concept of metatronic 

transistor? At this stage it would be instructive to look at what is implied by a transistor. 

An electronic transistor is a remarkably versatile device that ends up in a wide array of 

distinct applications including amplifiers, switches, oscillators, logic devices, etc. [17]. 

The various different applications are achieved by changing the transistor’s mode of 

operation through different bias settings and by proper design of the supporting circuitry. 

For example, the amplifier action is achieved by operating the transistor in its active 

mode while the switching action can be accomplished by swinging the transistor between 

its cutoff and saturation states [17], while an oscillator action is achieved by biasing it to 

be in an unstable region [16]. The logic device behavior is typically achieved by 

combining two complementary field effect transistors to give rise to a CMOS device, 

which could be operated between the cutoff and the linear mode [17]. It should be 

apparent at this stage that it is very challenging to design a single metatronic device at the 
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optical frequencies that could achieve this whole range of tasks that is accomplished by 

the electronic transistor. In the literature the most common version of optical transistor 

tends to be a device that functions as a switch [18]. Although an optical switch does 

represent a critical step in achieving optics-based logic circuits it does not fulfill the other 

roles played by a transistor like amplifiers and oscillators. Also an optical switch needs to 

satisfy a list of stringent requirements before it could be considered as an optical logic 

element [19], some of which are also applicable to amplifiers. In the current work, we 

present an approach to designing an optical metatronic transistor that functions as an 

amplifier with the possibility of being operated as an oscillator. Furthermore this design 

shares several of the desirable properties with microwave amplifiers like input/output 

isolation, cascadability, fan-out, etc. 

Following the inspiration from microwave electronics we look at how a 

microwave amplifier is implemented in practice. Fig. 1a symbolically shows the 

schematic of a typical microwave amplifier. The gain is provided by the transistor while 

the matching circuits ensure that the signal incident on the amplifier from either the input 

or the output side is not reflected back as this could potentially interfere with the 

operation of the rest of the system. In order to calculate the gain factor and analyze the 

stability considerations, all that is needed are the scattering parameters of the two-port 

device that represents the transistor. The scattering parameters in turn depend on the 

manner in which the transistor is connected to the system, i.e. common-gate, common-

source, etc., the biasing point of the transistor and the supporting circuitry. In order to be 

a useful building block the amplifier needs to possess certain qualities [19] that includes 

cascadability, fan-out, input/output isolation and absence of critical biasing. Firstly, we 
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will focus on input/output isolation. What it essentially implies is that we do not want the 

signal that is incident on the output port to be transmitted to the input port. This is 

naturally satisfied in case of a microwave amplifier since in this case the input is usually 

connected to the gate 

of the transistor whereas the output is connected between the source and drain, which 

provides good isolation between the input and output. In order to implement such a 

behavior in metatronics we have to necessarily rely on non-reciprocal behavior since the 

S-matrix for such a two-port device is asymmetric. For this reason we use the one-way 

gyrotropic waveguide [15] as the component that provides the input/output isolation as 

shown in Fig. 1b. Furthermore, a microwave amplifier circuit utilizes matching circuits in 

order to eliminate reflection on both the input and output port. In our metatronic circuit 

here, this feature could be implemented by using a properly designed anti-reflection layer 

as shown with purple in Fig. 1b. Finally, in order to realize the desired amplification we 

Figure 1. Comparison of microwave and metatronic amplifier. (a) Schematic of a microwave 

amplifier system. (b) Schematic of a metatronic amplifier system. 
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can infuse the dielectric region of the one-way gyrotropic waveguide with gain material 

[20].  

The permittivity of the gyrotropic media (shown as green and blue in Fig. 1b) is 

given by the following permittivity tensor. 
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Here ωp is the angular plasma frequency, ωg = eB/m is the cyclotron frequency where e is 

the electron charge, B is the DC biasing magnetic field and m is the effective mass of an 

electron, and γ is the collision frequency. We have used the e−iωt time convention for the 

complex numbers. The interface between the gyrotropic layer and the dielectric slab 

(shown as red) supports non-reciprocal surface plasmon polariton (SPP) modes for non-

zero values of ωg [15, 21] (See Appendix A), which acts as a one-way waveguide for a 

certain frequency range that depends on ωg. We exploit this feature to achieve the 

input/output isolation by using a gyrotropic waveguide to construct the transistor as 

shown in Fig. 1b. The transistor consists of two gyrotropic waveguides which are mirror 

images of each other (green and blue in Fig. 1b)). Because of the mirror symmetry the ωg 

for the two waveguides are opposite in sign in order to ensure the both waveguides 

support modes propagating in the same direction. In principle it is sufficient to have only 
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one gyrotropic waveguide (See Appendix A) unless we want an unbounded structure that 

is periodic in the y-direction, unlike the structure that is depicted in Fig. 1b, i.e. bounded 

in the y-direction by perfect electric conductor (PEC). Another set of dielectric layers 

(shown in yellow in Fig. 1b) bounding the gyrotropic waveguide along the x-direction is 

used to suppress the excitation of unwanted SPPs on the front and back face (yz planes) 

of the gyrotropic media, which could set up a standing wave resulting in increased losses. 

Furthermore, we also use a pair of anti-reflection (AR) layers in order to eliminate the 

reflection of incident energy on both sides. These AR layers are designed using the 

standard quarter-wave transformer method [16] and they are placed at a specific distance 

from the transistor in order to allow the use of a lossless dielectric as the material for the 

AR layer. This distance can be obtained by using standard impedance transformation 

methods [16]. 

 Before we look at the effect of the magnetic bias on the transistor we first 

consider the propagation of the modes in an unbiased gyrotropic waveguide in the 

presence of gain. Under the assumption that SPPs are tightly bound [22] and the 

imaginary part of the permittivity for both the dielectric and plasmonic media is small 

with respect to the real part we can derive following relation for the real and imaginary 

parts of the propagation constant [20, 23] (See Appendix A). 
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This implies that in order to completely compensate the losses in the plasmonic layer we 

need to have 
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The requirement for the gain coefficient is more relaxed for higher values of tε ′ . This 

makes physical sense since if the permittivity of the plasmonic region is more negative 

the fields are expelled into the dielectric region and consequently the SPP mode 

experiences lower loss due to the plasmonic region. The incident signal could also lose 

power due to reflection. But with a properly designed AR layer we could ensure that none 

of the signal is reflected back and the only loss mechanism is through the absorption in 

the plasmonic region. At the interface between the input waveguide and the gyrotropic 

waveguide the interactions between the two waveguides result in the excitation of several 

higher-order evanescent modes in addition to the propagating modes. These modes also 

experience the losses in the plasmonic region and these losses are not accounted by β ′′ . 

But these additional losses could be numerically evaluated and added to the model as a 

coupling loss (See Appendix A). 

 Having analyzed the role of the gain medium on the propagation characteristics of 

the SPP we will now look at the effect of the magnetic bias. It can be shown that for 

small biases the SPP cut-off frequency for the forward and backward SPPs are separated 

by gω  [24]. 
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This implies that on application of an appropriate magnetic bias we could operate at a 

frequency that is gω  lower than the cutoff frequency for the forward mode while still 

working in the one-way regime for the gyrotropic waveguide. This has an important 
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effect on the necessary gain coefficient since a lower frequency of operation implies a 

more negative plasma permittivity and a consequently relaxed requirement on the gain 

coefficient in order to compensate the losses due to the plasmonic medium. For small 

losses and small bias we can assume that under a bias of gω  we could operate at a 

frequency that is gω  below cutoff while still working in the one-way regime. Under this 

condition we can show that for a given bias the required dε ′′  in order to compensate the 

losses is as follows (See Appendix B). 
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This is a key relation showing that increasing the magnetic bias could relax the 

requirement on the gain coefficient. Consequently, if the gain coefficient is limited due to 

practical consideration we could compensate for it by applying a stronger magnetic bias. 

But once we achieve a net gain we also have the possibility of tuning it using dε ′′  and gω  

as the control knobs. The effect of changing dε ′′  and gω  on β ′  and β ′′  is discussed in 

detail in the Appendix B.  

We start by presenting the results for a standalone amplifier system as depicted in 

Fig. 1b, which will be followed by results for cascaded amplifiers and a fan-out system. 

In order to keep the results as general as possible we will be working in normalized units 

where the frequency units are normalized with respect to pω  and the length units are 

normalized with respect to p pcλ ω= . The relative permittivity of the dielectric region in 

the gyrotropic waveguide is set to 2.25d diε ε ′′= − . The height of the dielectric and each 

gyrotropic region is set to hd = 0.28λp and hg = 0.42λp yielding a total height of 1.4λp. The 
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refractive index of the two SPP-suppressing layers at the front and back of the transistor 

(shown in yellow in Fig. 1b) is set to 2.5. This ensures that the operating frequency is 

above the cutoff for the SPPs on the front and back face. The two AR layers have a 

refractive index (nar) of 2.52 and a thickness of 0.19λp, which corresponds to λ/4nar at the 

frequency of operation. The AR layers are placed at a distance of 1.05λp from the 

transistor. The width of the transistor region is set to 4λp. The frequency of operation is 

set to 0.51ωp for all the results, but this frequency could be easily changed provided the 

AR layer is redesigned to account for the new frequency of operation. The simulations 

were performed in a commercial full-wave solver (COMSOL Multiphysics®) using the 

finite-element method (FEM) in frequency domain with a 2D geometry. Figure 2 shows 

the results when the bias, ωg is set to 0.1ωp. At this bias the transistor region shows one-

way operation for frequencies between 0.5ωp and 0.6ωp. Since the frequency of operation 

is set to 0.51ωp we are operating within the one-way regime. Figure 2a shows two of the 

four scattering parameters.  As is well known, for the reciprocal lossless 2-port network, 

the scattering matrix is symmetric and unitary.  However, here owing to the presence of 

nonreciprocity and gain in this structure, this matrix is no longer symmetric or unitary.  

Noting the input and output ports (shown in Fig. 1) as ports “1” and “2”, respectively, 

Fig. 2a reveals that the reflectance (|S11|2) is equal to zero, due to the presence of the AR 

layer, while the 
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transmittance (|S21|2) shows an exponential dependence on dε ′′ . The scattering parameters 

for energy incident on the output port (S12 and S22) are indistinguishable from zero and 

not shown in the figure. |S12|2 is zero since we are operating in the one-way regime, while 

|S22|2 is zero by virtue of the AR layer on the output side of the system. This clearly 

shows that our metatronic transistor design works as an amplifier and the input is isolated 

from the output and both input and output ports are impedance matched. As a side note, 

the zero |S22|2 provides an intriguing possibility of using the structure as a perfect 

absorber if the signal is incident on the output port.  

Figure 2. Results for metatronic amplifier when the bias ωg is set to 0.1 ωp. (a)  parameters. |S22|2 

and |S12|2 are indistinguishable from zero and are not shown in the plot. (b) Field map for the magnetic 

field when imag(εd) is set to 0.07. 
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So far we have looked at the effect of dε ′′  on the scattering parameters. But we can 

also actively vary the bias ( gω ), which was previously set to 0.1ωp. For the frequency of 

operation (0.51ωp) the transistor region shows a one-way response when the bias is set to 

values above 0.09ωp. Hence we expect the system to show drastically different response 

for biases above and below 0.09ωp. Figure 3a shows the results for |S21|2 at biases 

corresponding to the one-way regime. For these biases all other scattering parameters 

except S21 are very close to zero and consequently they are not shown in the figure. We 

see that for each bias the transmittance increases exponentially with dε ′′ , but the rate of 

increase varies with the bias. Higher bias leads to lower net gain (See Appendix C for the 

reason). Hence the bias provides an additional mechanism to control the gain of the 

amplifier. Figs. 3(b-e) show the results for the scattering parameters when the 
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bias is not sufficiently high to ensure one-way operation. Under this bias we can see 

significantly higher gain albeit at the cost of giving up the input/output isolation (as seen 

from |S12|2) and non-zero reflection. Interestingly |S11| and |S22| are exactly identical in 

spite of the structure being non-reciprocal. This does not violate any laws as the non-

reciprocity relates S12 and S21. 

Figure 3. Scattering parameters for the metatronic amplifier under various biases. (a) |S21|2 for the 

metatronic amplifier when the bias ωg is set to 0.1ωp, 0.15ωp and 0.2ωp. All these biases correspond to 

the one-way regime and for these biases |S21|2, |S22|2 and |S12|2 are indistinguishable from zero. (b)|S21|2, 

(c)|S11|2, (b)|S12|2 and (b)|S22|2 when the bias ωg is set to 0, 0.03ωp and 0.06ωp. These biases correspond 

to the two-way regime. The operation frequency for all the results was set to 0.51 ωp. 
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 The primary reason for designing an amplifier with zero reflection is that it will 

enable us to easily cascade multiple amplifier and get a predictable gain for the cascaded 

system. The net gain will simply be the product of the gain of all the constituent 

amplifiers in the cascade. To test this hypothesis we simulated a cascade of two identical 

metatronic amplifiers as shown in Fig. 4a. The resulting scattering parameters are shown 

in Fig. 4b. As expected, even for the cascaded system the reflectance (|S11|2) is zero. The 

net transmittance (|S21|2) is identical to the square of the transmittance for a single 

amplifier as shown in Fig. 2a. Similarly the input/output isolation coupled with the 

Figure. 4. Schematic and results for a cascaded metatronic amplifier. (a) Schematic. (b) Scattering 

parameters for cascaded metatronic amplifier when the bias ωg is set to 0.1 ωp. |S22|2 and |S12|2 are 

indistinguishable from zero and are not shown in the plot. (c) Field map for the magnetic field when 

imag(εd) is set to 0.05. 
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zero reflection allowed us to easily fan-out the output from one amplifier to multiple 

amplifiers. Fig. 5a shows the schematic of such a case. The simulation results are shown 

in Fig. 5b and as expected the net gain at ports 3 and 4 are equal to half of the net gain 

achieved with the cascaded system in Fig. 4b. 

 At this stage it would be instructive to discuss the possible avenues for the 

implementation of this transistor. For simplicity we have assumed a PEC wall as the 

boundary for the system. This would work as a good approximation for noble metals in 

Figure. 5. Schematic and results for a fanned out metatronic amplifier. (a) Schematic. (b) 

Scattering parameters for cascaded metatronic amplifier when the bias ωg is set to 0.1 ωp. Only 

scattering parameters with input in port 1 are shown in the figure. All other scattering parameters are 

indistinguishable from zero. (c) Field map for the magnetic field when imag(εd) is set to 0.05. 
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the mid IR wavelength and even near IR wavelengths as long as the wavelength of 

operation is not too close to the visible range. In case the wavelength of operation is 

closer to the visible wavelengths the PEC boundary could be replaced with a photonic 

crystal boundary to obtain similar results [21]. Regarding the plasmonic material, at 

visible wavelengths the noble metals would serve as a good candidate. In case the 

operating wavelength is desired to be in the near or mid IR one could use other materials 

in transparent conducting oxides such as indium tin oxide or aluminum-doped zinc oxide 

[25]. The cyclotron frequency (ωg) that we have used in the simulations is about 10% of 

the plasma frequency (ωp). This is indeed high if we consider the plasma frequency of 

noble metals. But by working in the near to mid IR or THz regime we could bring down 

the requirements for the DC magnetic bias. As an alternative one may also consider using 

magneto-optical material which shows a stronger gyrotropic response [26]. Finally, the 

gain material could be any material that could be embedded in a dielectric and pumped 

(either optically or electrically) in order to achieve population inversion. Rhodamine 6G 

embedded in polymethyl methacrylate (PMMA) has been used to extend the propagation 

length of SPP [20] and a similar approach could be used to implement the metatronic 

transistor presented here.  As possible paths for future investigation one may also explore 

the potential role of miniaturization and slow-wave structures for possible enhancement 

of gain effect [27,28] and the effect of noise and nonlinearity in such metatronic devices. 

We have extended the theory of metatronics to include a transistor that functions 

as an amplifier. This metatronic transistor provides good input/output isolation while 

enabling a tunable amplifier gain. The transistor could also be easily combined with anti-

reflection layers to provide zero reflection on both the input and output ports. The 
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addition of an amplifier to metatronics will enable the design of more complex systems 

that could achieve further advances in nanoscale optical signal processing. We also 

envision the possibility of using the metatronic amplifier to create a metatronic oscillator 

by using a broadband gain medium and biasing the amplifier in an unstable state. This is 

currently being explored. 
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APPENDICES 

A. DISPERSION EQUATION 

We begin by analyzing the dispersion equation for the waveguide shown in Fig. 6. The 

figure essentially depicts one half of the transistor region that is studied in the 

manuscript. Since the other half of the transistor region is the mirror image of the section 

shown in Fig. 6 and moreover it is oppositely biased it is adequate to evaluate the 

dispersion of just one-half of the waveguide in order to analyze the propagation 

characteristics and scattering parameters of the whole amplifier. The waveguide consists 

of a layer of gain-infused dielectric and a layer of biased gyrotropic medium. The 

thickness of the dielectric (gain) layer and the gyrotropic layer is hd and hg, respectively. 

The magnetic bias is applied along the z-direction (Voigt configuration). The magnetic 

field of the mode is polarized along the z-direction while the electric field lies in the xy 

plane. The waveguide is bounded in the y-direction by PEC plates. 
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Here ωp is the angular plasma frequency, ωg = eB/m is the cyclotron frequency where e is 

the electron charge, B is the DC magnetic field and m is the effective mass of an electron, 

and γ is the collision frequency. We have used the e−iωt time convention for the complex 

Figure. 6. Schematic of the waveguide analyzed for the dispersion characteristics. 
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numbers. We assume the propagation constant to be β, and the component of the 

wavevector in the y-direction for the gain is assumed to have the following form. 

 2 2
0d dkα β ε= −   

Among the two roots the positive root is selected for this term. We also assume the 

component of the propagation constant along the y-direction for the gyrotropic medium 

to be gα  although because of the non-diagonal permittivity gα  does not have the same 

form as dα  and its form will be determined through the application of Maxwell’s 

equations. To derive the dispersion equation we assume the following forms for the 

magnetic field in the dielectric and the gyrotropic region.  
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Using the Maxwell equations we can write the electric field in the following form. 
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Where dε  is the permittivity of the dielectric and 2
V t g tε ε ε ε= −  is termed as the Voigt 

permittivity of the gyrotropic medium. Also, the component of the wavevector in the y-

direction within the gyrotropic region is given by 2 2
0g Vkα β ε= − . Applying the 

appropriate boundary conditions yields the following dispersion equation. 
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Owing to the transcendental nature of the equation it is not possible to obtain a closed 

form expression for the propagation constant, but the equation could be readily solved 

using elementary numerical methods like the simplex method. But in order to gain 

physical intuition it is instructive to obtain a simplified albeit approximate closed-form 

expression. At wavelengths where the dielectric-gyrotropic interface supports surface 

modes (Surface plasmon polaritons, SPPs) the waves in the gyrotropic region is strongly 

evanescent due to the negative values of the permittivity. Therefore we can safely assume 

that the plasma region (i.e., the gyrotropic medium) is semi-infinite in the y direction in 

order to derive an approximate dispersion relation. Under the assumption that g ghe α− is 

close to zero we can show that the dispersion equation reduces to the following. 
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The linear term in β is responsible for the nonreciprocal behavior as it implies that the 

roots of the dispersion equation no longer come in pairs that are the negatives of each 

other. Although this dispersion equation is much simpler than the original equation it still 

does not afford closed-form solutions. For tightly bounded SPPs we can further assume 

that d dhe α−  is close to zero. Under this assumption the dispersion relation reduces to 

g g t d v dα β ε ε α ε ε− + = . Under zero bias, i.e. 0gε = , we arrive at the familiar surface 

plasmon dispersion relation for a planar interface, 
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possesses a loss ( t t tiε ε ε′ ′′= + ) and the dielectric material provides gain ( d d diε ε ε′ ′′= − ). 

Both dε ′′  and tε ′′  are assumed to be positive. Under the assumption that the imaginary part 

of the permittivity for both the dielectric and plasmonic media is small with respect to the 

real part we can derive following relation for the real and imaginary parts of the 

propagation constant. 
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This implies that in order to completely compensate the losses in the plasmonic layer we 

need to have 
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B. EFFECT OF MAGNETIC BIAS 

Having analyzed the role of the gain medium on the propagation characteristics of the 

SPP we will now look at the effect of the magnetic bias. It can be shown that for small 

biases the SPP cutoff frequency for the forward and backward SPPs are separated by gω . 

The forward and backward SPP cutoff frequency is given by the following. 
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p g
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d

ω ω
ω

ε
= ±

+
  

This implies that on application of an appropriate magnetic bias we could operate at a 

frequency that is gω  lower than the cutoff frequency for the forward mode while still 

working in the one-way regime for the gyrotropic waveguide. This has an important 
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effect on the necessary gain coefficient since a lower frequency of operation implies a 

more negative plasma permittivity and a consequently relaxed requirement on the gain 

coefficient in order to compensate the losses due to the plasmonic medium. Under zero 

bias the cutoff is given by 1p dω ε+ . For small losses and small bias we can assume 

that under a bias of gω  we could operate at a frequency that is about gω  below cutoff 

while still working in the one-way regime. The real part of the plasmonic material at this 

operating frequency is given by the following expression to the first order. 

 ( )3
21 2 1gt

d
d p

ωε ε
ε ω

⎛ ⎞′
= − + +⎜ ⎟⎜ ⎟′ ⎝ ⎠

  

Putting it in the equation for dε ′′  we get the following relation giving the required gain for 

a certain bias. 
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By using the equations for the propagation constant and substituting the plasmonic 

permittivity obtained using the effective plasma frequency we can arrive at the following 

approximate results for the propagation constant. 
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  (4) 

For a fixed dε ′′  if we increase gω  the effect of γ  in the expression for β ′′  reduces 

indicating that it would be easier to compensate for the loss of the plasmonic material. 

But once β ′′  becomes negative we are more concerned about the magnitude of β ′′and 
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this also depend on the third power of β ′ . To look at the effect of increasing dε ′′  and gω  

we look at the results for the parameters used in the main manuscript. As in the 

manuscript we normalize all the frequency units with pω , length units with pλ  and wave 

vectors with pk . The permittivity of the dielectric region in the gyrotropic waveguide is 

set to 2.25d diε ε ′′= −  and the frequency of operation is set to 0.51ωp. The height of the 

dielectric and the gyrotropic region is set to hd = 0.28λp and hg = 0.42λp yielding a total 

height of 0.7λp. The results obtained using Eq. (4) are shown in Fig. 7. The real part of 

the propagation constant is independent of dε ′′  under the assumptions used in deriving 

Eq. (4). As we can see in Fig. 6 the magnitude of β ′  decreases on increasing gω  and this 

decrease more than offsets the increase in magnitude of the first term in the expression 

for β ′′ . Consequently the magnitude of β ′′  decreases as we increase gω . This implies 

that although increasing the magnetic bias makes it easier to compensate the intrinsic 

losses in the plasmonic region further increase in gω  results in a lower net gain since it 

reduces the magnitude of both β ′  and β ′′ . 
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Figure. 7. (a) Real part of the propagation constant as a function of the magnetic bias (b) Imaginary part 

of the propagation constant as a function of dε ′′ for various values of magnetic bias. 
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C. MODEL FOR SCATTERING PARAMETERS 

Now that we have the equation for the propagation constant in the gyrotropic-dielectric 

waveguide we could use it to build a simplified model to evaluate the scattering 

parameter and effectively the amplifier gain for various setting of dε ′′  and gω . Consider 

an amplifier where the transistor region has a length of l and the propagation constant is 

β . The net amplifier gain can be expressed as follows. 

 ( )2 2
11

ClG S e e ββ ′′−′′−= =   (5) 

Where, ( )C β ′′  represents the coupling losses at the interface between the transistor 

region and the waveguide region. As mentioned in the manuscript, one could argue that 

the loss in the plasmonic region is only one of the ways the incident signal could lose 

power and part of the incident signal could also be lost due to reflection. But with a 

properly designed AR layer we could ensure that none of the signal is reflected back and 

the only loss mechanism is through the absorption in the plasmonic region. At the 

interface between the input waveguide and the gyrotropic waveguide the interactions 

between the two waveguides result in the excitation of several higher-order evanescent 

modes in addition to the propagating modes. These modes also experience the losses in 

the plasmonic region and these losses are not accounted by β ′′ . But these additional 

losses could be numerically evaluated and added to the model as a coupling loss, which is 

represented by the ( )C β ′′ . Furthermore we could make a series expansion in order to 

approximate ( )C β ′′  and retain only the linear term. 

 ( ) 1 0C C Cβ β′′ ′′= − +   
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This approximation is valid when the coupling losses depend weakly upon the both dε ′′  

and gω  and this is a valid approximation in the one-way regime. We could further make 

the substitution 1 02C l=  and rewrite Eq. (5) in the following form. 

 ( ) ( )2
11 0 0ln ln 2G S l l Cβ ′′= = − − −   (6) 

Here, 0l l−  could be interpreted as an effective length that is shorter than the physical 

length due to the coupling losses at the interface. The two parameters, l0 and C0 can be 

obtained by fitting the equation to simulation data. Figure 8 shows the simulation results 

for the amplifier gain (G) for a range of gain coefficients, dε ′′ , as a function of the 

transistor length (l).  
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The simulations were performed using a commercial full-wave FEM solver (COMSOL 

Multiphysics™). The details of the simulations are mentioned in the main manuscript. 

The simulation data shows excellent agreement with the linear regression fit. 

Interestingly all the linear fit lines converge at the same point justifying the use of Eq. (6) 

in fitting the data. The x-coordinate of the convergence point corresponds to l0 while the 

y-coordinate corresponds to C0. The fitting procedure provides the following results for 

the two fit parameters. 
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Figure. 8. Simulation results for the gain of the amplifier for various transistor lengths (l/λp) and gain 

coefficients ( dε ′′ ). 
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In order to verify the effectiveness of the model we compare simulated amplifier gain 

values to the calculated one using the model given in Eq. (6) and using the parameters in 

Eq. (7). The propagation constant for the model was calculated with full dispersion given 

in Eq. (2) using the simplex method. The result of the comparison is shown in Fig. 9 and 

the full-wave simulation has an excellent agreement with the calculations using the 

model.   
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Figure. 9. Comparison of simulated gain (a,c) of the amplifier and gain calculated using the model (b,d) 
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