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Maximally localized Wannier functions are widely used in electronic structure theory for analyses
of bonding, electric polarization, orbital magnetization, and for interpolation. The state of the
art method for their construction is based on the method of Marzari and Vanderbilt. One of the
practical difficulties of this method is guessing functions (initial projections) that approximate the
final Wannier functions. Here we present an approach based on optimized projection functions
(OPF) that can construct maximally localized Wannier functions without a guess. We describe and
demonstrate this approach on several realistic examples.

I. INTRODUCTION AND MOTIVATION

Within the independent particle approximation, the
electronic states of a crystal can be described in terms
of single-particle Bloch functions ψnk(r). These func-
tions are eigenstates of the crystal Hamiltonian, and can
be labeled by their band index n and crystal momen-
tum k. Wannier functions (WFs) provide an alternative
representation in which an entire band of electrons is de-
scribed by a single function |Rn〉 localized in or near the
unit cell labeled by the lattice vector R. In their simplest
form, WFs are obtained from the Bloch functions via the
Fourier transformation

|Rn〉 =
V

(2π)
3

∫
BZ

dk e−ik·R |ψnk〉 , (1)

where V is the volume of the real-space primitive cell.
The definition of WFs is not unique because there is a
gauge freedom in the right hand-side of Eq. (1). Namely,
at each k-point and for each n, one can change the overall
phase of the Bloch state |ψnk〉. In fact, one often consid-
ers an even more general gauge choice which allows an
arbitrary unitary transformation of a set of N bands at
each k-point,

|ψnk〉 →
∑
m

u(k)mn |ψmk〉 . (2)

We focus here on the case when these N bands are iso-
lated from the rest. The choice of gauge is now expressed
through a k-dependent N×N unitary matrix u(k).

When Wannier functions are localized in real space
they have a wide use in the electronic structure commu-
nity. An extensive review of maximally localized Wan-
nier functions (MLWFs) and their properties and appli-
cations can be found in Ref. 1. For example, they have
been used in the description of electronic polarization2

and orbital magnetization, in addition to being used for
interpolation of bandstructures and matrix elements3–5

and electron transport calculations.6

For this reason, one often uses the gauge freedom u(k)

so that the corresponding WFs are localized. As a general
consequence of the Fourier transform, the localization of

the WFs |Rn〉 in r-space will depend on the smoothness
of the gauge u(k) in k-space. If the ψnk(r) are chosen
with random overall complex phases (which often hap-
pens if ψnk(r) are acquired numerically by diagonalizing
a k-dependent Hamiltonian matrix separately for each
k-point) the WFs obtained from Eq. (1) need not be
localized. However, if matrices u(k) are chosen so that
Bloch states are smooth in k-space (smooth gauge), the
corresponding WFs will be localized in r-space.

The idea of maximally localized Wannier functions and
a procedure for obtaining them from a set of composite
bands was introduced by Marzari and Vanderbilt7 for
isolated bands and later extended to the case of entan-
gled bands.8 Maximally localized Wannier functions are

constructed by choosing a gauge u
(k)
mn for Eq. (2) that

minimizes the spread functional

Ω =
∑
n

[〈
r2
〉
n
− r2n

]
(3)

where, 〈
r2
〉
n

= 〈0n|r2|0n〉 (4)

rn = 〈0n|r|0n〉 . (5)

Here the spread functional Ω is written in terms of the
Wannier functions |0n〉. Usually there exists a global
minimum of Ω corresponding to a unique choice of u(k)

(up to translation of the WFs and their overall complex
phase), but in some cases there are multiple solutions.7

Using the general form of Eq. (1) including the u(k)

matrix in Eq. (2), the spread can be recast in terms of
the Bloch states. More specifically, Ω can be expressed
only as a function of the overlaps of the periodic parts of
the Bloch functions at neighboring k-points k and k+b,

m
(k,b)
ij = 〈uik|ujk+b〉 . (6)

See Appendix A for an explicit definition of Ω in terms
of m(k,b),

Ω = Ω
[
m(k,b)

]
. (7)

Here we only note that spread Ω can be decomposed into
three parts: the invariant part, which does not depend
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on the gauge, and the diagonal part and the off-diagonal
parts which do,

Ω
[
m(k,b)

]
= ΩI + ΩD + ΩOD. (8)

The procedure for minimizing Ω, outlined in Refs. 7
and 8, is implemented in the Wannier90 code9 and
has become the standard method for obtaining localized
WFs. A notable drawback in the standard approach that
we address in this manuscript is that one often needs to
provide a good initial guess of the MLWFs to find the
global minimum of Ω. In this work we demonstrate a
modified procedure, in which localized Wannier functions
are constructed as a linear combination of physically
based atom-centered orbitals without requiring an ini-
tial guess, as in the standard approach.7 This is achieved
by finding optimal projection functions (OPFs) so that
the resulting Wannier functions obtained via projection
(as in Sec. II A) are as localized as possible. This OPF
method could, for example, be used in constructing mate-
rial properties databases, such as the database of the Ma-
terials Project,10 by providing a simple localized Hamil-
tonian that could serve as a descriptor for the electronic
structure of a material. We present the theoretical ap-
proach and numerical methods in Sec. II and III. Several
realistic materials are investigated in Sec. IV to illustrate
our approach for constructing localized WFs.

Schemes beyond the standard implementation7–9 have
been developed by others to improve the construction
of MLWFs and their properties. The inclusion of un-
occupied anti-bonding states has been shown11 to give
more localized Wannier functions, but at the expense of
a chemical picture of the occupied states. Additionally,
constraints on the u(k) matrices can be imposed in order
to construct localized Wannier functions that posses all
the space group symmetries of the crystal.12

II. STANDARD APPROACH

Here we summarize the main result of Ref. 7 for a two-
step construction of maximally localized Wannier func-
tions. In the first step of minimizing the spread func-
tional Ω one needs to guess orbitals gj(r) with roughly
the same orbital characters and real-space location rj as
the target MLWFs. This choice is often done based on
an intuitive understanding of the band structure of the
crystal under investigation. Given a choice of gj(r) close
to target WFs, one constructs the gauge for which spread
functional Ω is near its global minimum (better choices
give Ω closer to the global minimum). In the second step,
this initial gauge choice is iteratively optimized until Ω
reaches a global minimum. In practice, the second step
usually reduces the spread Ω only by 20% or less.

A. First step

Now we describe the first step of this procedure in the
simple case of a single band of states ψk(r). Given a
localized function g(r) approximating the target MLWF
at the origin, we first project it onto the Bloch state ψk(r)
at each k

a(k) = 〈ψk|g〉 . (9)

Now we rotate the phase of Bloch state ψk(r) so that the
relative phase of rotated Bloch state and g(r) is zero for
all k-points,

|ψk〉 → a(k)
(
a(k)∗a(k)

)−1/2
|ψk〉 . (10)

It is easy to check that if the initial guess g(r) were a true
target MLWF, inserting these rotated Bloch states into
Eq. (1) would give back the target MLWF. However, since
g(r) is only an approximation, the spread Ω of the rotated
Bloch states is not exactly at the global minimum. For a
good guess g(r), however, the spread should be close to
the global minimum.

Following the procedure in the case of a single band,
we now generalize it to the case of N composite bands.
First, we choose a set of N localized orbitals gj(r) that
are approximately equal to the N target MLWFs,

|gj〉 ≈ |0j〉 . (11)

Here we choose for convenience |gj〉 to be close to the
MLWFs near the origin (R = 0), but in principle any
other R can be chosen.

Next we compute the overlap between all N Bloch
bands and N initial guesses for the WFs,

a
(k)
ij = 〈ψik|gj〉 . (12)

Unlike the case of a single band, a(k) for an isolated group
of N Bloch bands is a N×N matrix, so that Eq. (10)
generalizes to

|ψik〉 →
∑
j

u
(k)
ji |ψjk〉 =

∑
jl

ajl

[(
a†a
)−1/2]

li
|ψjk〉 .

(13)
Here, to simplify notation, we suppress the k-dependence
of a. The inverse-square-root on the right hand side is

the matrix-square-root of
(
a†a
)−1

. For further simplifi-
cation, define ux, for an arbitrary matrix x, as

ux ≡ x(x†x)−1/2. (14)

The matrix ux is unitary by construction. In fact, it is
the closest unitary approximation of x.

In practice, the unitary matrix ux is obtained via the
singular value decomposition (SVD) of x. If x = zdv
is a SVD with z and v unitary, and d diagonal, then
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ux is simply zv. Given this notation, the earlier gauge
transformation from Eq. (13) now reads

|ψik〉 →
∑
j

[
u(k)a

]
ji
|ψjk〉 . (15)

As in the case of a single band, if trial orbitals gj(r) were

chosen close enough to the target MLWF, the gauge u
(k)
a

from Eq. (15) will by definition give a spread close to the
global minimum,

Ω = Ω
[
u(k)†a m(k,b)u(k+b)

a

]
. (16)

Here we implicitly wrote Ω in terms of overlap matrices
m(k,b) and used gauge transformation of Bloch states
from Eq. (2) to get transformation of the overlap matrix
m(k,b) defined in Eq. (6).

B. Second step

The initial gauge u
(k)
a can be further improved in

the second step by rotating, at each k-point, the gauge

from u
(k)
a to u

(k)
a v(k) with an appropriate choice of k-

dependent matrices v(k). The spread functional Ω is
minimized using the method of steepest descent. The
gradient is determined by calculating the derivative of
the spread with respect to the unitary matrices v(k) and
then following the path along the direction which mini-
mizes Ω. Written more formally, the second step of the
standard procedure finds a set of unitary N×N matrices

v(k) ∈ U(N,N), one for each k, (17)

that

minimize Ω
[
v(k)†u(k)†a m(k,b)u(k+b)

a v(k+b)
]
. (18)

Quite generally, the global minimization of a function
using the steepest descent algorithm is bound to work
well when one starts near the global minimum. Otherwise
it is quite possible for the algorithm to get stuck in a
local minimum. In other words, the second step of the
procedure will arrive at the true MLWFs as long as the
initial guesses gj(r) in the first step are close enough. It is
this issue that we aim to address in this manuscript: how
to automatically construct a gauge that is guaranteed to
be close to the global minimum.

III. ALTERNATIVE APPROACH

In our approach, instead of choosing N functions gj(r)
that are close to the N target MLWFs, we start with a
larger set of M functions (M ≥N) labeled hj(r). These
functions hj will be chosen so that any MLWF near the
origin (R = 0) can approximately be written as a linear

combination of hj . In other words, the space spanned by
hj must approximately contain, as a subset, the space
spanned by the MLWFs near the origin,

Span(|hj〉) ⊇ Span(|0n〉). (19)

The requirement on |hj〉 is significantly less restrictive
than that on |gj〉 in the standard approach. In fact, the
requirement Eq. (19) should be rather easily satisfied.
Since we expect MLWFs to be linear combinations of
atomic-like valence electrons, we can simply choose hj to
be a set of atom-centered atomic orbitals for each atom in
the crystal basis and for each relevant atomic-like orbital
in the valence (some combination of s, p, d, f atomic
orbitals, depending on the valence). If nominal valence
atomic-like orbitals are not enough to satisfy Eq. (19)
(which might happen for example in material under ex-
treme pressure), one can always include atomic-orbitals
with higher radial and orbital quantum numbers.

In the case of covalently bonded materials, a specific
target MLWF might have its center on a covalent bond at
the edges of the primitive unit cell. If this is the case, then
we can expand the set hj(r) by including the periodic
images of a few atoms in the crystal basis, so that in the
end, for each unique covalent bond, both atoms forming
the bond are included in hj(r).

Since the functions hj satisfy Eq. (19), it is possible to
approximate the MLWFs as linear combinations of hj .
Formally, it is possible to find a semi-unitary rectangular
M×N matrix W such that the functions

|ḡj〉 =

M∑
i=1

Wij |hi〉 (20)

are close to the target MLWFs. (Since W is rectangular,
theN functions ḡj are linear combinations ofM functions
hj). Thus, obtaining approximate MLWFs is equivalent
to finding the matrix W . We shall call these ḡj optimized
projection functions (OPFs).

To measure the closeness of ḡj to the target MLWFs,
we need to express spread Ω in terms of W . Therefore
we first need a projection of ḡj into Bloch states. Since
ḡ depends on W , it is more convenient to first project
hj onto the Bloch states, yielding the N×M projection
matrix

A
(k)
ij = 〈ψik|hj〉 . (21)

Given A(k) we can compute the overlap matrix between
the ḡj and the Bloch states,

ā
(k)
ij = 〈ψik|ḡj〉 =

M∑
l=1

〈ψik|hl〉Wlj , (22)

or in short,

ā(k) = A(k)W. (23)

Here we adopted the convention that small (N×N) square
matrices are written with lower-case Latin letters, while
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rectangular (N×M or M×N) or large square matrices
(M×M) are denoted by upper-case Latin letters.

Now we are ready to express Ω in terms of W . Com-
bining Eq. (16) and Eq. (23) yields,

Ω = Ω
[
u
(k)†
AWm

(k,b)u
(k+b)
AW

]
. (24)

To draw comparison with Eqs. (17) and (18), in our ap-
proach the process of constructing MLWFs is equivalent
to finding

W ∈ U(M,N), a single matrix (25)

that

minimizes Ω
[
u
(k)†
AWm

(k,b)u
(k+b)
AW

]
. (26)

Once the W which minimizes Eq. (26) is found, we use

the matrices u
(k)
AW to rotate Bloch states at each k-point

into a smooth gauge. In most of the concrete cases stud-
ied, the spread of the Wannier functions corresponding
to this gauge is within 1% of the global minimum (this
is discussed further in Sec. IV) and therefore there is no
need to improve the gauge further. However, in principle
one could run the second step of the standard procedure
to bring spread to its true global minimum and thus ob-
tain maximally localized Wannier functions.

Now we will compare our approach to the standard
method in more detail, outlining both the advantages
and disadvantages of our approach. We also discuss the
approximations that are made to implement an algorithm
to construct the W matrix.

A. Comparison to the standard approach

The procedure for constructing MLWFs by generating
OPFs (Eqs. (25) and (26)) has several advantages com-
pared to the standard procedure (Eqs. (17) and (18)).
First, OPF construction is given by a single matrix W ,
instead of a set of u(k) matrices, one at each k-point.
For this reason, as will be shown in Sec. III B, one can
more directly solve Eq. (26) without using the method
of steepest descent; rather, an iterative procedure is used
to construct W as a product of large unitary transfor-
mations (Givens rotations). Therefore, this procedure is
less likely to get stuck in a local minimum. The second
advantage of OPF construction is that the W matrix it-
self has a lot of chemical information encoded in it. For
example, one can see directly from W the contribution
of the various atomic orbitals to each OPF and thus the
corresponding Wannier functions. We discuss this point
on concrete examples in Sec. IV. Third, the use of a single
matrix might make it easier to impose constraints such
as crystal symmetry.

There are however some disadvantages to the OPF con-
struction approach. First, the spread Ω in Eq. (26) de-
pends nonlinearly on W since it appears under the matrix

inverse-square-root in u
(k)
AW . In fact, Taylor expansion of

the inverse-square-root leads to a power series in all pos-
itive integer powers of W . Second, since we do not want
to rely on a steepest decent method, minimization of the
diagonal part of the spread (ΩD in Eq. (8)) becomes non-
trivial.

In the following section we introduce two simplifica-
tions to Eq. (26) which deal with these two disadvantages
of OPF and allow for an efficient numerical construction
of OPFs in all the cases studied.

B. Simplifications

The following two subsections describe two simplifica-
tions that turn minimization of Eq. (26) into a numeri-
cally efficient form.

1. Linearizing uAW

The first simplification in minimizing the spread Ω
from Eq. (26) is to expand it to the leading order in
W . Explicitly writing uAW in terms of its definition
(Eq. (14)) and ignoring k-index for the moment,

uAW = AW
(
W †A†AW

)−1/2
. (27)

For W which minimizes Eq. (26) we expect

W †A(k)†A(k)W ≈ IN . (28)

for all k since the OPFs approximately overspan the
space of MLWFs (IN is theN×N identity matrix). There-
fore, at least near the optimal value of W , we are justified
in Taylor expanding uAW around W †A†AW close to the
identity (IN ),

uAW = AW

[
IN −

1

2

(
W †A†AW − IN

)
+ . . .

]
. (29)

Therefore, to lowest order, uAW ≈ AW . Restoring uni-
tarity we can replace A with UA, thus obtaining a unitary
approximation to UAW ,

uAW ≈ UAW. (30)

Here UA has been constructed according to the Löwdin
orthonormalization procedure given by Eq. (14). We fol-
low here the notation we introduced earlier so that UA
with upper case U is a rectangular N×M matrix (while
uAW with lowercase u is a square N×N matrix). We
also note here that Eq. (30) is exact if W were a square
matrix.

Inserting Eq. (30) into Eq. (26) we find that construc-
tion of OPFs is equivalent to finding a rectangular matrix
W ∈ U(M,N) that

minimizes Ω
[
W †U

(k)†
A m(k,b)U

(k+b)
A W

]
. (31)
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Here, U†AmUA is identified as the enlarged (M×M) over-
lap matrices projected into the space of M orbitals hj .

In most cases, the W that minimizes Eq. (31) also
satisfies Eq. (28), which then justifies the Taylor expan-
sion of uAW . However, occasionally this is not the case
(for example in strongly covalent materials with a lot of
symmetry). Therefore we will introduce a Lagrange mul-
tiplier λ to Eq. (31) which imposes condition Eq. (28).
With this modification, we now seek matrix W and λ at
a saddle point of the Lagrangian,

L(W,λ) =Ω
[
W †U

(k)†
A m(k,b)U

(k+b)
A W

]
+λw

∑
k

N∑
i=1

∣∣∣[W †A(k)†A(k)W
]
ii
− 1
∣∣∣2. (32)

For convenience we rescaled the Lagrange multiplier λ
so that λ = 1 corresponds to a situation where the rel-
ative importance of the first and second term in the La-
grangian L are equal (w is defined as w =

∑
b wb and

wb are k-point weights appearing in the definition of Ω,
see Appendix A).

2. Replacing Ω with ΩI,OD

Now we show that within our approach one can replace,
in Eq. (26), the total spread Ω with ΩI,OD(= ΩI + ΩOD)
thus ignoring diagonal part of the spread ΩD.

We now examine how the diagonal and off-diagonal
spread depend on the gauge transformation written in the
Wannier space. The most general gauge transformation
of Bloch states is given by Eq. (2) and it involves an
arbitrary unitary transformation of the states at each k-
point in the Brillouin zone. In the Wannier space, this
same gauge transformation corresponds to the unitary
mixtures of WF’s among all unit cells,

|0n〉 →
∑
P

∑
m

u(P)
mn |Pm〉 . (33)

Here the matrix u
(P)
mn is the Fourier transform of the ma-

trix u
(k)
mn in Eq. (2). A gauge transformation for which

u
(P)
mn is non-zero only for P = 0 we will call an intra-cell

gauge transformation, since it involves only mixtures of
the WFs in the same unit cell.

Let us now start from a set of MLWFs in the home
cell |0n〉 and see what is the effect of the intra-cell gauge
transformation on ΩD and ΩOD. First we will express the
diagonal and off-diagonal spread in terms of the WFs7

ΩD =
∑
n

∑
R6=0

| 〈Rn|r|0n〉|2, (34)

ΩOD =
∑
m 6=n

∑
R

| 〈Rm|r|0n〉|2. (35)

Since the MLWFs are exponentially localized, we expect
that the dominant term of a gauge dependent spread

ΩD + ΩOD will be the R = 0 term. Since the R = 0
term appears only in ΩOD, it will dominate over ΩD for
an intra-cell gauge transformation.

Let us return now back to the optimization problem
Eq. (26) in question. By construction, the OPFs ḡj ap-
proximately overspan the space of MLWFs near the ori-
gin; in other words, they are related by an intra-cell gauge
transformation. Therefore, we are justified in ignoring
diagonal part of the spread ΩD in Eq. (26).

With this simplification, the problem of finding ML-
WFs is reduced to finding a rectangular semi-unitary
matrix W and a real number λ which are at a saddle
point of the Lagrangian,

L(W,λ) =ΩI,OD

[
W †U

(k)†
A m(k,b)U

(k+b)
A W

]
+λw

∑
k

N∑
i=1

∣∣∣[W †A(k)†A(k)W
]
ii
− 1
∣∣∣2. (36)

Inserting here an explicit definition of ΩI,OD (see Ap-
pendix A) and ignoring the constant term and the 1/Nk

prefactor, we obtain,

L(W,λ) =−
∑
k,b

wb

N∑
i=1

∣∣∣[W †U (k)†
A m(k,b)U

(k+b)
A W

]
ii

∣∣∣2
+λw

∑
k

N∑
i=1

∣∣∣[W †A(k)†A(k)W
]
ii
− 1
∣∣∣2. (37)

Let us now define the following two quantities that are
independent of W and λ,

M (k,b) = U
(k)†
A m(k,b)U

(k+b)
A , (38)

S(k) = A(k)†A(k) − IM . (39)

With this simplification, the Lagrangian Eq. (37) now
simply reads

L(W,λ) =
∑
α

t(α)
N∑
i=1

∣∣∣[W †X(α)W
]
ii

∣∣∣2. (40)

Here X(α) stands for a collection of M (k,b) and S(k) ma-
trices. The t(α) are the weights associated with the matri-
ces X(α), with a weight −wb for the M (k,b) matrices and
a weight λw for the S(k) matrices. Therefore, we have
reduced a problem of finding MLWFs to the problem of
codiagonalizing a set of large (M×M) square matrices
X(α) with a single (i.e. k-point independent) rectangular
(M×N) matrix W . A mathematically similar approach
for a square matrix W has been used in Ref. 13 to find
MLWFs of a localized system.

In Appendix B we present a numerically efficient algo-
rithm for minimizing Eq. (40), largely following Refs. 14
and 15. In the following section, we illustrate the OPF
procedure and empirically validate the approximations
discussed above.
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IV. ILLUSTRATION OF OUR APPROACH

We now illustrate the OPF procedure on a variety of
systems with chemical bonding ranging from ionic to
covalent. For predominantly ionic materials we choose
NaCl, Cr2O3, and LaMnO3. The last two cases have ad-
ditional complexity because they have magnetic and or-
bital order on the transition metals. For predominantly
covalently bonded materials we choose cubic silicon (c-
Si), strongly distorted silicon with 20 atoms in the prim-
itive unit cell (Si-20 from Ref. 16), cubic GaAs, and SiO2

in the ideal β-cristobalite structure.
We computed Bloch wavefunctions for all seven

compounds within the density-functional theory and
planewave pseudopotential approach as implemented in
the Quantum ESPRESSO package.17 The atomic po-
tentials were replaced with ultrasoft18 pseudopotentials
from the GBRV19 library. For the planewave cutoff, we
used 40 and 200 Ry for the wavefunctions and charge
density, respectively. All calculations are done with ex-
perimental lattice parameters. In the case of Cr2O3 we
sampled the Brillouin zone on a uniform 6×6×6 k-point
grid and for all other cases we used a 4× 4× 4 grid.

Using the Bloch wavefunctions, we computed the over-
lap matrices m(k,b) between the neighboring Bloch states
and the overlaps A(k) between the Bloch states and
atomic-like functions that approximately overspan the
space of MLWFs. For predominantly ionic materials in
our test (NaCl, Cr2O3, and LaMnO3), A(k) includes pro-
jections of Bloch states into all valence atomic-like func-
tions for all atoms in the primitive unit cell. For cova-
lently bonded materials (c-Si, Si-20, GaAs, and SiO2)
some Wannier function centers lie on the edge of the
primitive unit cell (see Sec. III), so we included in A(k)

projections onto atoms near the edge of the cell. Fail-
ing to include these additional projections in case of c-Si
yields Wannier functions at the computational unit cell
boundary with spreads two times larger than if we in-
clude the additional projections.

We also checked the opposite case by overspanning the
space of MLWFs even further by including orbitals into
A(k) that are nominally not in valence (for example, d-
orbitals in the case of cubic silicon). In this case, the
final spread for the WFs for the occupied valence band
complex is unaffected and the matrix elements of W cor-
responding to these additional orbitals is small, as ex-
pected.

Given matrices m(k,b) and A(k) and a choice of the pa-
rameter λ we now find matrix W (i.e. OPFs) that mini-
mizes Lagrangian from Eq. (40) using the algorithm de-

scribed in Appendix B. Given W , we construct the u
(k)
AW

to rotate Bloch states into a smooth gauge as described
in Sec. III. The smoothness of this gauge is quantified by
first computing the spread ΩOPF from the rotated overlap
matrices in Eq. (26) and then comparing it to the spread
ΩGM at the global minimum. (We define ΩGM to be a
spread of the Wannier functions after running both steps
of the standard procedure for obtaining MLWFs. For

TABLE I. Total spread ΩOPF computed within our approach
and at the global minimum ΩGM for all seven materials stud-
ied. We also give diagonal and off-diagonal components of
spread in each case (ΩD and ΩOD). The spreads ΩOPF are
obtained using the optimal value of λ (see Fig. 1). The units
for the spreads are Å2. In the case of Cr2O3 we wannierize
only topmost 12 bands below the Fermi level, and in the case
of LaMnO3 we wannierize top 2 spin-up bands. In all other
cases we wannierize all valence bands.

ΩOPF ΩGM

Total
Components

Total
Components

ΩD ΩOD ΩD ΩOD

c-Si 6.51 0.00 0.59 6.48 0.00 0.56

Si-20 103.91 0.05 14.85 97.59 0.04 8.54

GaAs 7.25 0.02 0.61 7.22 0.01 0.59

SiO2 9.39 0.00 1.98 9.18 0.00 1.78

Cr2O3 36.04 0.10 1.17 35.74 0.05 0.91

LaMnO3 14.89 0.15 0.17 14.68 0.00 0.11

NaCl 4.05 0.00 0.80 4.04 0.00 0.79

convenience, in the first step of finding the global mini-
mum, we do not guess the initial projections but instead
project into the OPFs obtained from our approach.)

Figure 1 shows, for all seven cases studied, the ratio
of the spread ΩOPF and ΩGM as a function of λ on a
logarithmic scale. In all cases, the spread ΩOPF is nearly
insensitive to the value of λ over several orders of mag-
nitude. For example, in the case of GaAs or LaMnO3

spread ΩOPF is nearly the same for 0.01 < λ < 100. In
the worst case scenario (c-Si), the spread is still nearly the
same for 0.1 < λ < 2. Therefore, even though in prin-
ciple one may need to vary λ to find an optimal value
of spread, in practice, λ ∼ 1 is usually a good enough
choice.

In each of the seven test cases, the spread ΩOPF is
only just 1% larger than at a global minimum (ΩGM).
In the worst case situation (Si-20), the spread is only 6%
larger than at a global minimum. As mentioned earlier in
Sec. III, this spread could be reduced further by starting
from OPFs as initial projections and running the second
step of the standard procedure.

We give numerical values of ΩOPF and ΩGM in Ta-
ble I along with a decomposition of spread into diago-
nal and off-diagonal components. From here we find an
additional validation of two simplifications discussed in
Sec. III B. First, Table I shows that linearization of uAW
is justified since the off-diagonal component of the spread
ΩOPF and ΩGM is nearly the same. Second, replacing Ω
with ΩI,OD (thus, ignoring diagonal spread) is justified
within our approach since diagonal spread of ΩOPF and
ΩGM are both very small compared to the total spread.
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FIG. 1. Ratio of ΩOPF and ΩGM as a function of Lagrange
multiplier λ on a logarithmic scale.

A. Insight gained from the matrix W

To demonstrate the kind of insight that can be gained
from analyzing the W matrix, we analyze here in more
detail case of LaMnO3 and Cr2O3. In both cases, s and
p orbitals on the neighboring oxygen atoms outside the
computational unit cell are included in A(k) in order to
complete the octahedral coordination of the Cr and Mn
atoms.

We studied LaMnO3 in its low temperature (. 135K)
A-AFM phase characterized by ferromagnetic ordering of
the Mn spins in-plane and anti-ferromagnetic order be-
tween planes.20 In addition to the magnetic order, Mn d-
states are orbitally ordered, oxygen octahedra are tilted
and Jahn-Teller distorted. In the following, we focus
only on the two top-most spin-polarized bands below
the Fermi level. Analyzing the W matrix we see that
the Wannier functions for the two top-most bands in
LaMnO3 are dominantly composed of rotated dz2 com-
ponents on Mn that are oriented perpendicular to each
other. This can be seen also by analyzing the W matrix
for these two WFs,

|1〉 ≈ 0.5 |Mn1; dz2〉+ 0.6 |Mn1; dxy〉
|2〉 ≈ 0.6 |Mn2; dz2〉 − 0.5 |Mn2; dxy〉 .

Figure 2 shows a plot of these WFs for the top bands with
isosurfaces in the left panels and contour plots in the right

panels. The contours are plotted in the plane perpendic-
ular to the c-axis, cutting through the Mn atom.

Furthermore, The W matrix shows hybridization of
the Mn d-states with the oxygen p-states, with the corre-
sponding elements of W having a magnitude of approx-
imately 0.2 (three times smaller than for Mn d-states).
The contribution of the p-like lobes (colored red) can be
seen in the right panels of Fig. 2 as the large lobes near
the center.

Now we analyze the case of Cr2O3 in more detail.
Cr2O3 is an antiferromagnetic insulator with four Cr
atoms in the primitive unit cell. Therefore we expect each
Cr3+ ion to nominally have three occupied d-orbitals of
same spin. These three occupied d-orbitals on four Cr
ions form a complex of 3 × 4 = 12 isolated bands that
make up the top-most valence bands. Again, analyzing
the W matrix we obtained within our approach we find
that each of the twelve WFs is a particular linear combi-
nation of all five d-orbitals, all having the same spin com-
ponent along the z-axis. In fact, there is a large degen-
eracy regarding the particular combination of d-orbitals
that make up the WFs. For example, even slight change
in λ from 1 to 2 gives different linear combinations of
d-orbitals while the spread remains nearly the same (see
Fig. 1). This observation is consistent with the fact that
the choice of MLWFs is not always unique. This was
first suggested in Ref. 7 for the case of LiCl. There it
was found that an arbitrary rotation of the sp3 orbitals
on chlorine atoms has no effect on the total spread Ω.

V. SUMMARY

We present an automated procedure for constructing
maximally localized Wannier functions for an isolated
group of bands. The extension of our method to the case
of entangled bands will be the subject of future work.

Instead of having to guess functions (initial projec-
tions) that approximate the MLWFs as in Ref. 7, our
approach only requires as input a set of functions that
overspan the space of MLWFs. In practice, this can
rather easily be achieved by selecting an appropriate set
of valence atomic-like functions.
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FIG. 2. Maximally localized Wannier functions of two top-
most valence bands in LaMnO3. Isosurfaces of the WFs are
shown on the left, looking down along the c-axis. The large
green dots are La, medium purple dots are Mn, and small
red dots are O. On the right, we show contour plots of the
Wannier functions in the plane perpendicular to the c-axis,
cutting through the Mn atom.

Appendix A: Spread functional

Here we express components of the spread Ω, corre-
sponding to N composite bands, as a function of the
overlap matrices m(k,b) following Ref. 7,

ΩI =
1

Nk

∑
k,b

wb

N −∑
ij

∣∣∣m(k,b)
ij

∣∣∣2
,

ΩD =
1

Nk

∑
k,b

wb

∑
i

(
−Im lnm

(k,b)
ii − b · ri

)2
,

ΩOD =
1

Nk

∑
k,b

wb

∑
i 6=j

∣∣∣m(k,b)
ij

∣∣∣2.
(A1)

The wb are the weights of the b-vectors connecting neigh-
boring k-points (see Sec. 2.1 of Ref. 9), while

ri =
1

Nk

∑
k,b

wbb Im lnm
(k,b)
ii . (A2)

We note that the diagonal and off-diagonal parts of
the spread depend only on the diagonal and off-diagonal
components of the overlap matrices, respectively. Com-
bining the invariant and off-diagonal parts of the spread
gives an expression that depends only on the diagonal

components of the overlap matrices,

ΩI,OD = ΩI + ΩOD

=
1

Nk

∑
k,b

wb

N∑
i=1

[
1−

∣∣∣m(k,b)
ii

∣∣∣2]. (A3)

Appendix B: Codiagonalization algorithm

In the main text, the construction of localized Wannier
functions is recast into the following mathematical prob-
lem. Given a set of large M×M matrices X(α), we wish
to find a single rectangular semi-unitary M×N matrix
W such that the set of small N×N matrices W †X(α)W
minimize the Lagrangian L, defined in Eq. (40),

∑
α

t(α)
N∑
i=1

∣∣∣[W †X(α)W
]
ii

∣∣∣2. (B1)

We parameterize the semi-unitary matrix W as follows.
First, we define W to be first N columns of an M×M
unitary matrix W̃ . Second, we iteratively parameterize

the enlarged matrix W̃ as a product (post-multiplication)
of Givens rotations,21

W̃ =

L∏
l=1

N∏
i=1

M∏
j=i+1

Rl[i, j, θ, φ]. (B2)

Here integer l denotes a particular iteration in the ex-
pansion.

A Givens rotation R[i, j, θ, φ] is the most general uni-
tary matrix that acts only on i-th and j-th rows and
columns. Therefore we parameterize R[i, j, θ, φ] with two
angles θ and φ as a matrix equal to the identity matrix
for all elements except for the ii, ij, ji, and jj elements,

(
Rii Rij

Rji Rjj

)
=

(
cos θ eiφ sin θ

−e−iφ sin θ cos θ

)
. (B3)

The only diagonal elements of X(α) affected by

R[i, j, θ, φ] are X
(α)
ii and X

(α)
jj . Therefore there is no need

to include in Eq. (B2) cases when both i and j are larger
than N , since that operation will have no effect on the
Lagrangian. In addition, we don’t consider cases when
j < i since that transformation is captured by j > i.
With this parameterization an arbitrary unitary matrix

W̃ can be approximated to an arbitrary precision with
large enough number of iterations, L.

Let us now see how does a single Givens rotation af-
fect the Lagrangian. For a Givens rotation R[i, j, θ, φ],
the sum of the weighted square moduli of the diagonal
elements (ii and jj) of a set of rotated matrices R†X(α)R
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are15∑
α

t(α)
∣∣∣[R†X(α)R

]
ii

∣∣∣2 = xᵀQx + pᵀx + c (B4)

∑
α

t(α)
∣∣∣∣[R†X(α)R

]
jj

∣∣∣∣2 = xᵀQx− pᵀx + c (B5)

where

xᵀ = (cos 2θ, sin 2θ cosφ, sin 2θ sinφ) (B6)

is a vector with unit norm by construction. The coeffi-
cients of the quadratic forms above (Eqs. (B4) and (B5))
depend only on the ii, ij, ji, and jj components of the
X(α) matrices

Q =
∑
α

t(α) Re
[
z(α)z(α)†

]
p =

∑
α

t(α) Re
[(
X

(α)
ii +X

(α)
jj

)∗
z(α)

]
c =

∑
α

1

4
t(α)
∣∣∣X(α)

ii +X
(α)
jj

∣∣∣2
(B7)

where

z(α) =
1

2


X

(α)
ii −X

(α)
jj

−
(
X

(α)
ij +X

(α)
ji

)
i
(
X

(α)
ij −X

(α)
ji

)
 . (B8)

We now consider two cases. First, if j ≤ N both the ii
and jj diagonal elements enter the Lagrangian L so we
need to find x that minimizes the sum of Eq. (B4) and
(B5),

∑
α

t(α)
∣∣∣[R†X(α)R

]
ii

∣∣∣2 + t(α)
∣∣∣∣[R†X(α)R

]
jj

∣∣∣∣2
= 2xᵀQx + 2c.

(B9)

This is a quadratic programming problem with the con-
straint that |x| = 1. Here, the Lagrangian is simply
minimized for x that is the normalized eigenvector corre-
sponding to the minimal eigenvalue of Q. For numerical
stability, if the first component of x (i.e. cos 2θ) happens
to be negative we choose −x instead of x.

In the second case (j>N), only the ii diagonal compo-
nents enters the Lagrangian L so we need to find x that
minimizes Eq. (B4),

xᵀQx + pᵀx + c. (B10)

The solution of this problem is discussed in Ref. 15 within
the context of matrix codiagonalization. However we find
the general quadratic programming solution from Ref. 22
more numerically stable. Following Ref. 22, we first find
the minimal eigenvalue χmin of the quadratic eigenvalue
problem (QEP)(

χ2A2 + χA1 +A0

)
x = 0, (B11)

with

A2 = I3

A1 = −2Q

A0 = Q2 − 1

4
ppᵀ.

(B12)

The QEP is linearized by introducing

x̃ =

(
χx

x

)
(B13)

yielding a generalized eigenvalue problem

Ax̃ = χBx̃, (B14)

with

A =

 A1 A0

−I3 0


B =

A2 0

0 I3

.
(B15)

This generalized eigenvalue problem we solve using stan-
dard linear algebra techniques. The solution x that min-
imizes Eq. B10 depends on whether χmin is in the spec-
trum of Q or not.

If χmin is not in the spectrum (i.e. not an eigenvalue)

of Q then solution is x = (Q− χminI)
−1

(−p/2). If χmin

is an eigenvalue of Q we first define,

u := (Q− χminI)
+

(−p/2). (B16)

Here symbol + denotes a matrix pseudoinverse. A non-
trivial solution to Eq. B10 exists only when the following
conditions are satisfied,

(Q− χminI)u = −p/2 and |u| ≤ 1. (B17)

Finally, if |u| = 1, then the solution is x = u. Other-
wise (|u| < 1) the solution is x = u + ξ. Here ξ is an
eigenvector of Q corresponding to χmin chosen so that
|ξ|2 = 1− |u|2.

Once the x is found for a given (i, j) in either of the
two approaches we determine the corresponding angles
(θ, φ) from Eq. (B6) and construct the Givens rotation
R[i, j, θ, φ]. Next we update at each iteration the matrix

W̃ according to the post-multiplication parameterization
from Eq. (B2),

W̃ → W̃R. (B18)

This iterative procedure over i, j, and l continues until
the Lagrangian converges.
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