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The half-filled Landau level is widely believed to be described by the Halperin-Lee-Read theory of the com-

posite Fermi liquid (CFL). In this paper, we develop a theory for the particle-hole conjugate of the CFL, the

Anti-CFL, which we argue to be a distinct phase of matter as compared with the CFL. The Anti-CFL provides

a possible explanation of a recent experiment [Kamburov et. al., Phys. Rev. Lett. 113, 196801 (2014)] demon-

strating that the density of composite fermions in GaAs quantum wells corresponds to the electron density when

the filling fraction ν < 1/2 and to the hole density when ν > 1/2. We introduce a local field theory for the

CFL and Anti-CFL in the presence of a boundary, which we use to study CFL - Insulator - CFL junctions, and

the interface between the Anti-CFL and CFL. We show that the CFL - Anti-CFL interface allows partially fused

boundary phases in which “composite electrons” can directly tunnel into “composite holes,” providing a non-

trivial example of transmutation between topologically distinct quasiparticles. We discuss several observable

consequences of the Anti-CFL, including a predicted resistivity jump at a first order transition between uniform

CFL and Anti-CFL phases. We also present a theory of a continuous quantum phase transition between the

CFL and Anti-CFL. We conclude that particle-hole symmetry requires a modified view of the half-filled Landau

level, in the presence of strong electron-electron interactions and weak disorder, as a critical point between the

CFL and the Anti-CFL.

I. INTRODUCTION

A powerful way of understanding the rich variety of frac-

tional quantum Hall (FQH) states realized in two dimensional

electron systems in the lowest Landau level is in terms of

the theory of composite fermions.1,2 In the simplest version

of this theory, the combination of the strong Coulomb inter-

actions and the applied magnetic field make it favorable for

electrons to bind to two units of flux quanta of an emergent

gauge field, thus transforming into composite fermions. At

filling fraction ν = 1/2, the composite fermions see on aver-

age zero magnetic field and therefore form a Fermi liquid-like

state which may be referred to as a composite Fermi liquid

(CFL).3,4 Remarkably, the main sequence of incompressible

FQH states can then be understood naturally in terms of inte-

ger quantum Hall (IQH) states of the composite Fermi liquid.

Even-denominator incompressible FQH states, such as is ob-

served at ν = 5/2,5 are believed to result from pairing of the

composite fermions.6–8

The introduction of the CFL was a remarkable milestone in

the study of the FQH effect, as the CFL explained experimen-

tally observed transport anomalies at ν = 1/2 and the scaling

of ratios of the energy gaps in nearby incompressible FQH

states. Subsequent experiments directly verified the existence

of an emergent Fermi surface of composite fermions.9–13 It

is therefore widely believed that the physics in the neighbor-

hood of ν = 1/2 in the lowest Landau level in GaAs quan-

tum wells is well-described by the CFL. In addition, the CFL

theory implies that strong interactions between the composite

fermions and the fluctuating emergent gauge field results in

a state of matter that is distinct from a conventional Landau

Fermi liquid. Thus, the CFL provides a paradigmatic example

of a metallic non-Fermi liquid that can be investigated both

theoretically and experimentally.

In recent years,14,15 it has been emphasized that in the ab-

sence of Landau level mixing, the Hamiltonian for the lowest

Landau level has a strict particle-hole symmetry, associated

with transforming ν → 1 − ν.65 At ν = 1/2 it is therefore

equally natural to consider the state obtained by attaching two

units of flux quanta to the holes of the filled ν = 1 Landau

level instead of the electrons. If the CFL were particle-hole

symmetric, such a construction in terms of flux attachment

to holes would be an equivalent way of describing the CFL.

However, for its paired descendant, the Moore-Read Pfaffian

state,6 it was shown that particle-hole conjugation does yield

a topologically distinct phase, which lead in particular to the

prediction of the Anti-Pfaffian state.14,15 This suggests that the

particle-hole conjugate of the CFL might also be a distinct

state.

In this paper, we develop a theory of the particle-hole con-

jugate of the CFL, which we refer to as the Anti-CFL. We

provide arguments that the Anti-CFL is a distinct state of mat-

ter as compared with the original CFL, which therefore must

break particle-hole symmetry. This provides a possible expla-

nation of a recent experiment16 in which the Fermi wave vec-

tor and therefore the density of composite fermions was care-

fully measured through the period of magnetoresistance os-

cillations in the presence of a one-dimensional periodic grat-

ing. Remarkably, it was found that the density of composite

fermions corresponds to the electron density when ν < 1/2,

and to the density of holes when ν > 1/2, thus providing ev-

idence that the Anti-CFL is indeed realized when ν > 1/2
in the LLL. This picture thus requires a modified view of the

half-filled Landau level with strong interactions and negligi-

ble Landau level mixing as being described not by the CFL, as

is the conventional understanding, but rather as a critical point

between the CFL and Anti-CFL.
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A. Particle-Hole Symmetry: General Considerations

Hints that the composite Fermi liquid at ν = 1/2 might re-

quire particle-hole symmetry breaking has come from a num-

ber of previous works.14,15,17 In Ref. 17, it was pointed out that

particle-hole symmetry requires that the electrical Hall con-

ductivity satisfy σxy = 1
2
e2

h , and that the only way to obtain

such a Hall conductivity within the CFL mean-field theory

(in the presence of disorder which is statistically particle-hole

symmetric) is to assume that the composite fermions have

an extremely large Hall conductivity with the precise value,

σcf
xy = − 1

2
e2

h . This suggests a fundamental tension between

particle-hole symmetry and the CFL state because the com-

posite fermions should see zero effective field on average, so

one instead expects σcf
xy ≈ 0. In this paper, we suggest that

a natural resolution of this tension is that the CFL state spon-

taneously breaks particle-hole symmetry (in the limit of zero

Landau-level mixing) and one must also consider its particle-

hole conjugate, the Anti-CFL, in order to properly describe

the physics about ν = 1/2. These considerations should also

be relevant to systems with weak Landau level mixing, as we

will discuss.

More recently, it has been noticed that the Moore-Read

Pfaffian state,6 which is a candidate to explain the filling

fraction 5/2 plateau in GaAs systems,5 breaks particle-hole

symmetry.14,15 Its particle-hole conjugate, referred to as the

Anti-Pfaffian, has distinct topological properties and is, there-

fore, a different topological phase of matter. The Pfaffian

can be thought of as a px + ipy paired state of the compos-

ite fermions in the CFL. This suggests that the parent CFL

state might also break particle-hole symmetry. The particle-

hole conjugate of the CFL, the Anti-CFL, would then be the

parent state of the Anti-Pfaffian.

If the CFL state spontaneously breaks particle-hole symme-

try, then a clean system at filling fraction ν = 1/2 must lie at

a phase transition between the CFL and Anti-CFL. In a clean

(disorder-free) system, the nature of this transition will either

be first order or continuous. In Sec. VI we provide a theory

of a continuous transition in the clean limit. In the presence

of disorder that locally favors CFL or Anti-CFL, the transition

will necessarily be continuous, as we discuss in more detail in

Sec. VI. A quantum critical point between the CFL and Anti-

CFL would control a broad region of the finite temperature

phase diagram in the vicinity of ν = 1/2.

Tuning away from half-filling explicitly breaks particle-

hole symmetry and therefore favors one state over the other.

There are thus two possibilities: Either the CFL is preferred

for ν < 1/2 and the Anti-CFL for ν > 1/2, or vice versa.

The question of which one of these possibilities is realized

depends on microscopic details of the interactions. Generally,

one would expect that the CFL is more stable when ν < 1/2,

while the Anti-CFL is preferred for ν > 1/2. This intuition

comes from the energetics of model wave functions. Wave

functions for FQH states in the lowest Landau level at fillings

ν < 1/2, such as the 1/3 Laughlin wave function, are holo-

morphic in the complex coordinates of the electrons and may

be interpreted as describing an integer Hall state of “compos-

ite electrons” (where the statistical flux is attached to the elec-

trons) rather than an integer state of composite holes. There-

fore, it is natural to expect, by continuity with the wave func-

tion of the Laughlin state, that the CFL state, which attaches

flux to the electrons, would be more stable for ν < 1/2. Anal-

ogous considerations for the holes at FQH filling fractions

ν > 1/2 suggest that the Anti-CFL controls the physics when

ν > 1/2. If the clean system for ν < 1/2 is controlled by

the CFL, we note that disorder may locally favor puddles of

Anti-CFL, and vice versa for ν > 1/2.

B. Summary of Results

Due to the length of this paper, here we will briefly summa-

rize some of the main results of our paper.

1. Bulk field theory

The effective field theory describing fluctuations about the

Anti-CFL state is different from that of the CFL state, and is

presented in Eqs. (30)-(35). Specifically, the CFL and Anti-

CFL theories have a different set of emergent gauge fields cou-

pled to the composite fermions. The structure of the action

for these gauge fields suggest that the composite fermions in

the CFL represent fundamentally different nonlocal degrees

of freedom of the electron fluid as compared with the com-

posite fermions of the Anti-CFL. Consequently, p-wave pair-

ing of the composite fermions of the CFL leads to topologi-

cally distinct phases of matter as compared with p-wave pair-

ing the composite fermions of the Anti-CFL. To highlight the

distinction between these two types of composite fermions,

we refer to the composite fermions of the CFL as compos-

ite electrons, and the composite fermions of the Anti-CFL as

composite holes. As expected, the robust topological features

of the incompressible FQH states away from half filling can

be readily accessed in terms of both composite electrons or

composite holes.

2. Boundary physics

An important property of the CFL is that the single electron

correlations, as probed for example by the local frequency-

dependent tunneling density of states, decay exponentially in

the bulk of the CFL,18,19 but as a power-law on the edge.20,21

Therefore, although the system is gapless everywhere, the

electron effectively has a finite correlation length in the bulk

and infinite correlation length along the boundary. Here, we

introduce a novel, local formulation of the CFL field theory in

the presence of a boundary which accounts for the structure

of these edge correlations in terms of a robust chiral scalar

field along the edge (see Eqn. (50)). We expect that this for-

mulation will be useful more generally also for the study of

boundary criticality in quantum phase transitions between in-

compressible FQH states.

We apply our formulation of the CFL boundary theory to

deduce the theory of the Anti-CFL in the presence of a bound-
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ary (see Eqn. (56)). We find that a distinction between the

CFL and the Anti-CFL is in the structure of their respective

boundary theories: for example, the edge of the Anti-CFL

hosts an additional chiral field that is inherited from the filled

Landau level.

We study a variety of interfaces, including CFL - insulator

(I) - CFL junctions, the interface between CFL and Anti-CFL,

and their paired descendants: Pfaffian - I - Pfaffian junctions,

and Pfaffian - Anti-Pfaffian interfaces. Our study of the CFL

- I - CFL junction reveals how to understand the healing to-

gether of two adjacent CFL states through electron tunneling,

leading to effectively a single statistical gauge field stretching

across the interface and the elimination of the chiral boundary

fields. We show that CFL - I - CFL junctions support in prin-

ciple three distinct boundary phases, which are distinguished

by whether composite fermions can directly tunnel across the

junction and whether the electron correlations decay exponen-

tially or algebraically along the interface.

Our study of the interface between the CFL and Anti-CFL

reveals several possible distinct interface phases (see Fig. 3).

These include “partially fused” interfaces where composite

electrons of the CFL can directly tunnel across the interface

as composite holes of the Anti-CFL. Since the composite elec-

trons of the CFL and the composite holes of the Anti-CFL ap-

pear not to be related to each other by any local operators, this

provides a non-trivial and experimentally testable example of

transmutation between topologically distinct quasiparticles.66

As a consequence, our results also imply that the boundary

between the Pfaffian and Anti-Pfaffian, while hosting topo-

logically robust chiral edge modes, host a number of distinct

boundary phases (see Fig. 4), some of which allow the neu-

tral fermion of the Pfaffian to tunnel directly into the neutral

fermion of the Anti-Pfaffian. Importantly, we find that within

our field theoretic formulation, the boundary between the CFL

and Anti-CFL must contain chiral scalar fields along the inter-

face. The “minimal” interface phase we find contains a neutral

chiral fermion field.

3. Continuous phase transition between CFL and Anti-CFL

Within our field theoretic framework, we find that tuning

from the CFL to the Anti-CFL state requires passing through

a phase transition. In fact, as we describe in Sec. VI, the field

theory we develop for the Anti-CFL can be used to describe

a continuous phase transition between the CFL and Anti-CFL

in a clean system. The critical point can be described in terms

of a neutral Dirac fermion, coupled to the various statistical

gauge fields and composite fermion fields in the system (see

Eqn. (95)). The neutral Dirac fermion at the critical point can

be naturally understood in terms of the theory of the CFL -

Anti-CFL interface described above, which necessarily con-

tains a chiral fermion field at the interface.

In Sec. VI, we also present a detailed analysis of the ef-

fect of gauge fluctuations on the critical theory, to show that

it remains continuous even beyond the mean-field limit. We

further analyze the finite-temperature phase diagram and dis-

cuss the appearance of two crossover temperature scales, as

has appeared in several other studies of quantum criticality

in fractionalized systems with emergent quasiparticle Fermi

surfaces22,23.

An interesting consequence of this study is that one can also

understand the quantum phase transition between the Pfaf-

fian and Anti-Pfaffian states in terms of a massless, neutral

Dirac fermion mode. This implies that if experiments were

to realize both the Pfaffian and Anti-Pfaffian states by tuning

across half-filling (say in the second Landau level), then the

gap to charged excitations need not close, and therefore elec-

trical charge transport measurements alone may not show any

indication of a quantum phase transition.

4. Observable consequences

We discuss two main observable signatures that demon-

strate the distinction between the CFL and Anti-CFL states.

First, we consider the conductivity of the system at ν = 1/2,

in the presence of disorder which is statistically particle-hole

symmetric (so that ρxx 6= 0). Using the Ioffe-Larkin sum

rules4,24 for the resistivity of the system, we observe that the

CFL state at ν = 1/2 possesses a Hall conductivity (see Eqn.

(117))

σCFL
xy <

1

2

e2

h
, (1)

while the Hall conductivity of the Anti-CFL state is (see Eqn.

(123))

σACFL
xy >

1

2

e2

h
. (2)

Therefore, we find that at a first order transition between uni-

form CFL and Anti-CFL states, the system will exhibit a jump

in the Hall conductivity. The magnitude of the jump is set by

the longitudinal resistivity ρxx, as explained in Sec. VII A.

We find similar jumps in both longitudinal and transverse

components of the resistivity tensor. The Hall conductivities

obey the “sum rule” at half-filling:

σCFL
xy + σACFL

xy =
e2

h
. (3)

Within this theory, systems that do not exhibit such a jump

either lie at a continuous transition between these two states

and do not realize uniform CFL or Anti-CFL states arbitrarily

close to half-filling, or have strong Landau level mixing and

thus explicitly break particle-hole symmetry even at ν = 1/2.

At the continuous transition between the CFL and Anti-CFL

presented in Sec. VI, the Hall conductivity is equal to 1
2
e2

h ,

within linear response, such that the sum rule continues to be

obeyed.

A second observable consequence of the distinction be-

tween the CFL and Anti-CFL is as follows. The wave vec-

tor (and therefore the density) of composite fermions can be

measured close to ν = 1/2 through, e.g., magnetoresistance

oscillations in the presence of a periodic potential. As the

system is tuned from the CFL to the Anti-CFL by tuning the
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filling fraction through ν = 1/2, the composite fermion den-

sity does not evolve smoothly, but instead possesses a kink as

it transitions from being set by the electron density to being

set by the hole density. This singularity in the evolution of

the composite fermion density through ν = 1/2 further sug-

gests that the CFL and Anti-CFL are distinct phases of matter.

If, instead, the system remains in the CFL state on both sides

of ν = 1/2, then the composite fermion density would have

a smooth dependence on filling fraction. In Sec. VII B, we

analyze in detail the experiment of Ref. 16, which performs

such a measurement of the composite fermion density through

magnetoresistance oscillations, and we show that it can be ex-

plained by the existence of the Anti-CFL state for ν > 1/2.

Moreover, in Sec. VII C, we suggest a further experiment to

detect the coherent tunneling of composite electrons to com-

posite holes across the interface between CFL and Anti-CFL

states, by having the periodic potential modulation be strong

enough to force the system into alternating strips of CFL and

Anti-CFL.

The rest of this paper is organized as follows. In Sec. II, we

provide a review of the conventional theory of the CFL and

its connection to the main sequence of incompressible FQH

states. In Sec. III we develop the bulk effective field theory of

the Anti-CFL and describe its relation to the main sequence of

incompressible FQH states. In Sec. IV we describe the edge

theories of the CFL and Anti-CFL, and use them in Sec. V to

study a variety of interfaces, including CFL - I - CFL junctions

and CFL - Anti-CFL junctions, Pfaffian-I-Pfaffian junctions,

and Pfaffian-Anti-Pfaffian interfaces. In Sec. VI we develop a

field theory of a direct transition between the CFL and Anti-

CFL. In Sec. VII we describe experimental consequences that

can provide probes of the difference between the Anti-CFL

and CFL, including an analysis of the experiment of Ref. 16.

In Appendix A, we develop a more general understanding of

particle-hole conjugates of fermionic FQH states, in terms of

vortex duals of bosonic FQH states.

II. REVIEW OF CFL

In this section, we will review the theory of the CFL as

introduced in Ref. 4. We set the fundamental constants e =
~ = c = 1, so that the flux quantum φ0 = hc/e = 2π.

A. Bulk effective field theory at ν = 1/2

To motivate the CFL description of the half-filled Landau

level, we begin with the field theory for (spin-polarized) elec-

trons:

Lelectron =c†(i∂t + AEt + µe)c−
1

2me
c†(i∂i +AEi )

2c

+

∫

d2r′V (r − r′)c†c(r)c†c(r′), (4)

where i = x, y, c is the electron operator, AE is the back-

ground or external electromagnetic field, which includes the

constant background magnetic field, µe is the chemical poten-

tial, me is the electron band mass, and V (r−r′) describes the

leading electron-electron interactions.

The CFL theory4 starts by considering an equivalent theory

to that in Eqn. (4) where 2 units of (magnetic) flux quanta of

an emergent statistical gauge field a are attached to a “com-

posite fermion” field ψ:

LCFL =
1

2

1

4π
a∂a+ ψ†(i∂t + at +AEt + µe)ψ

− 1

2mψ
ψ†(i∂i + ai +AEi )

2ψ

+

∫

d2r′V (r − r′)ψ†ψ(r)ψ†ψ(r′), (5)

where we have used the notation a∂a ≡ ǫµνλaµ∂νaλ,

µ, ν, λ = t, x, y. The original electron c consists of a compos-

ite fermion ψ bound to two units of flux of the a gauge field.

mψ is the effective mass of the composite fermions, which

may in principle differ from the band mass of the electrons at

long wavelengths due to interaction effects.

At half-filling, when the electron filling fraction ν ≡
2πne/B = 1/2, there exists a mean-field solution to the

equations of motion of Eqn. (5) where the total flux of a is

equal and opposite to the total applied magnetic flux B of

AE . The composite fermions then effectively see no magnetic

field on average, and thus form a Fermi sea with wave vector

kF =
√
2meµe. Importantly, the composite fermion density

is equal to the electron density ne = k2F /4π. Fluctuations

about this mean-field ground state are described by composite

fermions ψ, in zero net effective magnetic field, coupled to

the fluctuations of the U(1) gauge field a about its mean-field

value. If the coupling between the composite fermions and

the fluctuations of a were set to zero, the composite fermions

would form a Landau Fermi liquid; in the presence of such a

coupling, however, the composite fermions acquire an anoma-

lous self-energy and must instead be described by a non-trivial

interacting fixed point that is believed to be of a non-Fermi

liquid character. In order to ensure consistency with various

general constraints, including certain sum rules and Kohn’s

theorem, sophisticated methods have been developed to treat

the gauge fluctuations.25

In Section III, we will develop a theory – much like the one

above – for the holes of the filled Landau level. It is conve-

nient to refer to the composite fermions of the CFL as compos-

ite electrons in order to distinguish them from the composite

holes of the theory to be introduced in Sec. III.

It is useful to note that the above theory can be obtained in

a different way, through a parton construction. We write the

electron operator as

c = bψ, (6)

where b is a charge-e boson and ψ is a neutral fermion with

respect to the electromagnetic field. The decomposition in

Eqn. (6) results in a local U(1) redundancy, b → e−iΛ(r)b,
ψ → eiΛ(r)ψ, under which all physical operators must be

invariant, and an emergent U(1) gauge field a transforming

as a→ a+ ∂Λ. Next, we consider a mean-field ansatz where
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b forms a bosonic 1/2-Laughlin (incompressible) FQH state,

a is zero on average, and ψ forms a Fermi sea. The effective

field theory for such a mean-field ansatz is:

LCFL =− 2

4π
ã∂ã+

1

2π
(a−AE)∂ã

+ ψ†(i∂t + at + µe)ψ − 1

2mψ
ψ†(i∂i + ai)

2ψ + · · · ,

(7)

where the boson current is jbµ = 1
2π ǫµνλ∂ν ãλ, mψ is the

effective mass of ψ, µe is the electron chemical potential,

and the · · · indicate possible higher order interactions. The

electromagnetic field AE represents deviations from the fixed

background magnetic field at exactly half-filling. Redefining

a → a − AE , and integrating out ã yields Eqn. (5). Note

that in the long-wavelength description in Eqn. (7), the boson

b is created by inserting 2 units of flux of a, because b forms

a 1/2 Laughlin state and has unit charge under the a gauge

field. Therefore the electron operator at long wavelengths be-

comes preciselyψ bound to two units of flux of a, as expected.

This presentation is useful because it allows one to consider

the transition to nearby phases, such as to a conventional Lan-

dau Fermi liquid, under the application of an external periodic

potential.23

B. Single-Particle Properties

The CFL is a metallic state: it is compressible and pos-

sesses a finite longitudinal resistivity in the presence of dis-

order. However, electron tunneling into the bulk of the

CFL is exponentially suppressed at low energies. Assuming

a (Fourier transformed) electron-electron interaction of the

form, V (|q|) ∼ 1/|q|η with 0 ≤ η ≤ 2, which physically

corresponds to a three-dimensional Coulomb interaction eval-

uated in the two-dimensional system, the electron tunneling

density of states A(ω) decays as,18,19

A(ω) ∝ e−(ω0/ω)
1/(2−η)

, (8)

where ω0 = ω0(η) is a finite constant that depends upon

the nature of the interaction. η = 0 corresponds to short-

ranged interactions, while η = 1 corresponds to (un-screened)

Coulomb interactions.

The composite electrons display a sharp Fermi surface,

however, they are not well defined quasiparticles (for η ≤
1) due to their coupling to the fluctuating emergent gauge

field.4,26,27 Within an RPA treatment of this interaction, the

composite electrons obtain a self-energy correction,

Σ
(η)
ψ (ω) ∝ i|ω| 2

3−η , (9)

in the regime where the composite electron’s frequency is less

than its momentum. This self-energy correction implies a van-

ishing quasiparticle weight for η ≤ 1. The self-energy also di-

rectly implies the following finite temperature corrections to

scaling of the specific heat.4,28 For short-ranged interactions

(η = 0), the specific heat scales as

C ∝ T 2/3. (10)

For un-screened Coulomb interactions (η = 1), the specific

heat instead receives a contribution

C ∝ T ln(kF /T ), (11)

and the self-energy of the composite electrons takes the

marginal Fermi liquid form,29

Σ
(η=1)
ψ (ω) ∝ ω ln(kF /ω). (12)

C. CFL Wave Function

A wave function for the CFL in the half-filled Landau level

was previously presented,30 and is given by:

ΨCFL({ri}) = PLLL
∏

i<j

(zi − zj)
2ψFS({ri})e−

∑
i |zi|

2/4l2B ,

(13)

where PLLL is the projection onto the lowest Landau level,

zi = ri,x + iri,y are the complex 2D coordinates of the ith
electron, ψFS is a Slater determinant wave function describ-

ing free fermions with a Fermi surface, and lB = B−1/2 is

the magnetic length.

D. Relation to the main sequence of incompressible FQH states

One of the major successes of the CFL theory is that it can

describe a wide series of incompressible FQH states seen ex-

perimentally in terms of integer QH states of the composite

electrons. As we move away from half-filling, the composite

electrons feel an effective magnetic field,

Beff = B − 4πne. (14)

Therefore, the composite electrons are at an effective filling

fraction,

ν−1
eff = ν−1 − 2. (15)

When νeff = p, where p is an integer, so that ν = p
2p+1 ,

the composite electrons fill p Landau levels. At low energies,

we may integrate out the composite electrons ψ to obtain an

effective theory:

LCFL
p =

1

2

1

4π
a∂a+

p

4π
(a+AE)∂(a+AE), (16)

which is equivalent to

LCFL
p = − 2

4π
ã∂ã+

1

2π
a∂ã+

p

4π
(a+AE)∂(a+AE),

(17)
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as can be verified by integrating out ã. The topological order

of this theory is therefore encoded in a K-matrix,67

K =

(

−2 1
1 p

)

, (18)

which provides a formulation of the effective field theory of

the ν = p
2p+1 hierarchy states.31,32 The central charge of the

edge theory can be obtained by noticing a AE∂AE term for

the background electromagnetic field in Eqn. (17) with non-

zero coefficient proportional p. This indicates the presence

of p filled Landau levels whose chiral edge modes combined

with those implied by the K-matrix in Eqn. (18) give a chiral

central charge – a quantity that coincides, for Abelian states,

with the number of left-moving edge modes minus the number

of right-moving edge modes, equal to p− sign(p) + 1.

A remarkable prediction of the CFL theory, which is borne

out by experiments,11 is the dependence of the ratio of energy

gaps of the resulting FQH states on the composite electron

Landau level index. Specifically, the CFL theory predicts that

when the composite electrons fill p Landau levels, the energy

gap of the resulting state,

Ecfl
ν =

eBeff

mψ
=

e

mψ

2πne
|p| , (19)

where ne is the electron density, p−1 = ν−1 − 2, mψ is the

renormalized composite electron mass, and we have restored

the electron charge e. Therefore, in terms of the (electron)

filling fraction,

Ecfl
ν =

2πene
mψ

|ν−1 − 2|. (20)

E. Paired composite electron states

It is well-known that the Moore-Read Pfaffian state can

be understood as a state where the composite electrons have

formed a px + ipy paired state. In general, one can consider

any odd angular momentum l pairing of the composite elec-

trons, with a corresponding chiral central charge l/2 in the

boundary state of the composite electrons. Including the chi-

ral charged mode, the chiral central charge of the resulting

FQH state is c = 1 + l/2. The topological properties of the

resulting FQH state can be readily obtained. The system has

four topologically distinct Abelian quasiparticles: those cor-

responding to local (topologically trivial) excitations, a neu-

tral fermion associated with the Bogoliubov quasiparticle of

the composite electron paired state, and charge ±e/2 Laugh-

lin quasiparticles. In addition, the ±π vortices of the com-

posite electron state carry charge ±e/4. The e/2 Laughlin

quasiparticle is associated with 2π units of external flux, and

therefore has statistics π/2 The ±π vortices have statistics

θ± = 2π(1/16 + l/16), which is a sum of contributions of

π flux in the charge sector and the contribution from the com-

posite electron sector, which forms one of the Ising states in

Kitaev’s 16-fold way.33 These results are summarized in Table

I .

Charge (modulo e) Statistics, θ (modulo π)

0 0

0 0

e/2 π/2

−e/2 π/2

e/4 π(l+ 1)/8

−e/4 π(l+ 1)/8

TABLE I: Charges and statistics for the topologically non-trivial

quasiparticles of the paired composite electron states with angular

momentum l and chiral central charge c = 1 + l/2.

III. THEORY OF ANTI-CFL

A. Bulk Field Theory

Here we develop a bulk effective field theory for the

particle-hole conjugate of the CFL, which we refer to as the

Anti-CFL. In this case, the statistical flux is attached to the

holes of a filled Landau level, rather than to the electrons.

1. Derivation of hole theory

In order to provide a description of the Anti-CFL, we first

need to derive an effective theory for the holes in the lowest

Landau level.15 We start with the field theory in terms of the

electron fields in Eqn. (4) and attach one unit of flux to each

electron, in the direction opposite to the external field. This

transmutes their statistics, yielding composite bosons34 at an

effective filling fraction equal to 1 within a mean-field approx-

imation. The effective action for such a theory is:

Lb̃ =b̃∗(i∂t + at +AEt )b̃ −
1

2mb̃

|(i∂i + ai +AEi )b̃|2

+ V (|b̃|) + 1

4π
a∂a, (21)

where b̃ is a complex scalar field representing the composite

boson, a is a U(1) gauge field, V (|b̃|) is an interaction poten-

tial that encodes boson density-density interactions and mb̃ is

the boson mass which may differ from me upon performing

the duality. Next, we perform boson-vortex duality:35,36

Lb̃v =b̃∗v(i∂t + ãt)b̃v −
1

2mv
|(i∂i + ãi)b̃v|2

+ V (|b̃v|)−
1

2π
ã∂(a+AE) +

1

4π
a∂a, (22)

where b̃v represents the dual vortex field of b̃, mv is the vor-

tex effective mass, and the U(1) gauge field ã represents the

conserved particle current of b̃,

j(b̃)µ =
1

2π
ǫµνλ∂ν ãλ. (23)
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Shifting a → a + AE , integrating out a, and subsequently

shifting ã→ ã+AE gives

Lb̃v =b̃∗v(i∂t + ãt −AE)b̃v −
1

2mv
|(i∂i + ãi −AE)b̃v|2

+ V (|b̃v|)−
1

4π
ã∂ã+

1

4π
AE∂AE . (24)

The CS term for ã attaches one unit of flux to b̃v, thereby

transmuting it into a fermion h. Therefore, at long-

wavelengths, the above theory is equivalent to:

Lhole =h
†(i∂t −AEt + µh)h− 1

2mh
h†(i∂i −AEi )

2h

+
1

4π
AE∂AE + · · · , (25)

where the · · · include higher order gradient and interaction

terms, h represents holes of a filled lowest Landau level

(LLL), and we have allowed the effective mass of the holes

mh to be renormalized relative to mv upon assuming the du-

ality between bosons attached to one unit of flux and holes

attached to zero flux in the presence of a background mag-

netic field. µh is the chemical potential of the holes and is

given in terms of the hole density nh = 2mhµh/4π.

The Lagrangian in Eqn. (25) is the particle-hole conjugate

with respect to the filled lowest Landau level of the electron

Lagrangian in Eqn. (4). As expected, Eq. (25) shows that

the hole h carries charge opposite to that of the electron with

respect to the background electromagnetic field AE . If the

hole density is depleted to zero, the system exhibits an inte-

gral quantum Hall effect with Hall conductivity σxy = 2π.

In other words, the vacuum state of the holes is correctly de-

scribed by a filled Landau level.

From an operator point of view, the above sequence of

transformations can be understood as follows. As before, the

electron c can be written as

c = b̃f, (26)

where b̃ is a boson and f is a fermion field. These fields may

be taken to carry opposite charge under an emergent U(1)
gauge field a. We consider a mean-field ansatz where f forms

a νf = 1 IQH state. Let us suppose that the field b̃v describes

the vortices of the boson field b̃. Then, we can consider the

fermion operator:

h = f †b̃v. (27)

We can verify that h is in fact a gauge-invariant, physical op-

erator, and describes the holes. To see this, let us write down

an effective theory in terms of b̃. We first introduce a gauge

field af to describe the conserved current of the f fermions:

j
(f)
µ = 1

2π ǫµνλ∂νa
f
λ. The effective action then takes the form

Lb̃ =b̃∗(i∂t + at +AEt )b̃−
1

2mb̃

|(i∂i + ai +AEi )b̃|2

+ V (|b̃|)− 1

4π
af∂af +

1

2π
a∂af . (28)

Now let us consider the vortex dual of b̃:

Lb̃v =b̃∗v(i∂t + ãt)b̃v +
1

2mv
|(i∂i + ãi)b̃v|2 + V (|b̃v|)

− 1

4π
af∂af +

1

2π
(a+AE)∂af +

1

2π
a∂ã, (29)

where, as before, b̃v represents the vortices of the field b̃, and

the current of b̃ is given in terms of ã through eq. (23). The

above theory shows that b̃v is charged under the gauge field

ã. The Chern-Simons terms indicate that a unit charge of ã
is attached to −1 unit of flux of a and −1 unit of flux of af .

Minus one unit of flux of af , in turn, corresponds to −1 unit

of the f fermion. Therefore, the operator h = f †b̃v is a gauge-

invariant, physical operator in the low energy effective theory,

and can be seen to correspond to the hole in the LLL.

2. Anti-CFL Lagrangian

Now that we have obtained the Lagrangian describing holes

in the Landau level, it is straightforward to obtain the Anti-

CFL theory. We simply take Eqn. (25), and attach two flux

quanta to the hole field h, obtaining:

LACFL =− 1

2

1

4π
a∂a+ χ†(i∂t + at −AEt + µh)χ

− 1

2mh
χ†(i∂i + ai −AEi )

2χ+
1

4π
AE∂AE + · · · .

(30)

Here, χ is a fermion field describing the “composite hole,”

which is the analog in the Anti-CFL of the composite electron

ψ in the CFL. The · · · represent higher-order interactions. As

usual, the sign of the Chern-Simons term is chosen so that

the flux of a is attached in such a way so as to cancel out the

background applied magnetic field, in a flux-smearing mean-

field approximation.

There is an important relation between the electron density

ne, hole density nh, and background magnetic field B:

ne + nh =
B

2π
, (31)

within the first Landau level. We will use this relation to ex-

press physical quantities symmetrically with respect to the

electrons and holes. Eqn. (31) can be rewritten in another

convenient form as

nh = (ν−1 − 1)ne, (32)

where ν = 2πne/B is the filling fraction.

The effective field seen by the composite holes is

Beff = −B + 4πnh. (33)

The first term arises because the composite holes couple to the

external field with the opposite sign as compared to electrons.

The second term is due to the fact that each composite hole

is attached to +2 units of flux, in contrast to the composite
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electrons which are attached to −2 units of flux. Using the

relation in Eqn. (31), we find:

Beff = B − 4πne. (34)

Interestingly, the composite holes feel an identical effective

magnetic field as the composite electrons. In particular, this

implies that a composite hole of the Anti-CFL moving with

velocity v in a magnetic field Beff feels a Lorentz force per-

pendicular to its motion which is identical to the Lorentz force

that would have been felt by a composite electron of the CFL,

at the same magnetic field and with the same velocity. In other

words, the trajectory of the composite holes in the Anti-CFL

and composite electrons in the CFL are the same, for a given

velocity, magnetic field, and electron density.

An alternative, useful presentation of the theory in Eqn.

(30) is given by:

LACFL =
2

4π
ã∂ã+

1

2π
a∂ã+ χ†(i∂t + at −AEt )χ

− 1

2mh
χ†(i∂i + ai −AEi )

2χ

− 1

4π
A∂A+

1

4π
AE∂A, (35)

where ã and A are both emergent dynamical gauge fields. In-

tegrating out ã and A in Eqn. (35) gives Eqn. (30). Eqn. (35)

is manifestly well-defined on closed surfaces, in contrast to

Eqn. (30), because the coefficient of the resulting CS terms

are integral. Moreover, in Sec. IV we will find Eqn. (35)

to be a more useful starting point to describe the system in

the presence of a boundary. The fluctuations of A describe

the dynamics of the filled lowest Landau level, which is the

“vacuum” state of the holes.

We emphasize that the composite hole, χ, is topologically

distinct from the composite electron, ψ. From Eqn. (35), we

see that the composite hole χ corresponds to the hole h, at-

tached to two units of statistical flux of a U(1)2 CS gauge field

ã. On the other hand, the composite electron ψ corresponds to

the electron c, combined with two units of statistical flux of a

U(1)−2 CS gauge field (see Eqn. (7)). A direct consequence

of this is that a px + ipy paired state of the ψ fermions, which

yields the Moore-Read Pfaffian state, is topologically distinct

from a px−ipy paired state of the χ fermions, which yields the

Anti-Pfaffian state (and even distinct from a px + ipy paired

state of χ). This suggests that ψ and χ are not related to each

other by any local operator; in other words, they represent

topologically distinct degrees of freedom of the electron fluid.

In the CFL, ψ represents the appropriate low energy degrees

of freedom, while in the Anti-CFL, χ represents the appropri-

ate low energy degrees of freedom by which to describe the

state.

From the perspective of the parton construction, it is clear

that the Anti-CFL state can be understood through Eqn. (26)

by considering a mean-field ansatz where f forms a νf = 1

IQH state, while the vortices of b̃ form a νv = −1 CFL state

of bosons. In Appendix A, we revisit this point in more de-

tail, and show that, in general, particle-hole conjugates of

fermionic FQH states can be understood in terms of vortex

duals of bosonic FQH states. Vortex duality for bosonic states

thus proves to be intimately related to particle-hole conjuga-

tion for fermionic states.

B. Relation to the main sequence of incompressible FQH states

In the same way that the main series of FQH states can be

understood as integer quantum Hall states of composite elec-

trons of the CFL, those same states can also be understood

as integer quantum Hall states of composite holes from the

Anti-CFL.

To see this, consider moving away from half-filling. Using

Eqns. (34) and (31), we see that the composite holes are at an

effective filling,

(νheff)
−1 = 2− (1− ν)−1. (36)

Therefore, if the composite holes are at filling νheff = −p,

for integer p, then the filling fraction of the electrons is ν =
p+1
2p+1 = 1− p

2p+1 .

Furthermore, we find that the resulting topological order

is equivalent to the particle-hole conjugate of the state where

the composite electrons of the CFL are at νeff = p. This is

implied from the above formula for the filling fraction. To

verify this, let us analyze the topological order of the state

where the composite holes χ are at νheff = −p. Integrating out

χ in eq. (35) under the assumption that χ is in such an IQH

state then yields the effective theory,

LACFL
−p =

2

4π
ã∂ã+

1

2π
a∂ã− p

4π
a∂a

+
p

2π
AE∂(a+A)− 1

4π
A∂A

− p

4π
AE∂AE . (37)

This theory can be summarized by a K-matrix:

K = −







1 0 0

0 −2 −1

0 −1 p






, (38)

which, by comparison with the results of Sec. II D, is indeed

the particle-hole conjugate of the state where the composite

electrons of the CFL form a νeff = p IQH state. This shows

that the incompressible FQH states at a given filling fraction

ν that result from the CFL state are equally-well understood

to arise from condensation of the composite holes of the Anti-

CFL state. The chiral central charge is again accounted for by

the p filled Landau levels implied by the −pAE∂AE term.

Moreover, the ratio of the energy gaps of the resulting FQH

states are the same as well. This follows from an estimate

of the gap in terms of the effective magnetic field that the

composite holes and composite electrons feel. More explic-

itly, according to Eqn. (36), a FQH state at electron filling

ν = p/(2p + 1) requires the composite holes to fill p + 1
Landau levels. Restoring the electromagnetic charge e, the
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Charge (modulo e) Statistics, θ (modulo π)

0 0

0 0

e/2 π/2

−e/2 π/2

e/4 π(l − 1)/8

−e/4 π(l − 1)/8

TABLE II: Charges and statistics for the topologically non-trivial

quasiparticles of the paired composite hole states with angular mo-

mentum l and chiral central charge c = l/2.

resulting energy gap is estimated using:

Eacfl
ν =

eBeff

mχ
=

−eB + 4πenh
mχ

=
e

mχ
2πne|ν−1 − 2|,

(39)

where mχ is the renormalized composite hole mass. Remark-

ably, we see that

Eacfl
ν = Ecfl

ν

mψ

mχ
, (40)

which shows that the predicted energy gaps of the incompress-

ible FQH states are the same within the CFL or Anti-CFL con-

struction, as long as the composite electrons and composite

holes have the same renormalized masses.

C. Paired composite hole states

Let us now also consider paired states of the composite

holes. The particle-hole conjugate of the Moore-Read Pfaf-

fian, the Anti-Pfaffian, corresponds to px − ipy pairing of the

composite holes. More generally, one can consider odd an-

gular momentum l pairing of the composite holes, with a cor-

responding chiral central charge l/2 in the boundary state of

the composite holes. The chiral central charge of the bound-

ary theory of the corresponding FQH state, after considering

the charged modes and the background filled LL is therefore

c = −1 + 1 + l/2 = l/2. The topological properties of the

quasiparticles can be understood as follows. There are four

Abelian quasiparticles, corresponding to local (topologically

trivial) excitations, a neutral fermion corresponding to the Bo-

goliubov quasiparticle of the paired composite hole state, and

charge ±e/2 Laughlin quasiparticles. In addition to these,

there are the ±π vortices, with charge ±e/4. These have frac-

tional statistics θ± = 2π(−1/16 + l/16). The −1/16 contri-

bution is the effect of the π flux on the charged sector, which

is reversed in chirality relative to the composite electron case

considered in Sec. II E, while the l/16 contribution is from

the composite hole sector, which forms one of the Ising states

in Kitaev’s 16-fold way.33 These are summarized in Table II.

Interestingly, observe that there is a direct correspondence

between the paired states obtained from the CFL theory, in

Sec II E, and those obtained from the Anti-CFL. In particular,

Tables I, II show that the FQH state obtained when compos-

ite electrons of the CFL form an angular momentum l paired

state is topologically equivalent to the state obtained when the

composite holes of the Anti-CFL form an angular momentum

l − 2 state. In particular, this confirms a recent observation

in Ref. 37, based on considerations of the shift38 and central

charge, that (1) the case where composite electrons of the CFL

form the l = −3 paired state corresponds to the Anti-Pfaffian,

and (2) the case where composite electrons form the l = −1
paired state gives rise to a state whose topological properties

are particle-hole symmetric.

D. Wave function

Since the Anti-CFL is a state where the holes have formed

a CFL state at opposite magnetic field, its many-body wave

function can be immediately written in terms of the many-

body wave function of the CFL. It is given by:

ΨACFL({ri}) =
∫ Nh
∏

α=1

d2r̄αΨh({ri, r̄β})Ψ∗
CFL({r̄β}),

(41)

where

Ψh({ri, r̄i}) =
∏

α<β

(ηα − ηβ)
∏

a,i

(ηα − zi)
∏

i<j

(zi − zj)

× e−
∑
i |zi|

2/4l2B . (42)

r, r̄ are the real-space coordinates of the electrons and holes,

respectively, while z = rx + iry and η = r̄x + ir̄y are

their complex coordinates. The indices take values: α, β =
1, · · · , Nh and i, j = 1, · · ·Ne, where Nh and Ne are the

number of electrons and holes, respectively. Ψh({ri, r̄i}) can

be understood as a wave function of Nh holes at fixed posi-

tions {r̄i}, in a ν = 1 IQH state of Ne electrons. The prefac-

tor
∏

α<β(ηα − ηβ) is included to ensure the proper normal-

ization and Fermi statistics of the holes; without this factor,

the integral in eq. (41) would vanish because ΨCFL({r̄β}) is

anti-symmetric in its coordinates.

The wave function presented in eq. (41) is technically dif-

ficult to work with. We may consider a potentially more

tractable wave function by using the basis of lowest Landau

level orbitals on a sphere instead of the real-space coordinates.

To this end, consider a quantum Hall system on a sphere, with

NΦ flux quanta piercing the sphere. The lowest Landau level

has NΦ + 1 single-particle orbitals, which we can label li, for

i = 0, · · · , NΦ. In this basis, we can write the Anti-CFL wave

function as

ΨACFL({li}) =
∑

{l̄α}

Ψh({li, l̄α})Ψ∗
CFL({l̄α}). (43)

ΨCFL({lα}) is the CFL wave function, written in the orbital

basis of the lowest Landau level. Ψh is the wave function

where the ith electron occupies orbital li and the αth hole oc-

cupies the orbital l̄α.

We note that Ref. 39 studied the overlap of the CFL wave

function (13) with its particle-hole conjugate, and found a
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Insulator 

CFL

Insulator 

Anti-CFL

(a) (b)

FIG. 1: (a) The theory of the boundary of the CFL with a trivial in-

sulator (vacuum) contains a chiral bosonic field at the edge. This

bosonic field is analogous to the chiral edge mode of a bosonic 1/2
Laughlin state. (b) The boundary of the Anti-CFL with a trivial in-

sulator contains two fields. The left-moving field is similar to that

of a 1/2 Laughlin edge, while the right-moving field is similar to a

ν = 1 IQH edge. To distinguish them, the right-moving fields have

been depicted with dashed lines. Consequently the fields cannot be

localized through backscattering and are topologically protected.

high (but not unit) overlap for up to N = 16 particles. In

other words, the CFL wave function, while almost particle-

hole symmetric for small system sizes, is not exactly particle-

hole symmetric; we therefore expect that in the thermody-

namic limit, the overlap of the CFL wave function with its

particle-hole conjugate will indeed vanish.

IV. BOUNDARY THEORIES OF CFL AND ANTI-CFL

An important aspect of the CFL state is its behavior near

any boundary of the system. Just like incompressible FQH

states, the compressible CFL states exhibit qualitatively new

features at their edge, as compared with the bulk. Specifically,

while the electron tunneling density of states decays exponen-

tially in the bulk as the frequency ω → 0, the edge tunneling

density of states decays as a power law due to the existence

of protected gapless edge fields. Tunneling into the edge of

a CFL would therefore yield a power-law non-linear current-

voltage characteristic, I ∝ V β , for some exponent β > 0.

In this section, we introduce a theory for the CFL and Anti-

CFL states in the presence of a boundary. We will show that

in order to be gauge-invariant, the bulk effective field theories

discussed in the previous sections must include additional chi-

ral scalar fields at the boundary.40,41 We note that the theory

we develop below, which describes both the bulk and bound-

ary fields simultaneously in a local way, complements previ-

ous work. Previous studies20,21 of the boundary of the CFL de-

veloped the boundary theory by effectively integrating out the

fermions in the bulk in the presence of strong disorder. This

leads to non-analytic terms in the action, and precludes a di-

rect description of both the low energy composite fermion and

chiral boson fields near the boundary. We expect that the new

formulation of this boundary theory may also be useful for

studying more generally the boundaries of Chern-Simons the-

ories with gapless bulk matter fields, such as describe quan-

tum critical points in FQH systems.

A. Boundary theory for the CFL

Let us begin with the bulk effective action for the CFL

which we assume to be placed in a lower-half-plane geometry

with boundary at y = 0:

LCFL =− 2

4π
ã∂ã+

1

2π
ã∂a+ ψ†(i∂t + at +AEt + µe)ψ

− 1

2mψ
ψ†(i∂i + ai +AEi )

2ψ + · · · , (44)

where we denote the composite electron mass by mψ. Let us

fix the gauge ãt = 0. In doing so, we must take into account

the constraint δL
δãt

= 0, which implies,

2

2π
ǫij∂iãj =

1

2π
ǫij∂iaj . (45)

This constraint can be solved by setting:

ãi =
1

2
ai + ∂iφ, (46)

where φ is a real scalar field. Quantization of the flux of ã
requires that φ be equivalent to φ+ 2π:

φ ∼ φ+ 2π. (47)

Inserting ã in Eqn. (46) back into the effective action, we

obtain:

SCFL =

∫

y<0

d2xdtLbulk
CFL +

∫

y=0

dxdtLedge

CFL, (48)

where

Lbulk
CFL =

1

2

1

4π
a∂a+ ψ†(i∂t + at +AEt + µe)ψ

− 1

2mψ
ψ†(i∂i + ai +AEi )

2ψ + · · · (49)

Ledge
CFL =

2

4π
[(∂tφ+ at)∂xφ+

1

4
atax − v(∂xφ+

1

2
ax)

2]

− u(∂xφ+
1

2
ax)ψ

†ψ. (50)

The resulting action is invariant under the gauge transforma-

tions:

φ→ φ− 1

2
Λ,

a→ a+ ∂Λ

ψ → eiΛψ, (51)

where the real function Λ is the gauge parameter. The term

involving u above represents a density-density interaction be-

tween the composite electron and edge boson fields, while v
characterizes the velocity of the chiral φ excitations. We have

included the terms involving u and v in the action by hand, as

they are not precluded by symmetry. One could also include
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a current-density coupling between the fermions and bosons,

of the form ψ†(i∂x + ax)ψ(∂xφ + 1
2ax), although this term

is higher order and more irrelevant than the other terms in the

action.

The electron creation operator on the edge is the gauge in-

variant operator

c†(x, y = 0, t) ∼ ψ†e−2iφ. (52)

In terms of the parton construction of (6), we see that b = e2iφ,

consistent with the interpretation that b forms a 1/2 Laughlin

state and φ represents the scalar field of the chiral Luttinger

liquid edge of such a Laughlin state.

Electron correlation functions along the boundary can be

immediately computed within a mean-field approximation

which ignores gauge fluctuations:

〈c†(x, t)c(0, 0)〉 ≈ 〈ψ†(x, t)ψ(0, 0)〉〈e−2i(φ(x,t)−φ(0,0))〉.
(53)

We see that single electron correlations decay algebraically

because both the chiral field φ and the restriction to the bound-

ary of the composite electron field are gapless. A detailed

study of the quantitative effect of gauge fluctuations of a on

the edge correlation functions will be left for future work.

B. Boundary theory for the Anti-CFL

The above method for deriving the edge theory of the CFL

can be readily applied to derive the boundary theory for the

Anti-CFL. As before, we start with the bulk theory in Eqn.

(35). Going through essentially the same argument as in the

previous section, we find the following effective action,

SACFL =

∫

y<0

d2xdt Lbulk
ACFL +

∫

y=0

dxdt Ledge
ACFL, (54)

where

Lbulk
ACFL =− 1

2

1

4π
a∂a+ χ†(i∂t + at −AEt + µh)χ

− 1

2mχ
χ†(i∂i + ai −AEi )

2χ, (55)

and

Ledge
ACFL =− 2

4π
[(∂tφ1 − at)∂xφ1 +

1

4
atax + v1(∂xφ1 −

1

2
ax)

2] +
1

4π
∂xφ2(∂tφ2 − v2∂xφ2)− v12(∂xφ1 −

1

2
ax)∂xφ2

− u1(∂xφ1 −
1

2
ax)χ

†χ− u2(∂xφ2)χ
†χ+ [ξ(x)χe−2iφ1−iφ2 + h.c.] (56)

This action is invariant under the gauge transformations:

φ1 → φ1 +
1

2
Λ,

a→ a+ ∂Λ

χ→ eiΛχ, (57)

where we again denote the gauge parameter by Λ. The φ2
chiral edge field is a result of the filled Landau level and also

satisfies: φ2 ∼ φ2 + 2π.

The φ1 and φ2 fields are counter-propagating. There are

two local operators in the long wavelength effective field the-

ory which can be identified as electron creation operators:

c†1 ∼ χe−2iφ1 , c†2 ∼ eiφ2 . (58)

In principle, the edge theory can also include electron tunnel-

ing between these two types of edge fields, mediated by the

random coupling ξ(x), as modeled by the last term in Ledge
ACFL.

Importantly, in the mean-field limit, from the time-

derivative of the φ1 term, we see that it can be interpreted as

the chiral edge field of a bosonic ν = 1/2 Laughlin FQH state,

while φ2 can be interpreted as a chiral edge mode of a ν = 1
IQH of fermions. It is impossible for any type of backscatter-

ing to localize these counter-propagating chiral fields.

V. THEORY OF CFL AND ANTI-CFL INTERFACES

A striking consequence of the existence of the Anti-CFL

state is the nature of its interface with the CFL state. In order

to understand the physical properties of this interface, it useful

to first develop a theory of a CFL-insulator-CFL junction.

A. CFL - I - CFL Junctions

In this section, we develop an understanding of a junction

between two CFL states, separated by a thin insulating bar-

rier. We will see that there are three distinct possible interface

phases:

1. Decoupled interface. Electron tunneling between edges

is weak and irrelevant. Composite electrons cannot tun-

nel across the boundary. Tunneling density of states de-

cays as a power law at low energies at the interface, but

exponentially in the bulk.

2. Partially fused interface. Electron tunneling across the

interface is strong and/or relevant. Composite electrons

can directly tunnel across the interface, but the counter-

propagating bosonic edge fields remain gapless. Elec-

tron tunneling density of states decays as a power law
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Insulator 

CFL

(a) (b) (c)

CFL CFL

CFL

CFL

FIG. 2: Illustration of three distinct possible interface phases at the

CFL - I - CFL interface. (a) Decoupled interface, (b) partially fused

interface, where composite fermions can propagate through and the

electron has algebraic correlations along the interface, and (c) fully

fused interface, where the system effectively forms a single CFL

spanning across the interface, so that the electron has exponentially

decaying correlations everywhere.

at low energies at the interface, but exponentially in the

bulk.

3. Fully fused interface. Electron tunneling across the in-

terface is strong and/or relevant, and the system has

healed itself into effectively a single CFL across the

interface. Electron tunneling density of states decays

exponentially everywhere, and composite electrons can

propagate through the interface.

Let us consider the insulating barrier to have a width ǫ, with

its center position at y = 0. The effective theory for this

system can be written as

SCFL−I−CFL = Sbulk + Sedge, (59)

where Sbulk = Sbulk;↑ + Sbulk;↓ and Sbulk↑ =
∫

y>ǫ/2
d2xdtLbulk;↑ is the bulk action for the CFL on

the upper-half plane, and Sbulk;↓, defined similarly, is the

bulk action for the CFL on the lower-half plane. The bulk

Lagrangian densities are

Lbulk;α =
1

2

1

4π
aα∂aα + ψ†

α(i∂t + aαt +AEt + µe)ψα

− 1

2mψ
ψ†
α(i∂i + aαi +AEi )

2ψα + · · · , (60)

where α =↑, ↓.

Similarly, Sedge = Sedge;↑ + Sedge;↓ + Sedge;↑↓. Sedge;α =
∫

y=±ǫ/2
dxdtLedge;α is the edge action for the upper or lower

boundary, which lies at y = ±ǫ/2, with

Ledge;α =− 2α

4π

[

(∂tφα − αaαt )∂xφα

+ αvα(∂xφα − α
1

2
aαx)

2 +
1

4
aαt a

α
x

]

(61)

− uα(∂xφα − α
1

2
aαx )ψ

†
αψα, (62)

where α =↑ / ↓= ±. The second equality is used when α
appears as a coefficient, rather than a label. Finally, Sedge;↑↓ =
∫

dxdt Ledge;↑↓, with

Ledge;↑↓ = Ltun;↑↓ + v↑↓rsnr,↑ns,↓,

Ltun;↑↓ = tψ†
↑ψ↓e

2i(φ↓+φ↑) + h.c., (63)

where r, s = φ, ψ, nφ,α = (∂xφα−α 1
2a
α
x ), nψ,α = ψ†

αψα are

the boson and fermion densities, while v↑↓rs parameterizes the

density-density interactions between excitations on each side

of the interface. Ltun;↑↓ describes electron tunneling between

the upper and lower edges. Note that all physical operators

must be invariant under the independent gauge symmetries of

the upper and lower systems:

ψα → eiΛαψα,

aα → aα + ∂Λα,

φ↑ → φ↑ + Λ↑/2,

φ↓ → φ↓ − Λ↓/2, (64)

where the real functions Λα parameterize independent gauge

transformations above and below the insulating barrier.

In order to understand the effect of the electron tunneling

term, Ltun;↑↓, let us rewrite it as follows:

Ltun;↑↓ =[(ψ†
↑ψ↓ + e−2i(φ↓+φ↑)−iθ)(e2i(φ↓+φ↑)+iθ + ψ†

↓ψ↑)

− 1− ψ†
↑ψ↑ψ↓ψ

†
↓]|t|, (65)

where we have written t = |t|eiθ . Note that for a clean sys-

tem, θ = ǫx/l2B, where lB = B−1/2 is the magnetic length.

Introducing a complex Hubbard-Stratonovich field Φ↑↓, we

can replace Ltun;↑↓ by

Ltun;↑↓ =

√

|t|
2

(

Φ↑↓ψ
†
↑ψ↓ +Φ∗

↑↓e
2i(φ↓+φ↑)+iθ + h.c.

)

− 1

2
|Φ↑↓|2 + |t|ψ†

↑ψ↑ψ↓ψ
†
↓, (66)

where we have dropped the overall constant. Here, we have

made use of the identity

eαO1O2 =

∫

DΦe−|Φ|2/2+
√

α
2 (ΦO1+Φ∗O2). (67)

We can recover the original action by substituting into Eqn.

(66) the solution to the equation of motion for Φ↑↓:

Φ↑↓ =
√

2|t|
(

e2i(φ↓+φ↑)+iθ + ψ†
↓ψ↑

)

. (68)

The last term in Eqn. (66) can be absorbed into the density-

density couplings, and will be dropped from consideration be-

low.

Note that Φ↑↓ now also transforms under the gauge sym-

metry described in Eqn. (64) as

Φ↑↓ → eiΛ↑−iΛ↓Φ↑↓. (69)

We can obtain a self-consistent mean-field solution of the

action in which gauge fluctuations are set to zero by replac-

ing Φ↑↓ by its expectation value and minimizing the resulting

action subject to the constraint:

〈Φ↑↓〉 =
√

2|t|〈
(

e2i(φ↓+φ↑)+iθ + ψ†
↓ψ↑

)

〉. (70)

This yields a mean-field solution which we denote as Φ↑↓.68
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In order to incorporate quantum fluctuations in the field Φ↑↓

about this mean-field solution, we write:

Φ↑↓ = Φ↑↓e
ia↑↓ . (71)

Note that the amplitude fluctuations of Φ↑↓ about the mean-

field value Φ↑↓ are gapped. Therefore, to describe physics at

low energies, we can focus on the phase fluctuations of Φ↑↓,

which are parameterized by a↑↓. The phase a↑↓ can now be

seen to transform under the gauge transormations described in

Eqn. (64) as

a↑↓ → a↑↓ + Λ↑ − Λ↓. (72)

At low energies, the couplings in the edge Lagrangian will

be renormalized due to fluctuations, and all possible terms

consistent with symmetries will be generated. In particular,

gauge-invariant kinetic terms for a↑↓ will be generated in the

edge effective action that we anticipate to take the form:

Ltun;↑↓ =κΦ
2

↑↓(a
↑ − a↓ − ∂a↑↓)

2 +Φ↑↓

(

t1e
ia↑↓ψ†

↑ψ↓

+ h.c.+ t2 cos(2φ↑ + 2φ↓ − a↑↓)
)

. (73)

The first term above comes with a factor of Φ
2

↑↓ as it arises

from a kinetic term for Φ↑↓ of the form |(i∂ + a↑ − a↓)Φ↑↓|2
upon the expansion of Φ↑↓ about Φ↑↓. κ 6= 0 is a phenomeno-

logical parameter, t1 and t2 are renormalized parameters for

terms that were already present in Eqn. (66). We have also as-

sumed for simplicity that there is no additional constant phase

in the cosine term above.

Notice that a↑↓ can be interpreted as an emergent gauge

field that bridges the upper and lower CFLs. The term
∫

y=0
dtdx(a↑−a↓−∂a↑↓)2 plays the role of a Maxwell term

across the boundary.

We see that when Φ↑↓ 6= 0, composite electrons can di-

rectly tunnel across the boundary, due to the gauge-invariant

composite electron hopping term ψ†
↑ψ↓e

ia↑↓ . Therefore, when

Φ↑↓ 6= 0, we have effectively a single U(1) gauge field a de-

fined everywhere, with a↑↓ being equal to the line integral of

a across the boundary.

Note that if ei2(φ↑+φ↓)−ia↑↓ is irrelevant, the bosons will be

remain gapless at low energies. If instead ei2(φ↑+φ↓)−ia↑↓ is

relevant, then 2(φ↑ + φ↓) − a↑↓ will be pinned and become

massive.

We thus see the appearance of three possible phases:

(1) Φ↑↓ = 0. Here, the bosons remain gapless as the coef-

ficient of the cosine interaction vanishes. Similarly, the com-

posite electron tunneling amplitude is zero and so they cannot

tunnel across the interface at low energies. This phase should

occur when electron tunneling is a weak/irrelevant perturba-

tion to the edge theory, and corresponds to the two sides being

completely decoupled at long wavelengths. We refer to this

edge phase as the uncoupled interface.

(2) Φ↑↓ 6= 0, but cos(2φ↑ + 2φ↓ − a↑↓) is irrelevant

or marginal. Here, the composite electrons can now tun-

nel across the interface, due to the presence of the term
√

t
2Φ↑↓(ψ

†
↑ψ↓ + h.c.). However, if cos(2φ↑ + 2φ↓ − a↑↓)

is irrelevant or marginal, φ↑ and φ↓ fluctuate freely and are

gapless or unconstrained at long wavelengths. Therefore, the

electron correlations remain power law along the interface.

This is the partially fused interface phase.

(3) Φ↑↓ 6= 0, and both cos(2φ↑ + 2φ↓ − a↑↓) and (ψ†
↑ψ↓ +

h.c.) are relevant. Here, the composite electrons can tunnel

across the interface, and the bosons φ↑ and φ↓ are locked to

one another and no longer fluctuate freely. Consequently, the

electron correlations along the interface are now qualitatively

the same as in the bulk, and decay exponentially. This is the

fully fused interface, as the two, initially separate, CFLs have

fully healed.

In principle, one might imagine a fourth phase, where

Φ↑↓ 6= 0, and cos(2φ↑ + 2φ↓ − a↑↓) is relevant, but the

composite electron tunneling operator across the interface,

eia↑↓ψ†
↑ψ↓, is irrelevant. However, since the composite elec-

trons ψ form a Fermi sea in the bulk, we expect that their

tunneling across the interface is highly unlikely to be irrele-

vant.

In addition, one may consider higher order “partially fused”

phases, where Φ↑↓ = 0, but one instead decouples pair tun-

neling, or higher order tunneling terms, across the interface

using a Hubbard-Stratonovich transformation. These phases

would, for example, allow pairs of composite fermions to tun-

nel across the interface, but not single composite fermions.

1. Application to Pfaffian - I - Pfaffian junctions

An interesting corollary of the above analysis appears in

the case where the composite fermions of the CFL form a

px + ipy-paired superconducting state. In this case, the sys-

tem then forms the famous Moore-Read Pfaffian state.6–8 A

single edge of such a state consists of a chiral boson mode, φ,

together with a chiral Majorana mode, η. The electron tunnel-

ing term between two Moore-Read Pfaffian states separated

by an insulating barrier takes the form:

Ltunn;↑↓ = tη↑η↓e
2i(φ↑+φ↓) + h.c. (74)

This interface also supports three edge phases in principle,

which can be analyzed using the same logic as described in

Eqns. (61) - (73):

1. Decoupled interface, where the electron tunneling term

is irrelevant.

2. Partially fused interface. Electron tunneling is

strong/relevant. The Majorana tunneling operator η↑η↓
acquires an expectation value: 〈η↑η↓〉 6= 0, which ef-

fectively gaps the counterpropagating Majorana modes.

Consequently, single electron correlations decay expo-

nentially along the interface. Furthermore, the expec-

tation value 〈η↑η↓〉 6= 0 allows the neutral fermion

of the bulk Moore-Read state to propagate coherently

across the interface. However, the boson tunneling term

e2i(φ↑+φ↓) is irrelevant or marginal, so the counter-

propagating chiral boson modes remain gapless along

the interface.
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FIG. 3: (a) Interface between the CFL and Anti-CFL state, separated

by a thin insulator. When electron tunneling across the interface is

weak and irrelevant, the interface is in a decoupled phase. (b) Possi-

bility of a partially fused phase along the interface. Composite elec-

trons can directly tunnel into composite holes across the interface,

but the chiral boson edge fields are unconstrained, leading to a pro-

tected power-law tunneling density of states along the interface.

3. Fully fused interface. Electron tunneling is

strong/relevant and the Majorana tunneling opera-

tor η↑η↓ again acquires an expectation value. But

now, e2i(φ↑+φ↓) is relevant and pins the boson modes,

causing them to acquire an energy gap. The junction is

now fully gapped, and the two sides of the interface are

fully healed into each other.

B. CFL - I - Anti-CFL Junctions

The CFL - Insulator - Anti-CFL junction can be analyzed

in a manner closely analogous to the case of the CFL - I - CFL

junctions. In this case, we find that there are three basic types

of interface phases:

1. Decoupled interface. Electron tunneling between edges

is weak and irrelevant. Composite electrons of the CFL

cannot tunnel across the boundary into the composite

holes of the Anti-CFL. Tunneling density of states de-

cays as a power law at low energies along the interface,

but exponentially in the bulk.

2. Partially fused interface 1. Electron tunneling across

the interface is strong and/or relevant. Composite elec-

trons of the CFL can directly tunnel across the boundary

into composite holes of the Anti-CFL, but the counter-

propagating bosonic edge modes remain gapless. Sin-

gle electron correlations, and therefore the single par-

ticle tunneling density of states, have algebraic decay

along the interface, but exponential decay in the bulk.

3. Partially fused interface 2. Electron tunneling across

the interface is strong and/or relevant. Composite elec-

trons of the CFL can directly tunnel across the boundary

into composite holes of the Anti-CFL, but a single chi-

ral bosonic field remains gapless. Single electron corre-

lations decay exponentially along the interface and the

bulk.

The existence of the partially fused interfaces is remark-

able, because the composite electrons of the CFL and the

composite holes of the Anti-CFL represent distinct types of

excitations of the electron system. An important difference

as compared with the CFL - I - CFL junctions is the absence

of a fully fused interface; the existence of at least one chiral

bosonic edge field in the effective field theory suggests that

the CFL and Anti-CFL are distinct phases of matter.

In addition, we can imagine a regime of parameters where

the electron tunnels across the interface via the filled Landau

level of the Anti-CFL. Such tunneling is always present, and

may be irrelevant or marginal at any of the given interface

phases listed above. (If such a tunneling is relevant, presum-

ably the system flows to one of the interfaces phases described

above).

Let us consider the case where the region y > ǫ/2 is now

in the Anti-CFL state. In this case, electron tunneling across

the interface can occur via the terms:

Ltun;↑↓ = t1χ↑ψ↓e
2i(φ1↑+φ↓) + t2e

iφ2↑+2iφ↓ψ↓ + h.c. (75)

The existence of two single-electron tunneling terms, with

amplitudes t1 and t2, reflects the fact that the electron can

be created in two distinct ways along the edge of the Anti-

CFL. Note that, as in the CFL - I -CFL example, only gauge-

invariant terms can be added to the Lagrangian. In this case,

the gauge transformations are:

ψ↓ → eiΛ↓ψ↓,

χ↑ → eiΛ↑χ↑,

aα → aα + ∂Λα,

φ↓ → φα − Λ↓/2,

φ1↑ → φ1↑ − Λ↑/2, (76)

where α =↑ or ↓.

Following closely the analysis in the previous section, we

can decouple the first term:

Ltun;↑↓ =

√

|t1|
2

(

Φ↑↓χ↑ψ↓ +Φ∗
↑↓e

2i(φ1↑+φ↓)+iθ + h.c.
)

− 1

2
|Φ↑↓|2 + (t2e

−iφ2+2iφ↓ψ↓ + h.c.), (77)

where as before we have dropped an overall constant, ab-

sorbed one of the four-fermion terms into the density-density

interactions between the separated edges, and set t1 = |t1|eiθ.

Under the above gauge transformations, Φ↑↓ transforms as

Φ↑↓ → e−iΛ↑−iΛ↓Φ↑↓. (78)

As before, we consider a self-consistent mean-field solution

〈Φ↑↓〉 =
√

2|t|〈χ↑ψ↓ + e−2i(φ1↑+φ↓+θ)〉. (79)

To understand the physics when Φ↑↓ is non-zero, we expand

the action around this mean-field solution by setting:

Φ↑↓ = Φ̄↑↓e
ia↑↓ . (80)

This leads to the following interface Lagrangian at long wave-

lengths:

Ltun;↑↓ =κΦ
2

↑↓(a
↑ + a↓ + ∂a↑↓)

2 +

√

|t|
2
Φ↑↓(e

ia↑↓χ↑ψ↓

+ h.c.+ cos(2φ1↑ + 2φ↓ − a↑↓)), (81)
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where a↑↓ → a↑↓ − Λ↑ − Λ↓ under local gauge transforma-

tions. As before, we see that when Φ̄↑↓ = 0, the two states

are effectively decoupled. When Φ̄↑↓ 6= 0, we see that it is

possible for the composite electron ψ to tunnel across the in-

terface directly into the composite hole χ. Importantly, since

the edge boson fields have a net chirality, they cannot be fully

gapped by any type of backscattering term, and therefore the

existence of at least one gapless edge field is guaranteed.

In order to understand the possible phases for the edge bo-

son fields, let us consider their commutation relations:

[φ↓(x), φ↓(y)] = i
π

2
sgn(x− y),

[φ1↑(x), φ1↑(y)] = i
π

2
sgn(x− y),

[φ2↑(x), φ2↑(y)] = −iπsgn(x− y). (82)

These commutation relations imply that the cosine term

cos(2φ1↑ + 2φ↓ − a↑↓)) in Eqn. (81) cannot pin its argu-

ment to a constant value in space, as the argument does not

commute with itself at different points in space. Therefore,

we see the appearance of an interface phase that we refer to as

partially fused interface 1. The composite holes can directly

tunnel across the interface into composite electrons, because

Φ̄↑↓ 6= 0, and the single electron correlations 〈c†(x, t)c(0, 0)〉
decay algebraically because all of the interface fields are gap-

less.

The existence of three gapless interface fields, φ↓, φ1↑, φ2↑
is not guaranteed. Within a partially fused phase, a term of the

form,

cos(−2φ1↑ + 2φ↓ − 2φ2↑ − a′↑↓), (83)

can pin its argument to a constant value in space, thus effec-

tively eliminating the right-moving chiral field φ1↑ − φ↓ and

left-moving chiral field φ2↑ from the low energy physics, leav-

ing behind a single right-moving chiral field,

φn = φ1↑ + φ↓. (84)

The cosine term, Eqn. (83), can be generated in the effective

action as follows. We consider a correlated electron tunneling

term across the interface:

L′

tunn;↑↓ = t3c
†
↓c

†
1↑c2↑∂xc2↑ + h.c.

= t3ψ
†
↓χ↑e

−i2φ↓+i2φ1↑+2iφ2↑ + h.c. (85)

Decoupling the fermion and boson fields with a Hubbard-

Stratonovich transformation, as before, we obtain:

L′
tunn;↑↓ =

√

t3
2
(ψ†

↓χ↑Θ↑↓+

Θ∗
↑↓e

−i2φ↓+i2φ1↑+2iφ2↑ + h.c.)− |Θ↑↓|2/2 (86)

Expanding Θ↑↓ around its mean-field value Θ↑↓ by including

its phase fluctuations:

Θ↑↓ = Θ↑↓e
ia′↑↓ , (87)

we obtain

L′
tunn;↑↓ =

√

t3
2
(ψ†

↓χ↑Θ↑↓e
ia′↑↓+

Θ↑↓ cos(−2φ↓ + 2φ1↑ + 2φ2↑ − a′↑↓) + h.c.)

(88)

Therefore, when Θ↑↓ 6= 0 and the cosine term above is rele-

vant, the the field −φ↓ + φ1↑ + φ2↑ − a′↑↓ is pinned.

In order to understand the physical consequence of this,

observe that none of the electron operators, c1↑, c2↑, c↓ com-

mute with the argument of the cosine, −2φ↓ + 2φ1↑ + 2φ2 −
a′↑↓. In fact, each of the electron creation operators, c†α(x),
for α, β =↓, 1 ↑, and 2 ↑, create a 2π kink in the field

−2φ↓ + 2φ1↑ + 2φ2↑ − a′↑↓. The operator c†α(x)c
†
β(x

′), for

α, β =↓, 1 ↑, and 2 ↑, when acting on the ground state of

the system, creates a finite energy pair of domain walls in

−2φ↓ + 2φ1↑ + 2φ2↑ − a′↑↓. Therefore, single electron corre-

lations must decay exponentially along the interface. In fact,

correlation functions of all operators that carry non-zero elec-

tric charge must, for the same reason, decay exponentially

along the interface. However, since the field φ1↑ + φ↓ is

gapless, electrically neutral operators, such as c†↓c1↑, can have

power-law correlations along the boundary, just as other neu-

tral operators do in the bulk.

The interface theory can then be written as:

Ledge =
1

4π
[(∂tφn − a↑t − a↓t )∂xφn +

1

4
aαt a

α
x − vn(∂xφn − 1

2
a↑x −

1

2
a↓x)

2]

+ κΦ
2

↑↓(a
↑ + a↓ + ∂a↑↓)

2 +

√

|t|
2
Φ↑↓(χ↑ψ↓e

ia↑↓ + h.c.)

+ κ′Θ
2

↑↓(a
↑ − a↓ + ∂a′↑↓)

2 +

√

t3
2
Θ↑↓(ψ

†
↓χ↑e

ia′↑↓ + h.c.). (89)

It is useful to note that the ν = 1 neutral mode φn at this

interface can be fermionized by introducing a chiral fermion

field:

ΨR ∼ ei(φ1↑+φ↓). (90)
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We will revisit this point in Sec. VI to understand the emer-

gence of a Dirac fermion at the quantum phase transition be-

tween the CFL and Anti-CFL.

Therefore, as summarized at the beginning of this section,

the CFL - I - Anti-CFL interface hosts three distinct inter-

face phases, two of which allow topological transmutation of

composite electrons of the CFL into composite holes of the

Anti-CFL.

1. Application to Pfaffian - I -Anti-Pfaffian junctions

As in the CFL - I - CFL case, an interesting corollary of

the above analysis appears in the case where the composite

fermions of the CFL condense into a px + ipy paired state,

while the composite holes of the Anti-CFL condense into a

px − ipy paired state. In this case, the CFL is replaced by the

Moore-Read Pfaffian state, while the Anti-CFL is replaced by

the Anti-Pfaffian.

The boundary between the Pfaffian and Anti-Pfaffian is de-

scribed by the Lagrangian

L =− 1

4π
KIJ∂tφI∂xφJ − VIJ∂xφI∂xφJ ,

+ iηα(∂t − v∂x)ηα (91)

with K =







2 0 0

0 −1 0

0 0 2






, and where ηα are chiral Majorana

fields, each propagating with velocity v. For convenience, we

have relabelled the scalar fields φ1 = φ1↑, φ2 = φ2↑, φ3 =
φ↓.

The logic of the previous section, applied in this case, now

implies the existence of several distinct interface phases at the

junction between the Pfaffian and Anti-Pfaffian:

1. Decoupled interface, where electron tunneling across

the interface is irrelevant.

2. Partially fused interface 1. The copropagating Majo-

rana modes spontaneously acquire an expectation value,

〈η↑η↓〉 6= 0, which does not cause them to acquire an

energy gap, but which does allow the neutral fermion of

the bulk Pfaffian state to directly tunnel across the in-

terface as the neutral fermion of the bulk Anti-Pfaffian

state. Single electron correlations remain algebraic

along the interface. The interface has a chiral central

charge c = cL − cR = −1 + 3 = 2, where cL = 1
from the left-moving ν = 1 mode, and cR = 3 from

the two right-moving Majorana fermion modes and two

right-moving ν = 1/2 boson modes.

3. Partially fused interface 2. The three bosonic modes

are gapped, due to a large tunneling term, cos(−4φ1 +
4φ2 + 4φ3), leaving behind a single right-moving neu-

tral ν = 1 boson mode, φn = φ1 + φ2.69 Correlation

functions of charged operators, such as single-electron

(a)

Insulator 

Pfa!an

Anti-Pfa!an

(b)

(d)

Pfa!an

Anti-Pfa!an

Anti-Pfa!an

Pfa!an

(c)

Anti-Pfa!an

Pfa!an

FIG. 4: The interface between the Pfaffian and Anti-Pfaffian states

hosts four topologically distinct interface phases. The wavy lines

depict the chiral Majorana fermion modes, while the solid lines de-

pict the chiral ν = 1/2 Luttinger liquid modes, and the dashed line

depicts the chiral ν = 1 Luttinger liquid mode. (a) The decoupled

interface. (b) Partially fused interface 1, where 〈η↑η↓〉 6= 0, which

allows the neutral fermion from the Pfaffian to directly tunnel across

the interface as the neutral fermion in the Anti-Pfaffian. (c) Partially

fused interface 2, where the boson modes have been partially gapped,

leaving behind a neutral ν = 1 chiral boson mode. 〈η↑η↓〉 = 0,

so that the neutral fermion from the Pfaffian cannot directly tunnel

across the interface. (d) Partially fused interface 3, which is the same

as (c), but 〈η↑η↓〉 = 0, allowing the neutral fermion to directly tunnel

across the interface.

correlations, therefore decay exponentially along the in-

terface. The neutral fermion of the Pfaffian cannot tun-

nel across into the neutral fermion of the Anti-Pfaffian

because 〈η↑η↓〉 = 0.

4. Partially fused interface 3. Same as partially fused in-

terface 2, except that 〈η↑η↓〉 6= 0, so that the neutral

fermion from the Pfaffian can tunnel into the neutral

fermion of the Anti-Pfaffian.

In all of these cases, the interface hosts edge modes that are

stable to local perturbations. This provides a non-trivial ex-

ample where the boundary between two topological phases

possesses robust gapless chiral edge modes, but nevertheless

hosts several different topologically distinct boundary phases.

Similar examples of topologically distinct boundary phases

for gapped interfaces of Abelian topological states have been

classified recently in Ref. 42–44, and interesting examples of

topologically distinct gapless boundary phases have recently

been discovered in Ref. 45.
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VI. CONTINUOUS TRANSITION BETWEEN CFL AND

ANTI-CFL

In the previous sections, we have developed a bulk effec-

tive field theory for the Anti-CFL. A natural question now is

to understand the nature of the zero temperature phase transi-

tion between the CFL and Anti-CFL. This can be tuned, for

example, by varying the filling fraction through ν = 1/2 in

the limit of zero Landau level mixing. One can distinguish

two possibilities, depending on whether the phase transition

is first order or continuous in the clean (disorder-free) limit.

If first order, as we will briefly describe, the transition will be

rendered continuous in the presence of disorder. A continuous

zero temperature quantum phase transition will have impor-

tant consequences for broad regions of the finite temperature

phase diagram in the vicinity of ν = 1/2.

A. Clean Critical Point

In this section, we present a theory that describes a contin-

uous transition between the CFL and Anti-CFL in the absence

of disorder.

Recall the effective action in Eqn. (35) for the Anti-CFL.

Let us rewrite this action by introducing the linear combina-

tions:

aρ = −ã−A,

aσ = 2ã+A. (92)

In terms of these gauge fields, the effective action for the Anti-

CFL becomes

LACFL =− 2

4π
aρ∂aρ +

1

2π
(a−AE)∂a

ρ

+
1

2π
a∂aσ +

1

4π
aσ∂aσ+

χ†(i∂t + at + µh)χ− 1

2mh
χ†(i∂i + ai)

2χ. (93)

Now we can see that if aσ were set to zero, this would be

identical to LCFL (see Eqn. (7), with the replacement of χ by

ψ, mh by me, and µh by µe). This motivates the following

theory, which can describe the transition between CFL and

Anti-CFL:

Ltrans = − 2

4π
aρ∂aρ +

1

2π
(a−AE)∂a

ρ

+
1

2π
a∂aσ +

1

4π
aσ∂aσ + χ†(i∂t + at + µ)χ

− 1

2m
χ†(i∂i + ai)

2χ+ |(i∂ + aσ)ϕ|2 + V (ϕ). (94)

When ϕ is disordered, 〈|ϕ|〉 = 0, this theory describes the

Anti-CFL state. When ϕ orders, 〈|ϕ|〉 6= 0, aσ gets Higgsed.

Setting aσ = 0 recovers LCFL. At the transition, µe = µh =
µ and mψ = mχ = m; these parameters may vary away from

the transition from their values at the transition.

Examining Eqn. (94), we see that the CS term for aσ at-

taches a unit flux to ϕ to convert it to a fermion. In fact, using

CFL

Anti-CFL

CFLCFL2 2

FIG. 5: Zero temperature (mean-field) phase diagram of Eqn. (95).

the duality proposed in Ref. 46, the boson ϕ can be fermion-

ized, yielding the following dual effective theory of the critical

point:

Ltrans = − 2

4π
aρ∂aρ +

1

2π
(a−AE)∂aρ − 1

2

1

4π
a∂a

+ χ†(i∂t + at + µ)χ− 1

2m
χ†(i∂i + ai)

2χ

+Ψ†σt[σµ(i∂µ + aµ)−mΨ]Ψ + µΨΨ
†Ψ, (95)

where Ψ is a two-component Dirac fermion, and σt ≡ σz ,

σx, σy are the Pauli matrices. We have included a chemical

potential term µΨ, which is allowed in general; the analogous

term in Eqn. (94) is difficult to analyze because it involves

monopole operators. When mΨ < 0 and |mΨ| > |µΨ|, in-

tegrating out Ψ cancels the CS term for a, and gives the CFL

theory, LCFL. When mΨ > 0 and |mΨ| > |µΨ|, integrat-

ing out Ψ gives an additional − 1
2

1
4πa∂a. The resulting La-

grangian can be seen to be equivalent to that of the Anti-CFL

theory.

When |µΨ| > |mΨ|, the Ψ fermions form a Fermi sea,

and the system transitions into a novel type of CFL-like state

but with two bands of composite-fermion-type excitations,

which we label CFL2. The phase diagram described above

is sketched in Fig. 5.

Importantly, we see that within this theory, the only way to

tune from the CFL to the Anti-CFL states is to pass through

a phase transition. There is a direct phase transition when

µΨ = 0; when µΨ 6= 0, there is an intermediate phase. In

the following discussion, we analyze the direct transition as

mΨ is tuned through zero, with the chemical potential fixed at

µΨ = 0.

1. Coupled Chain Description

An interesting way to approach the critical point, which

makes contact to the results of Sec. V B, is to consider al-

ternating strips of CFL and Anti-CFL, reminiscent of the per-

colation picture for the IQH plateau transition of Chalker and

Coddington.47 In Sec. V B, we showed that the interface be-

tween the CFL and Anti-CFL necessarily possesses a chiral

electrically neutral fermion field (or, alternatively, a ν = 1
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FIG. 6: The transition between the CFL and Anti-CFL can be under-

stood by considering alternating strips of the two phases. tn and t′n
describe the backscattering of counterpropagating chiral fermions, as

shown.

neutral chiral boson field). Therefore, alternating strips of

CFL and Anti-CFL possess counterpropagating chiral fermion

fields, as shown in Fig. 6. For a finite size strip, there will be

backscattering terms between these counterpropagating fields,

which we have labelled tn and t′n in Fig. 6. When tn > t′n, the

system is in the Anti-CFL state everywhere. When t′n > tn,

the system is in the CFL state everywhere; it can be easily

verified that the remaining edge fields can be reduced, via

backscattering terms, to the minimal CFL boundary theory

introduced in Sec. IV. At the critical point, tn = t′n, the in-

terface fields delocalize in both directions and form the 2+1D

Dirac fermion field Ψ.

2. Mean-field Treatment

The transition at mΨ = 0 is continuous in the absence of

gauge fluctuations of a, if the Dirac fermionΨ does not couple

to the holes χ. In what follows, we show that the transition

remains continuous in the presence of these fluctuations as

well. The analysis below extends previous work in Ref. 22 for

the continuous Mott transition between a Landau Fermi liquid

and a U(1) spin liquid Mott insulator, and also the closely

related analysis of Ref. 23 for the transition between the CFL

and a Landau Fermi liquid.

First, let us consider the continuity of the transition in a

mean-field limit where the gauge fluctuations of a are ignored.

In this limit, we must analyze the effects of any coupling be-

tween the Dirac fermion Ψ and hole χ. In principle, there are

three additional quadratic interactions that one can add to Eqn.

(95),

Lquad = g1χ
†χ+ (g2)α(Ψ

†
αχ+ h.c.), (96)

for α = 1, 2, that may be added to Ltrans in Eqn. (95). The

first interaction parameterized by g1 is merely a shift of the

hole chemical potential which is fixed so that the system sits

at half-filling. The second interaction parameterized by g2
mixes the Ψ and χ fields. In the clean limit, this interaction

vanishes at long wavelengths due to an oscillating coupling,

proportional to exp(ikFx), arising from the hole Fermi sea.

As described in the previous subsection, we tune the Ψ chem-

ical potential µΨ → 0.

We now consider quartic interactions between the Dirac

fermion current and the particle-hole continuum of the χ
fermions:

∫

dtd2x
[

λµj
Ψ
µ χ

†χ
]

, (97)

where jΨµ = Ψ†σµΨ and λµ are coupling constants.

Strict perturbation theory about the decoupled fixed point

indicates that the interactions parameterized by λµ are irrel-

evant. The tree-level momentum-space scaling assignments

are as follows: [ω] = 1, [k⊥] = 1, [k‖] = 0, [pµ] = 1, [χ] =
−3/2, and [Ψ] = −2, where k⊥ refers to the momentum

of the composite hole perpendicular to the Fermi surface, k‖
is the momentum parallel to the Fermi surface, and pµ col-

lectively denotes the frequency and momentum of the Dirac

fermion. For generic values of the hole momentum, the inter-

action has momentum-space scaling dimension equal to +2,

while for special kinematic values, say, when the incoming

and outgoing hole have equal and opposite momentum, the

interaction is dimension +1. In both cases, the interaction is

irrelevant at weak coupling.

We may also consider the interaction generated after inte-

grating out the hole Fermi sea. Integrating out the excitations

about the hole Fermi surface leads to an interaction of the form
∫

dωd2kΠb(ω, k)|λµjΨµ (k, ω)|2, (98)

whereΠb(ω, k) ≈ c1+
c2|ω|
k in the limit thatω/k → 0. Within

this mean-field treatment, c1 is the finite, non-zero compress-

ibility of the χ fermions while c2 is a second finite constant.

The operator jΨµ (ω, k) has (momentum-space) scaling dimen-

sion −1 about the Dirac fermion critical point where the dy-

namic critical exponent z = 1, implying that (98) is an irrel-

evant perturbation. Therefore, the Dirac fermion Ψ and com-

posite holeχ are decoupled at long wavelengths in the absence

of the fluctuations of the gauge field a, thereby, implying that

in mean-field theory, the transition remains continuous.

3. Gauge Fluctuations

Next, let us discuss a few properties of the transition in the

presence of fluctuations of the gauge field a. We show that

the transition remains continuous in the presence of the gauge

fluctuations, which leads to a rich finite temperature phase di-

agram with two finite temperature crossover scales.

We shall be interested in the behavior of the theory in the

kinematic regime, 0 ≤ |ω| < vF |k| ≪ vFkF , where ω refers

to the Wick-rotated (imaginary time) frequency, kF =
√
2mµ

is the Fermi momentum at half-filling, and the Fermi velocity

vF = kF /m. We treat the problem using the random phase

approximation (RPA).
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We work in Coulomb gauge, ∂iai = 0. The temporal gauge

fluctuations of a0 are screened by the χ fermions, and de-

couple from the low-energy physics. The transverse magnetic

fluctuations of ai are damped by both Ψ and χ fluctuations.

In the kinematic regime, |ω| ∼ |k| ≪ kF , ai first receives the

one-loop self-energy correction due to fluctuations of the Ψ
fermions,

Π
(Ψ)
ij (ω, ki) =

√

ω2 + |k|2
16

δij . (99)

(Here, we have identified the cutoff of the entire theory with

the Fermi wave vector.) The correction in Eqn. (99) softens

the IR behavior of the ai propagator. In the RPA, the ai prop-

agator is diagonal:

Gij(ω ∼ |k|) = 16
√

ω2 + |k|2
δij . (100)

While not present for mΨ = 0, an off-diagonal term aris-

ing from a bare Chern-Simons coupling is subleading in the

RPA. We note that the transverse gauge field propagator in

Eqn. (100) is identical to the one-loop corrected gauge field

propagator of QED3.

As we proceed to lower frequencies 0 ≤ |ω| < vF |k|, the

composite hole sea Landau damps the transverse gauge field

leading to an additional (diagonal) self-energy correction,

Π
(χ)
ij = γ0

|ω|
|k| δij , (101)

where γ0 = mvF
2π . Putting together these two self-energy cor-

rections in Eqns. (99) and (101), the gauge field propagator

takes the asymptotic form:

Gij(ω < vF |k| ≪ vFkF ) =
δij

γ0
|ω|
|k| +

|k|
16

. (102)

To understand whether or not the Dirac fermions remain

massless at the transition in the presence of gauge fluctua-

tions, we need to determine the form of the Dirac fermion self-

energyΣΨ at the transition. If this self-energy approaches a fi-

nite, non-zero constant at low frequencies and momenta, then

we conclude that the Dirac fermions obtain a mass at the tran-

sition, thereby, implying a fluctuation-driven first-order transi-

tion; otherwise, the transition remains continuous in the pres-

ence of interactions. Using the asymptotic form for the gauge

field propagator in Eqn. (102), the one-loop correction to ΣΨ

in the regime |ω| < vF |k| takes the form:

ΣΨ(q0, |q|) =
∫

dωd2k

(2π)3

((ω + q0)σ
z + (ki + qi)σ

i

(ω + q0)2 + |k + q|2
)( |k|

γ0|ω|+ k2

16

)

. (103)

At q0 = |q| = 0, we find that the above self-energy vanishes.

This indicates that the transition remains continuous at leading

order. Intuitively, we note that the |ω|/q contribution to the

propagator for the transverse gauge fluctuations looks, from

the point of view of the Dirac fermions, like a mass term for

the gauge field, because of the relativistic (z = 1) dispersion

of the Dirac fermions. This provides another way to see that

the damped gauge fluctuations should continue to leave the

Dirac fermion transition continuous.

We comment that the composite holes receive a self-energy

correction of the marginal Fermi liquid29 form due to their in-

teraction with the transverse gauge field precisely at the tran-

sition point. This arises from a combination of screening of

the gauge field by the Dirac fermion and Landau damping by

the composite hole Fermi surface, i.e., the gauge field propa-

gator in Eqn. (102). In contrast, the scaling of the self-energy

of the composite holes or composite electrons on the mΨ > 0
or mΨ < 0 side of the transition depends upon the form of

the electron-electron density-density interaction. As we re-

mark below, if the Coulomb interaction is un-screened, the

self-energy has a marginal Fermi liquid form on both sides

of the transition as well. For shorter-ranged interactions, the

frequency-dependent self-energy is expected to scale with a

power that is less than unity.

4. Finite-Temperature Phase Diagram

It is interesting to examine the effect of the fermions on

the gauge field more closely.22 On the Anti-CFL side of the

transition, mΨ > 0, the action for the transverse component

of the gauge field, after integrating out both the Dirac fermion

and composite hole, contains the terms:

Seff[a] =

∫

dωd2k
[

γ0
|ω|
k

+ χ0k
2

+σ0
√

ω2 + k2F
(

√
ω2 + k2

|mΨ|
)

|a(ω, k)|2
]

, (104)

where we have assumed 0 ≤ ω < vF |k|. The scaling func-

tion:

F (x) =x, for x = 0,

=1, for x = ∞. (105)

The parameters χ0, and σ0 are finite constants. We implement

the 0 ≤ |ω| < vF |k| limit by replacing:

√

ω2 + k2F
(

√
ω2 + k2

|mΨ|
)

→ |k|F (|k|/|mΨ|). (106)
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An interesting feature of this transition is the existence of two

crossover temperature scales which follows from Eqns. (104)

and (106). For |q| > T ∼ ω > T ∗ ∝ mΨ, the Dirac

fermions are effectively massless, and therefore the system

is effectively a “quantum critical” non-Fermi liquid. As the

temperature is lowered below T ∗, the Dirac fermions begin

to decouple, however, their influence on the gauge fields con-

tinues to be felt. The frequency and momenta of the gauge

field are related by ω ∼ (σ0/γ0)|k|2 < |k| in the high tem-

perature limit and so the scaling function only crosses over

to its low-energy limit for T ∼ T ∗∗ = (σ0/γ0)m
2
Ψ, which

in the region about the critical point is lower than T ∗. In the

crossover regime T ∗∗ < T < T ∗, the Dirac fermions are ef-

fectively massive, but the gauge propagator has not changed

significantly. This means that the theory is formally similar to

the case where the holes χ feel a long-ranged Coulomb inter-

action, in which case they form a “marginal” composite Fermi

liquid. In this marginal Anti-CFL, the self-energy of the holes

scales as:

Σ(ω) ∼ ω lnω, (107)

while the specific heat scales like,

Cv ∼ T lnT. (108)

For T < T ∗∗, the fate of the system depends on whether

there are long-ranged Coulomb interactions, or if they have

been screened (by, e.g., an external gate). In the former case,

there is no qualitative modification of these scaling forms

upon lowering the temperature through T ∗∗. In the latter case,

for T < T ∗ the fermions have a different self-energy:

Σ(ω) ∼ ω2/3, (109)

for short-ranged interactions, while the specific heat scales

like

Cv ∼ T 2/3. (110)

Identical considerations apply on the CFL side (mΨ < 0) of

the transition.

In addition, the system appears to be incompressible at the

critical point. We find the (DC) compressibility to vanish lin-

early as the wave vector k → 0.

B. Disordered Critical Point

In the presence of quenched disorder (which breaks

particle-hole symmetry), the transition between the CFL and

Anti-CFL must be continuous. This follows from the absence

of first-order transitions in the presence of disorder in two spa-

tial dimensions or below.48–50

There are two possible cases to consider. First, suppose

that in the clean limit, the transition is continuous, possibly

described by the effective field theory presented above. The

effect of weak disorder can then be included as a perturbation,

which maps onto a random mass in Eqn. (95). Since Eqn.

(95) represents a non-trivial strongly coupled field theory, it

Anti-CFLCFL

Marginal 

Anti-CFL

T*

T**

Quantum Critical

Non-Fermi Liquid

Marginal 

CFL

FIG. 7: Finite temperature phase diagram for the CFL - Anti-CFl

transition, as predicted by the theory presented in Eq. (94) - (95). For

short-ranged interactions, the system exhibits two crossover tempera-

ture scales, T ∗ and T ∗∗. For long-ranged interactions, T ∗∗ has no ef-

fect, and there is effectively a single crossover temperature scale T ∗.

The tuning parameter mΨ shown in the figure is the Dirac fermion

mass in Eqn (95), which is a phenomenological parameter in the field

theory. Physically, it can be taken to be a perturbation that breaks

particle-hole symmetry and thus favors the CFL or Anti-CFL.

is difficult to determine the exact scaling dimensions of op-

erators, and thus to deduce the effect of disorder. If disorder

is weak and perturbatively irrelevant, then the clean critical

theory will continue to describe the long wavelength behavior

of the system down to zero temperature. If disorder is rele-

vant, then the clean critical point would only be valid down

to some crossover temperature scale, below which the long

wavelength properties will be described by an alternative dis-

ordered critical fixed point, the study of which we leave for

future work.

Suppose instead that the transition is first order in the clean

limit. There is a standard argument for the rounding of a first

order transition in the presence of disorder that locally favors

one phase or another.48–50 Here we will briefly review this ar-

gument, in the context of the CFL - Anti-CFL transition. If

the CFL - Anti-CFL transition is first order in the absence of

disorder, there is a characteristic correlation length, ξ, near

the transition. ξ can be thought of as the length scale beyond

which it makes sense to identify the system as being in the

CFL or Anti-CFL. It should be equivalent to the characteristic

length scale of the exponential decay of bulk single electron

correlations in the CFL or Anti-CFL. Thus, in the presence of

disorder, the system can be broken up into regions of linear

dimension ∝ ξ, in which case it will locally be in the CFL

or Anti-CFL state. Whether the system is locally in the CFL

or Anti-CFL state in any given region can be considered to

be an effective Ising degree of freedom. The surface tension

between different neighboring regions is proportional to the

length of their boundary, and can be thought of as an antifer-

romagnetic interaction between the effective Ising degrees of

freedom. The disorder thus acts effectively like a random field

in an Ising model. However, this model does not have a phase

transition in two spatial dimensions. Since we know there

must be a phase transition between the CFL and Anti-CFL,
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this implies that the starting assumption that the transition is

first order must be incorrect, and the system must instead ex-

hibit a continuous quantum phase transition.

We note that since the electron density does not jump across

the phase transition between the CFL and Anti-CFL, long-

range interactions alone, in the absence of disorder, would not

be expected to round an otherwise first-order transition.

VII. POSSIBLE EXPERIMENTAL SIGNATURES

In this section, we consider a number of observable signa-

tures that can distinguish the CFL and Anti-CFL. We reinstate

the constants ~ = h/2π, the electron charge −e < 0, the

speed of light c, and the unit of flux φ0 = hc/e.

A. DC transport: resistivity jumps

Here, we show that within the standard RPA treatment of

composite fermion theory, the difference between the CFL

and Anti-CFL is manifest in subtle differences in the low-

temperature DC transport properties of the two states exactly

at and near ν = 1/2. If we assume that the system is uni-

formly in the CFL state for ν < 1/2 and uniformly in the Anti-

CFL state for ν > 1/2, and that there is a first order transition

between the two states at exactly ν = 1/2, then we predict

jump discontinuities in the Hall and longitudinal resistivities.

The DC transport can therefore provide an indirect confirma-

tion of the existence of the Anti-CFL state and also provide

evidence of a first order transition between the the CFL and

Anti-CFL states. Absence of these discontinuities, in the limit

of zero Landau level mixing, would then presumably imply a

continuous transition between the CFL and Anti-CFL.

1. CFL

In the CFL state, the electrical resistivity is given by the

Ioffe-Larkin composition rule:24

ρCFL = ρcf + ρcs, (111)

where ρcf is the contribution to the resistivity coming from

the composite electrons (usually referred to as the composite

fermions), and ρcs is the contribution from the Chern-Simons

term of the statistical gauge field representing the attached flux

tubes, with

ρcs =
h

e2

(

0 −2

2 0

)

. (112)

Close to ν = 1/2, we can approximate the composite elec-

tron Hall resistivity by its classical value,

ρcf
yx =

1

neec
Beff =

h

e2
1− 2ν

ν
, (113)

where Beff = B − 2φ0ne is the effective magnetic field seen

by the composite electrons, B is the total applied magnetic

field, ne is the electron density, and ν = φ0ne/B. Deviations

away from half-filling are parameterized using:

δ = 1− 2ν =
nh − ne
ne + nh

. (114)

Note that δ → −δ under the particle-hole transformation,

ν → 1− ν.

The longitudinal resistivity of the composite electrons can

be taken to be

ρcf
xx = ρcf

yy =
mψ

nee2τcftr

, (115)

where τcftr is the composite electron transport scattering time.

Eqn. (111) tells us that the electrical longitudinal resistivity

ρCFL
xx = ρcfxx.

The electrical conductivity tensor is obtained by inverting

ρCFL:

σCFL
xy =

e2

h

2 + δ
ν

(ρ̄cfxx)
2 + (2 + δ

ν )
2
, (116)

where ρ̄cfxx = ρcfxx
e2

h is the longitudinal resistivity in units of
h
e2 . Note that at exactly half-filling, when δ = 0, we have:

σCFL
xy =

e2

h

2

(ρ̄CFL
xx )2 + 4

<
1

2

e2

h
, (117)

where ρ̄CFL
xx = ρ̄cf

xx is the measured longitudinal resistivity at

half-filling, in units of h/e2 (in the CFL state). Thus, the Hall

conductivity of the CFL, at exactly half-filling, is strictly less

than 1
2
e2

h .

2. Anti-CFL

Now let us consider the resistivity of the Anti-CFL state. As

before, the Ioffe-Larkin rule allows us to write the resistivity

of the holes as:

ρh = ρch − ρcs, (118)

where ρch is the resistivity of the composite holes and −ρcs is

the resistivity due to the attached flux tubes, which is given

by Eqn. (112). The minus sign in front of ρcs relative to the

corresponding expression in Eqn. (111) is due to the fact that

the composite holes are attached to +2 units of statistical flux

as opposed to the −2 units of flux which are coupled to the

composite electrons. Close to ν = 1/2, we approximate the

Hall resistivity of the composite holes as

ρch
yx =

1

nhec
Beff =

h

e2
1− 2ν

1− ν
=

h

e2
δ

1− ν
, (119)

where we have used the relation ne+nh = B/φ0 and the fact

that the composite holes feel the same effective magnetic field
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as the composite electrons. Comparing to the composite elec-

tron Hall resistivity in Eqn. (113), we notice the replacement

of ν−1 by (1− ν)−1.

We write the resistivity of the composite holes as

ρch
xx = ρch

yy =
mχ

nhe2τ ch
tr

, (120)

where τ ch
tr is now the scattering time for the composite holes

and mχ is the renormalized composite hole mass. Precisely

at half-filling and in the limit where particle-hole symmetry

is preserved (i.e. zero Landau level mixing), the composite

holes and composite electrons should have the same diffusion

constant, so that σcf
xx = σch

xx at half-filling. Since the off-

diagonal components of σch and σcf vanish at ν = 1/2, this

also implies

ρchxx = ρcfxx at ν = 1/2. (121)

In general, since the composite hole density is magnetic field

dependent, τ ch
tr will be different from τ cf

tr in its field depen-

dence as we move away from half-filling.

The electrical conductivity of the full system in the Anti-

CFL phase is given in terms of the conductivity of the holes

and the single filled Landau level:

σACFL = (ρh)−1 +
e2

h

(

0 1

−1 0

)

. (122)

Setting δ = 0 in order to sit precisely at half-filling, we find

σACFL
xy =

2 + (ρ̄ch
xx)

2

4 + (ρ̄ch
xx)

2
>

1

2

e2

h
, (123)

where ρ̄chxx = e2

h ρ
ch
xx. Using Eqns. (118), (122), the composite

hole resistivity can be written in terms of the physical, mea-

sured conductivity as

ρch
xx = ρh

xx =
σACFL
xx

(σACFL
xx )2 + (σACFL

xy − e2

h )
2

(124)

Remarkably, the Hall conductivity of the Anti-CFL, at exactly

half-filling, is strictly greater than 1
2
e2

h .

From the expressions for the Hall conductivities at half-

filling (δ = 0) computed within the CFL and Anti-CFL theo-

ries, Eqns. (117) and (123), we observe the “sum rule”:

σCFL
xy + σACFL

xy =
e2

h
. (125)

At the critical point presented in Sec. VI, we find the Hall

conductivity to equal 1
2
e2

h within a linear response treatment.

3. Comparison of the CFL and Anti-CFL Resistivity

Therefore, in comparing the resistivity tensors for CFL and

Anti-CFL, at ν = 1/2, we find:

ρCFL
yx = 2

h

e2
ρACFL
yx =

h

e2
2 + (ρ̄ch

xx)
2

1 + (ρ̄ch
xx)

2

ρCFL
xx = ρcf

xx ρACFL
xx =

ρ̄ch
xx

1 + (ρ̄ch
xx)

2
, (126)

where the composite particle resistivities can be obtained in

terms of physical, measurable quantities as described in the

previous subsections.

If the system is uniformly in the CFL state for ν < 1/2 and

in the Anti-CFL state for ν > 1/2, the resulting resistivity

will be given by:

ρ =

{

ρCFL if δ > 0 (ν < 1/2)

ρACFL if δ < 0 (ν > 1/2).
(127)

This piece-wise behavior implies a small jump in the electrical

resistivity tensor at ν = 1/2:

∆ρxx ≡ ρxx|δ=0− − ρxx|δ=0+ = − h

e2
(ρ̄(−)
xx )3,

∆ρyx ≡ ρyx|δ=0− − ρyx|δ=0+ = − h

e2
(ρ̄(−)
xx )2. (128)

In Eqn. (128), we have denoted the jumps in terms of

ρ̄(−)
xx ≡ ρ̄xx(δ = 0−) (129)

which is equal to the resistivity at half-filling as approached

from ν < 1/2. Since the jumps are proportional to a power

ρ̄
(−)
xx , they would be more noticeable for somewhat more dis-

ordered samples.

In experiment,13 ρxx at ν = 1/2 is typically observed to

range from 100Ω/� to 5 kΩ/�. Taking the upper limit,

ρ̄(−) = .19, we find that the jumps, ∆ρxx ≈ −200Ω/� and

∆ρyx ≈ −1 kΩ/�. These jumps correspond to roughly 4%
and 2% differentials, ∆ρij/ρij .

In addition to the jump in electrical resistivity, there are also

discontinuities in the slopes, dρxxdδ and
dρyx
dδ . To compute these

discontinuities, we need to know the behavior of ρcfxx and ρchxx
as one moves away from half-filling. Let us assume the fol-

lowing analytic expansions:

ρcf
xx =ρ̄(−)

xx

(

1 +

∞
∑

n=1

cnδ
n
)

,

ρch
xx =ρ̄(−)

xx

(

1 +
∞
∑

n=1

c′nδ
n
)

, (130)

where the cn and c′n are model-dependent constants. Perform-

ing an expansion of the longitudinal and Hall resistivities first

in powers of ρ̄
(−)
xx and then in the deviation δ away from half-

filling, we find slope discontinuities:

∆ρ̄′xx ≡ dρ̄xx
dδ

∣

∣

∣

∣

δ=0−
− dρ̄xx

dδ

∣

∣

∣

∣

δ=0+
=ρ̄(−)

xx

(

4 + c′1 − c1

)

∆ρ̄′yx ≡ dρ̄yx
dδ

∣

∣

∣

∣

δ=0−
− dρ̄yx

dδ

∣

∣

∣

∣

δ=0+
=− 2(ρ̄(−)

xx )2
(

3 + c′1

)

.

(131)

If either c1 or c′1 are non-zero, along with any higher-order

coefficients in the assumed analytic expansion, these slope

discontinuities – if observed – could provide constraints on

theoretical models.
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To clarify the above expressions, it is helpful to consider

two typical ways of departing away from half-filling: (i) we

may fix the electron density ne and vary the magnetic fieldB,

or (ii) we may fix B and vary ne. In the former case, we may

write δ = 1−(1+(B−B1/2)/B1/2)
−1 ∼ (B−B1/2)/B1/2,

where B1/2 = 2φ0ne. In the latter case, we may write δ =
−(ne − (ne)1/2)/(ne)1/2, where (ne)1/2 = B/(2φ0).

To get a feeling for possible values of c1 and c′1, we can

estimate4 ρcfxx using Eqn. (115), with

(τcftr )
−1 =

4πnimp

mψkcfF ds
, (132)

where the impurity density nimp is contributed by a doping

layer a distance ds away from the electron gas and kcfF is the

Fermi momentum of the composite electrons. A similar esti-

mate can be given for ρch. Note, however, that nimp = ne
for both τcftr and τchtr , which directly leads to the absence

of a symmetry relating the expansion parameters cm to c′n
away from half-filling. We find ρcfxx ∝ (ne)

−1/2 and ρchxx ∝
(ne)

−1/2(1 + 2δ
1−δ )

−3/2. Fixing ne and varyingB away from

half-filling, we find c1 = 0 and c′1 = −3. Using again

ρ̄
(−)
xx = .19, we find the slope discontinuities: ∆ρ̄′xx = .19

and∆ρ̄′yx = 0 to O((ρ̄
(−)
xx )2). Within this model, the first con-

tribution to the discontinuity in the slope of the Hall resistivity

occurs at quartic order, ∆ρ̄′yx = 2(ρ̄
(−)
xx )4(5 + 2c′1) = −.003.

Therefore, if the system is uniformly in the CFL state for

ν < 1/2, and uniformly in the Anti-CFL state for ν > 1/2,

we expect the above discontinuities in the resistivity given in

Eqns. (128) and Eqn. (131).

Experimental observation of the jumps implies an interest-

ing interplay of disorder and strong interactions since the very

existence of the CFL requires the disorder to not be too strong

relative to the strength of the electron-electron interactions.

For sufficiently strong disorder, which smears out the incom-

pressible FQH states, the system at half-filling is presumably

perched at the integer quantum Hall plateau transition.

Deviations from the above predictions are expected if,

rather than a sharp first order transition between the two states,

the transition is continuous. As discussed in Sec. VI, the tran-

sition could be continuous in the absence of quenched disor-

der, or it could be intrinsically first order, but rounded by the

effects of disorder.

B. Magnetoresistance Oscillations and the Princeton

Experiment

A successful method of detecting the Fermi sea of compos-

ite fermions in the CFL is by imposing a periodic potential

on the system, modulated in one direction with a wave vector

q ≪ kF . As the magnetic field is varied, the system exhibits

oscillations in the magnetoresistance, which are determined

by when the diameter of the cyclotron motion is commen-

surate with the period λ = 2π/q. These oscillations occur

for magnetic field deviations away from half-filling that are

smaller than conventional Shubnikov-de Haas oscillations.

For charge −e < 0 fermions in a circular Fermi surface

with Fermi wave vector kF in a uniform magnetic fieldB, the

cyclotron radius Rc is given by

Rc =
~kF
eB

. (133)

Consider a modulation of the electric potential and the mag-

netic field, such that

U(x) = Uq cos(qx)

B(x) = B0 +Bq cos(qx). (134)

Let τ be the transport scattering time of the fermions, and

ωc =
eB0

mc . To leading order in (τωc)
−1, and for weak modu-

lations in the fields, the change in the resistivity is51

∆ρxx = ρ0
2τ2

h2n

q

Rc

(

B0

|B0|
Uq cos(qRc − π/4) +

kF
q

~eBq
mc

sin(qRc − π/4)

)2

. (135)

Here ρ0 is the longitudinal resistivity without the modulation,

τ is the transport scattering time, n is the density of fermions,

m is their mass, and the cylotron radius Rc is defined rela-

tive to the uniform part of the magnetic field, B0. Eq. (135)

is obtained from a semiclassical calculation, and is therefore

valid for temperatures Tc < T < πkF
q Tc, where Tc =

~ωc
kB2π2 .

As discussed in Ref. 51, this condition is so that the tempera-

ture is sufficiently high so that the sum over Landau levels can

be converted to an integral over energies, but low enough that

only states near the Fermi surface are excited. Outside of this

range, a fully quantum mechanical calculation is required.52

For the CFL, the modulation in electric potential, U(x), in-

duces a density modulation

ne(x) = ne0 +K00Uq cos(qx), (136)

where ne0 is the electron density in the absence of the poten-

tial modulation, and K00 is the compressibility of the CFL

state. This was estimated in RPA to be4

K00(ω = 0, q) ≈ mψ

~2(mψV (q) + 10π/3)
, (137)

where V (q) is the Fourier transform of the interaction poten-

tial, which for short-ranged interactions vanishes as q → 0.
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The density modulation in turn induces a modulation in the

effective magnetic field felt by the composite electrons of the

CFL,

Beff = (B −B1/2)− 2φ0K00Uq cos(qx), (138)

where B1/2 = 2φ0ne0 is the magnetic field at exactly half-

filling. Eq. (135) indicates that the ratio of the amplitudes

from the potential modulation and the magnetic field modu-

lation is
πmψ
h2K00

lB
λ ≈ lB

λ for the CFL with short-ranged in-

teractions. Typically, λ ∼ 500 nm while lB ∼ 10 nm, in-

dicating that the modulation from the potential term can be

ignored; including it yields a correction to the resistivity of

only ∼ 1− 2%.

Since ρii = ρcf
ii in the CFL, the only component of the re-

sistivity that receives a noticeable modulation is ρxx (at higher

orders, all components obtain an oscillatory component), and

is given by eq. (135). Minima in the longitudinal resistance

ρxx therefore occur when

2Rc = λ(l + 1/4), (139)

for integer l. In the CFL, the composite fermion density

is equal to the electron density, so that kF =
√
4πne0 =

√

2πB1/2/φ0. Moreover, the effective magnetic field seen

by the composite fermions is Beff = δB = B −B1/2, so that

the resistance minima are expected to occur whenever

δB =
2~

√
4πne0

eλ(l + 1/4)
. (140)

In the case of the Anti-CFL, the composite holes couple

with opposite charge to the external electromagnetic field.

Therefore they would effectively feel a potential modulation

with opposite sign:

Ueff(x) = −Uq cos(qx). (141)

This induces a change in the hole density:

nh(x) = nh0 −K00Uq cos(qx)). (142)

The effective magnetic field felt by the composite holes is

Beff = (B −B1/2)− 2φ0K00Uq cos(qx)) (143)

This then leads to a modulated resistivity for the composite

holes and therefore also the holes:

∆ρh
xx = ∆ρch

xx = ρch
0

2(τ ch
tr )

2

h2nh

q

Rc

(

− B0

|B0|
Uq cos(qRc − π/4) +

kF
q

~eBq
mχc

sin(qRc − π/4)

)2

, (144)

with Bq = −2φ0K00Uq and B0 = B − B1/2, while the

other components of ρch remain unmodulated. Note that in

this case, the Fermi wave vector of the composite holes is

kF =
√
4πnh0 =

√

4π(ν−1 − 1)ne0. The resistivity tensor

of the electron system in terms of the composite hole resistiv-

ity tensor is more complicated than the analogous problem in

the case of the CFL:

ρACFL = [(ρh)−1 +
e2

h
iσy]−1, (145)

where σy =

(

0 −i
i 0

)

. If we expand the above equation to

lowest order in ρhxx;0, we find:

∆ρACFLxx =
ρACFL0

ρh
0

∆ρh
xx +O((ρh0 )

3). (146)

Therefore, in the Anti-CFL, ignoring once again the contri-

bution from the potential modulations, one expects resistance

minima to occur whenever δB satisfies the following equa-

tion:

δB =
2~

√
4πnh0

eλ(l + 1/4)
, (147)

for integer l.

In the experiment of Kamburov et. al., Ref. 16, it was ob-

served that the resistance minima away from ν = 1/2 satisfied

Eqn. (140) for ν < 1/2, whereas the resistance minima are

much better approximated by Eqn. (147) for ν > 1/2. In

other words, the experiment is explained by considering the

system to be in the CFL state when ν < 1/2, and in the Anti-

CFL state for ν > 1/2.

We note that in the CFL, the potential modulation and ef-

fective magnetic field modulation are exactly π out of phase

relative to each other. This is due to the fact that in the CFL,

−2 units of flux are attached to each composite fermion. How-

ever in the Anti-CFL, we see that the effective potential mod-

ulation and effective magnetic field modulation, Ueff and Beff,

are exactly in phase. From eq. (144), we see that the phase dif-

ference between the potential and magnetic field modulation

enters the formula for the modulation in ∆ρxx. Even though

the effect of the potential modulation is weak compared to

that of the effective magnetic field modulation, it would be

interesting to see if the effect of these relative phases can be

extracted experimentally.

The analysis in Ref. 51 and its adaptation to the CFL and

Anti-CFL reviewed above for 1D periodic potentials also ap-

plies to 2D periodic potentials. Thus, we expect minima of

the magnetoresistance oscillations in such circumstances to

reflect the Fermi wave vector of the underlying state, consis-
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tent with recent observations.53

C. Magnetoresistance Oscillations Across CFL - Anti-CFL

Interfaces

An important consequence of the theory that we have de-

veloped here is the fact that the CFL - Anti-CFL interface

possesses a “partially fused” interface phase where the com-

posite electrons in the CFL can directly tunnel into composite

holes of the Anti-CFL. As emphasized above, this is a highly

non-trivial phenomena, because the composite electrons of

the CFL and the composite holes of the Anti-CFL represent

topologically distinct degrees of freedom of the electron fluid.

Here we would like to investigate methods to detect such a

phenomenon.

To this end, let us consider the application of a periodic

potential to the electron fluid,

U(x) = Uq cos(qx), (148)

where q is the wavelength of the potential modulation. This

induces a density modulation in the electron fluid:

ne(x) = ne0 +K00Uq cos(qx). (149)

We would like to consider the amplitudeUq to be large enough

so that this potential induces striped domains of alternating

regions with ν > 1/2 and ν < 1/2, which would induce

alternating regions of CFL and Anti-CFL (see Fig. 8). Since

the electron tunneling across the interface between ν < 1/2
and ν > 1/2 is as strong as it is in the rest of the system,

we expect that the CFL - Anti-CFL interfaces would be in a

partially fused phase (see Sec. V B).

Next, consider the magnetoresistance ρxx(B), as a func-

tion of the magnetic field B tuned away from half-filling.

The composite electrons of the CFL directly tunnel into the

composite holes of the Anti-CFL, so one expects magnetore-

sistance oscillations ρxx(B), with a period set by the Fermi

wave vector of the composite particles and the wavelength of

the modulation. As B is tuned, the width of the CFL regions

will change relative to the Anti-CFL regions, so we would like

to consider the case that the modulation Uq is large enough

so that over the range where B is tuned, the system always

consists of alternating regions of CFL and Anti-CFL. The ex-

istence of the magnetoresistance oscillations in this regime

would be non-trivial verification of the fact that composite

electrons of the CFL can directly tunnel into composite holes

of the Anti-CFL.

D. Effect of Landau level mixing

It is important to consider the effects of Landau level mix-

ing, which explicitly breaks particle-hole symmetry, on in-

teractions within the lowest Landau level. The effects of

Landau level mixing can be quantified using the parameter,

κ = (e2/4πǫlB)/~ωc, where ǫ is the dielectric constant, the

n(x)

x

ν>1/2

ν<1/2

(a)

(b)

FIG. 8: (a) Density modulation of the 2DEG, induced by a periodic

potential. The dashed line represents the density at exactly ν = 1/2.

Regions above the dashed line have ν > 1/2 and are in the Anti-CFL

phase, while regions below the dashed line have ν < 1/2 and are in

the CFL phase. (b) The system is thus broken up into alternating

strips of CFL (blue) and Anti-CFL (red). The gapless chiral boson

interface fields are robustly present at the interfaces, which we have

assumed to be in “partially fused interface 2” of Sec. V B. Observa-

tion of magnetoresistance oscillations would indicate the ability for

composite electrons in the CFL to directly tunnel into the composite

holes of the Anti-CFL. The circles indicate the effective cyclotron

orbits of the composite particles that are commensurate with the pe-

riodic modulation. As the magnetic field is tuned, the dashed line in

(a) moves vertically relative to the density modulation, thus changing

the relative widths of the CFL and Anti-CFL regions.

magnetic length lB =
√

~c/eB, and ωc = eB/mec is the cy-

clotron frequency of the electron. In GaAs heterostructures,

κ ∼ .6− 1.8 for magnetic fields B = 2− 15 T. Interestingly,

it has been found that corrections to the effective interactions

in the lowest Landau level due to Landau level mixing are nu-

merically small even though the naive expansion parameter,

κ ∼ O(1).54

Since non-zero κ explicitly breaks particle-hole symmetry,

it is expected that weak Landau level mixing will shift the lo-

cation of the transition between the CFL and Anti-CFL away

from ν = 1/2. Strong Landau level mixing, or large κ, could

potentially eliminate the transition altogether, leaving either

the CFL or Anti-CFL dominant around half-filling. Therefore,

a qualitative result that would validate the theory presented

here would be to observe that systems with weak Landau level

mixing have the composite fermion density equal to the elec-

tron density for ν < 1/2 and the hole density for ν > 1/2,

while other systems with much stronger Landau level mixing

have the composite fermion density equal to the electron den-

sity (or hole density) on both sides of ν = 1/2. The precise

quantitative value of Landau level mixing κ needed to see the

latter case is a question that requires further detailed study.
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VIII. DISCUSSION AND CONCLUSION

In this paper, we have introduced the particle-hole conju-

gate of the CFL, which we refer to as the Anti-CFL. In the

presence of particle-hole symmetry, we suggest that the Anti-

CFL plays an equally important role as the CFL in deter-

mining the low energy physics around the half-filled Landau

level. We posit that the CFL is operative for fillings fractions

ν < 1/2 and the Anti-CFL is favored for fillings ν > 1/2.

As outlined in Sec. VII B, the existence of the Anti-CFL

for ν > 1/2 naturally explains the remarkable experiment

of Kamburov et al.16 measuring magnetoresistance oscilla-

tions about half-filling in the presence of a 1D periodic po-

tential. The locations of the magnetoresistance minima reveal

the value of the Fermi wave vector of the underlying compos-

ite particles of the CFL or Anti-CFL.

A variety of other experiments that probe the Fermi wave

vector of the composite particles should be revisited to see

whether they are consistent with the predictions of CFL ver-

sus Anti-CFL: for instance, magnetoresistance oscillations

in the presence of a 2D anti-dot superlattice12, magnetic

focusing55–57, and composite particle cyclotron resonances58.

A further consequence of this picture is borne out in the

behavior of the DC resistivity as the filling fraction is varied

across half-filling. Assuming a first order transition, we find

that the resistivity tensor exhibits both a jump discontinuity

and slope change as the state transforms from the CFL into the

Anti-CFL across half-filling. Observation of this prediction

would be an independent verification of the theory presented

here. A second order transition, on the other hand, would not

be expected to yield a jump discontinuity in the resistivity.

In addition, we have developed a local field theory for both

the CFL and Anti-CFL, valid when the system has a bound-

ary. This theory enables us to study various interfaces be-

tween these two states. We suggest the existence of inter-

face phases which are characterized by intermediate, partially

fused phases in addition to either decoupled or, in the case of

CFL - I -CFL junctions, fully healed interfaces. These phases

are characterized by the ability of the composite electrons or

holes to tunnel into one another, even while the interface fails

to fully heal.

We have also put forward a theory that is capable of de-

scribing a continuous transition between the CFL and Anti-

CFL. Interestingly, the transition point exhibits non-Fermi liq-

uid behavior reminiscent of the marginal Fermi liquid, inde-

pendent of whether or not the Coulomb interaction is short-

ranged.

There are a number of interesting directions for further re-

search. The gauge-invariant boundary theory of the CFL and

Anti-CFL described in Sec. IV should enable the computation

of scaling dimensions of operators inserted along the bound-

ary. The scaling dimension of the electron operator, in par-

ticular, would allow the computation of the tunneling current

into the edge from a nearby metallic lead. Such a calculation

would make contact with previous work in Ref. 20,21 and

possible experimental measurements.

The boundary theory in Sec. IV and existence of a fully

fused CFL-I-CFL interface phase described in Sec. V should

also furnish a complementary approach to the calculation

of the bulk electronic tunneling density of states.18,19 In the

mean-field approximation for computing the electron correla-

tion functions, Eqn. (53), it is straightforward to see that the

electron auto-correlation function at the fully fused interface

decays with imaginary time τ as 1
τ exp(−mτ). Laplace trans-

forming gives Eqn. (8) for η = 2. We expect a RPA treatment

of the gauge field to be able to recover the formula of Eqn. (8)

for other values of η as well.

In Sec. V, we provided arguments for the existence of var-

ious line interface phases. A detailed calculation for the dif-

ferent regimes in parameter space where such phases occur

would be valuable.

It would be extremely interesting to consider energetic and

entanglement properties of model wave functions for the CFL

and Anti-CFL described in Sec. III and to compare with nu-

merical experiments studying the ground state of interacting

electrons in the lowest Landau level. Such numerical exper-

iments might provide insight into the underlying reason why

the CFL might be favored for filling fractions ν < 1/2, while

the Anti-CFL obtains for ν > 1/2.

At a more qualitative level, it is interesting to consider ad-

ditional implications of the Anti-CFL state for physics about

half-filling. For example, strong electron-electron interac-

tions and weak disorder are crucial to the stabilization of the

CFL and Anti-CFL physics at half-filling. As the electron-

electron interaction is weakened or disorder is increased, it is

expected that the system will crossover into a regime which

corresponds to the regime of the integer quantum Hall plateau

transition. A theoretical understanding of the nature of this in-

terpolation is an open problem and consideration of the Anti-

CFL makes any such interpolation even more interesting.
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Appendix A: General relation between particle-hole

conjugation and vortex duality

For every fermionic FQH state at filling fraction ν, one

can consider the “particle-hole” conjugate of that FQH state,

which occurs when the holes are at a filling fraction ν and

the electrons are at filling 1 − ν. Bosonic FQH states on

the other hand do not have a natural notion of the particle-

hole conjugate state. For them, the natural analog is to con-

sider the vortex dual of a given bosonic FQH state. Below we

will first give a general discussion of vortex duals of bosonic

FQH states, and subsequently illustrate the intimate relation

between particle-hole duals of fermionic FQH states and vor-

tex duals of bosonic FQH states.

1. Vortex dual of bosonic FQH states

Given a system of bosons, one can always choose to de-

scribe the system in terms of the dynamics of its vortices.

When the bosons are at a filling fraction ν = p/q, this means

there are p bosons per q units of flux quanta, or p bosons

per q vortices. Since the vortices see the original particles as

sources of magnetic flux, this means that there are q vortices

for every p units of their effective flux quanta. In fact it is

easy to see that the vortices are at an effective filling fraction

νv = −ν−1 = −q/p, as we will show in more detail below.

A general effective theory for the vortices takes the form

L =
1

2π
AE∂a+ Lv(a, φv), (A1)

where AE is an external probe gauge field that couples to the

particle current, and Lv(a, φv) describes the state of the vor-

tices. Observe that if state of the vortices results in a polariza-

tion tensor Πv for the gauge field a, then after integrating out

φv we would obtain the effective action

L =
1

2π
AE∂a+

1

2
aµΠv;µνaν . (A2)

Integrating out a gives the polarization tensor of the system:

L =
1

2
AEµΠµνA

E
ν . (A3)

It is easy to see that if the bosons are described by a con-

ductivity tensor σ, then the vortices should be in a collective

state with a conductivity tensor σv = σ−1. In a clean sys-

tem with continuum translation invariance, the conductivity

is σ =

(

0 σxy
−σxy 0

)

, with σxy = 2πν, in units where the

charge of the boson and ~ are set to one. Therefore, the vor-

tices would have a conductivity σv =

(

0 −σ−1
xy

σ−1
xy 0

)

. From

this, we can conclude that if the original bosons are in a fill-

ing fraction ν, then the vortices must be at a filling fraction

νv = −1/ν.

Therefore, for any given bosonic FQH state at filling frac-

tion ν, one can consider a dual state at filling fraction −1/ν,

where the vortices form that filling fraction ν FQH state.

Let us consider several examples. First let us consider a

class of incompressible FQH states, described by a N × N
symmetric integer matrix K . The effective theory is:

L =
1

4π
KIJaI∂aJ +

1

2π
qIA

E∂aI , (A4)

where q is the “charge vector” of the FQH states. Such a the-

ory will describe a bosonic FQH state as long as the diagonal

entries of K are all even.

The vortex dual of this state would therefore be described

by

Ldual =
1

2π
AE∂a−

1

4π
KIJaI∂aJ +

1

2π
qIa∂aI (A5)

In other words, it would be described by a new (N + 1) ×
(N + 1) matrix

Kv =

(

−K q

qT 0

)

, (A6)

with a new charge vector (qv)I = δI,N+1.

As another example, note that there are two types of CFL-

like states for bosons that we can consider at filling fraction

ν = 1. One of them is the usual CFL state of bosons, which

is described by the effective action

LbCFL =
1

4π
a∂a+ ψ†(i∂t + at +AEt + µ)ψ

+
1

2mψ
ψ†(i∂i + ai +AEi)

2ψ

+

∫

d2r′V (r − r′)ψ†ψ(r)ψ†ψ(r′). (A7)

Alternatively, we could consider a state where the vortices

form an analogous νv = −1 CFL state. The resulting effective

theory would be given by

LvCFL =
1

2π
AE∂ã−

1

4π
ã∂ã+ ψ†(i∂t + at + ãt + µ)ψ

+
1

2mψ
ψ†(i∂i + ai + ãi)

2ψ

+

∫

d2r′V (r − r′)ψ†ψ(r)ψ†ψ(r′). (A8)

LbCFL and LvCFL describe two thermodynamically distinct

states of matter at filling fraction ν = 1, both of which exhibit

an emergent Fermi surface of composite fermions. LvCFL was

discussed previously in Ref. 59 as an alternative theory for the

ν = 1 CFL state of bosons. The logarithmic interaction be-

tween the vortices, and consequently the composite fermions

in LvCFL, suppresses the gauge fluctuations of a. This leads

to a marginal Fermi liquid state for the composite fermions,

where the composite fermion self-energy only acquires loga-

rithmic corrections from the gauge fluctuations. This theory

is presumably equivalent to the theory developed in Ref. 60,

for the CFL at ν = 1.
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2. Fermionic particle-hole conjugates

Here we would like to explain how particle-hole conjugates

of fermion FQH states can generally be understood in terms

of the vortex duals of bosonic FQH states discussed in the

previous section. To see this generally, recall that in Sec. III

we showed that if we think of the electron as

c = b̃f, (A9)

where f is a fermion that forms a νf = 1 IQH state and b̃ is a

“composite boson.” The effect of the f fermion is effectively

to attach one unit of flux to b̃, converting it into the electron c.
In terms of these variables, the hole is described by

h = f †b̃v (A10)

where b̃v is the vortex of b̃. Now let us consider a FQH state,

denoted F , which can always be understood in terms of the

above construction if b̃ forms some other topological phase of

matter B. The above suggests that the particle-hole conjugate

of F , which we denote as F , can be understood as a state

where the vortices of b̃ form the bosonic state B. In other

words, F is the resulting fermionic phase when b̃ forms the

vortex dual of B.

Let us study several concrete examples. First, let us con-

sider a generic Abelian fermionic FQH state described by a

symmetric integer matrixK and a charge vector q. This means

that the effective theory of the electrons is

Lc =
1

4π
KIJaI∂aJ +

1

2π
qIA

E∂aI , (A11)

where AE is the external response field. In terms of our con-

struction, this can be rewritten as

Lc =− 1

4π
ã∂ã+

1

2π
Ã∂ã+

1

4π
Kb;IJaI∂aJ +

1

2π
AE∂ã+

1

2π
qb;IÃ∂aI , (A12)

where Kb is a symmetric even integer matrix and qb is an in-

teger vector. The U(1) gauge field ã describes the IQH state

of f , while Ã is the emergent gauge field associated with the

gauge redundancy f → eiθf , b → e−iθb. Integrating out Ã
sets ã =

∑

I qbIaI , which then implies the relation

KIJ = Kb;IJ − qb;Iqb;J , (A13)

and q = qb.

Now, suppose that b instead forms the vortex dual of the

theory described by (−Kb,−q). In this case, the electron the-

ory would be

Lph =− 1

4π
ã∂ã+

1

2π
Ã∂ã− 1

4π
Kb;IJaI∂aJ

+
1

2π
AE∂ã− 1

2π
qb;IA∂aI −

1

2π
Ã∂A. (A14)

Integrating out Ã sets A = ã; further integrating out A then

gives

L =
1

4π
(qIb q

J
b −Kb

IJ)aI∂aJ +
1

4π
AE∂AE − 1

2π
qb;IA

E∂aI ,

(A15)

which is precisely the particle-hole conjugate of the theory

described by K .

The theory of the Anti-CFL developed in Sec. III provides

another example of the general relation discussed here, where

the Anti-CFL state can be understood as a state where the

composite bosons b̃ form the vortex dual of a ν = −1 bosonic

CFL.
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