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Distinguishing nontrivial symmetry protected topological (SPT) phase from trivial insulator in
the presence of electron-electron interaction is an urgent question to the study of topological in-
sulators, due to the fact that most of the topological indices defined for free electron systems are
very likely unsuitable for interacting cases. In this work, we demonstrate that the strange corre-
lator is a sensitive diagnosis to detect SPT states in interacting systems. Employing large-scale
quantum Monte Carlo (QMC) simulations, we investigate the interaction-driven quantum phase
transition in the Kane-Mele-Hubbard model. The transition from quantum spin Hall insulator at
weak interaction to antiferromagnetic Mott insulator at strong interaction can be readily detected
by the momentum space behavior of the strange correlator in single-particle, spin, and pairing
sectors. The interaction effects on the symmetry-protected edge states in various sectors, i.e., the
helical Luttinger liquid behavior, are well captured in the QMC measurements of strange correlators.
Moreover, we demonstrate that the strange correlator is technically easier to implement in QMC
and robuster in performance than other proposed numerical diagnoses for interacting topological
states, as only static correlations are needed. The attempt in this work paves the way for using the
strange correlator to study interaction-driven topological phase transitions in fermionic as well as
bosonic systems.

PACS numbers: 71.10.-w, 71.10.Fd, 71.27.+a

I. INTRODUCTION

Topological insulators (TI) are usually defined as sys-
tems with bulk spectra similar to those of trivial in-
sulator, but with nontrivial, i.e. gapless or degenerate,
boundary spectrum when and only when the systems (in-
cluding the boundaries) preserve certain symmetries. By
now the noninteracting TIs have been fully classified and
understood, for example, as shown in Refs. 1–3. Besides
the boundary states which are experimentally most rele-
vant, the noninteracting TIs can also be characterized by
a topological index defined for the bulk band structure,
namely, even if a TI has the similar bulk spectrum as a
trivial insulator, it does have very different ground state
wave function which is characterized by the topological
indices, for example, the TKNN number for the integer
quantum Hall state4 and the Z2 index for quantum spin
Hall insulator5,6. To generalize the notion of topologi-
cal insulator to interacting systems, symmetry protected
topological (SPT) order7,8 was proposed for the ground
states of many body quantum systems that have a sym-
metry and a finite energy gap with short range quantum
entanglement. So far most of the techniques and topo-
logical indices introduced for noninteracting topological
insulators are very likely unsuitable for interacting cases,
since in many cases interaction can change (or reduce)
the classification of topological insulators9–19. Thus a
more general technique to identify interacting TIs (or
SPT states) based on their bulk wave functions is ur-
gently demanded for studying of topological insulators
in the presence of electron-electron interactions.

In principle, given a bulk wave function, we can always
compute its entanglement spectrum and use it as a di-
agnosis for interacting TI20. However, this technique is
numerically challenging. For strongly correlated electron
systems, in one dimension (1D) we are able to obtain
the bulk wave function and entanglement spectrum from
exact diagonalization (ED) and density matrix renormal-
ization group (DMRG) calculations, but in two dimen-
sion (2D) and higher dimensions, it is very difficult to
obtain the bulk wave functions for interacting systems
simply because the dimension of Hilbert space increases
exponentially with the number of electrons. In 2D, there
are recent progresses by employing quantumMonte Carlo
simulations to access the entanglement spectrum21–23,
but the approach is arduous as one needs to first bifur-
cate the already small finite-size system (the simulation
efforts of QMC scale polynomially with system size to
high power), and then perform analytical continuation
to obtain real frequency entanglement spectrum from the
reduced density matrix in imaginary time22,23. The an-
alytical continuation 24,25, as useful as it is, is a numeri-
cally ill-posed question and warned for bringing ambigui-
ties that mask the fine features in the real frequency data.
These difficulties shadow the progress in evaluating the
bulk wave functions and entanglement information for
diagnosing interacting TIs.

In light of the difficult situation for interacting TIs,
recently, a new diagnosis dubbed “strange correlator”
was proposed in Ref. 26, which is the matrix element
of the correlation function between two topologically dis-
tinct many-body bulk wave functions in the same Hilbert
space. Based on the low energy effective Lorentz invari-
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ance of the SPT states, the strange correlator, though
it is a purely static quantity, effectively captures the
space-time correlation function at the spatial interface
between two topologically distinct phases. Hence, as
long as there exist symmetry-protected edge states at the
spatial interface, i.e., the two wavefuncitons are topolog-
ically distinct, the strange correlator will diagnose the
edge modes, at least for the noninteracting case. As will
become clear in this paper, for the QMC simulations of
interacting TIs, the strange correlator can diagnose the
correlated edge modes as well. Moreover, as the strange
correlator is based on the bulk wave function, there is
no need to explicitly create a real spatial boundary to
detect the gapless edge modes, which, in interacting sys-
tems, usually gives rise to strong finite-size effects. Also,
comparing with the measurements of entanglement spec-
trum mentioned above, there is no need to bifurcate the
system for evaluating the strange correlators. There is
also no need to perform imaginary-time correlation as
the strange correlators are static quantities which avoids
the analytical continuation step. These advantages make
strange correlator physically transparent and technically
much easier to implement in QMC. Yet another advan-
tage of strange correlator is that it is generally applicable
to both fermionic and bosonic SPT states, either free or
interacting. It is also applicable to “crystalline” TI27,
because it respects all the lattice symmetries (no need
for boundaries).

In Ref. 26, the strange correlator has only been applied
to free fermion topological insulators and some bosonic
SPT states. Later on, in Ref. 28 and 29, it was demon-
strated that the strange correlator can capture the nature
of the Haldane phase of 1D spin-1 system. It was fur-
ther shown in Ref. 30 that the strange correlators of 2D
bosonic SPT states can be expressed as correlation func-
tions of 2D conformal field theory. However, the most im-
portant test, namely, the application of strange correlator
upon interacting fermion topological insulators to diag-
nose the interaction-driven topological phase transition,
has never been performed. Here, by means of large-scale
quantum Monte Carlo simulations, we apply the strange
correlator to a very realistic and nonintegrable model
for interacting topological insulator, namely the Kane-
Mele-Hubbard model. We present in details on how to
evaluate the strange correlators in determinantal QMC31

simulations for interacting fermionic systems, and use it
to probe the topological nature of the interaction-driven
quantum phase transition in the KMH model. Further-
more, the interaction effects on the helical edge states –
the Luttinger liquid behavior, have been also clearly cap-
tured by the strange correlator measurements in QMC
simulations.

The rest of the paper is organized as follows. In Sec. II
the KHM model (II A) and strange correlators in various
sectors (II B) are introduced, with detailed account on
their implementation in QMC simulations. In Sec. III,
the strange correlator in single-particle sector (III A) is
first demonstrated, followed by those in two-particle spin

and pairing sectors (III B). In the single-particle sector,
the topological nature of the quantum spin Hall insula-
tor to antiferromagnetic Mott insulator transition can be
clearly seen. In the two-particle channel, the Luttinger
liquid behavior of the edge modes, are well captured
by their corresponding QMC strange correlator measure-
ments. Sec. IV summarizes the physical and numerical
advantages of strange correlator in diagnosing interacting
TIs and proposes future directions.

II. MODEL AND NUMERICAL METHOD

A. Generalized Kane-Mele-Hubbard model

The generalized Kane-Mele-Hubbard (KMH) model is
given by,

HKMH = −
∑

〈i,j〉,σ

tijc
†
iσcjσ + iλ

∑

〈〈i,j〉〉,αβ

vij c
†
iασ

z
αβcjβ

+
U

2

∑

i

(ni − 1)2 . (1)

Here the first term describes the nearest-neighbor hop-
ping on a honeycomb lattice. As shown in Fig. 1 (a),
we set the nearest-neighbor hopping within one unit cell
with amplitude td, while others with amplitude t. td and
t can be different, depending on the context. The sec-
ond term represents spin-orbit coupling (SOC)5,6, which
connects the next-nearest-neighbor sites with a complex
(time-reversal symmetric) hopping with amplitude λ, and
the factor vij = −vji = ±1 depends on the orientation
of the two nearest-neighbor bonds that the electron tra-
verses in going from site j to i. The σz

αβ in the spin-orbit
coupling term furthermore distinguishes the ↑ and ↓ spin
states with the opposite next-nearest-neighbor hopping
amplitudes.
Physically, the noninteracting (U = 0) Kane-Mele

(KM) model5,6 is a spinful model consisting of two copies
of the the Haldane model32 with opposite spins. Al-
though the spinless Haldane model breaks the time-
reversal symmetry ZT

2 , the spinful KM model is time-
reversal invariant and its ground state is a quantum
spin Hall (QSH) insulator with counter propagating edge
modes. Regarding the symmetries of the KMH model,
the model Hamiltonian in Eq. 1 has the charge U(1)charge
symmetry: ciσ → eiθciσ. The spin-rotational symmetry
SU(2) is broken down by the spin-orbit coupling term
λ to U(1)spin, which only keeps the spin rotation in the
xy plane: ciσ → eiσθciσ. So the symmetry group of the
KMH model is U(1)charge ×U(1)spin ⋊ZT

2 , which results
in a Z classification. This implies that the QSH state
must be separated from the trivial vacuum state with
gapless edge modes.
In the presence of interaction, the KMH model can

be studied by determinantal QMC simulations31,33–40.
At the noninteracting limit, U = 0, for any finite λ,
the system is in the QSH state at zero temperature.
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FIG. 1. (color online) (a) Illustration of honeycomb lattice
and Kane-Mele model. The unit cell of honeycomb lattice
is presented as the dashed black parallelogram, it consists of
two sublattices A, B, denoted by the open and filled cyan
circles. The underlying lattice is spanned by the primitive
vectors a1 = (

√
3, 0), a2 = (

√
3/2, 3/2). The green and or-

ange lines represent nearest-neighbor hopping t and td con-
necting the A and B sublattices. The spin-orbital coupling
term (complex valued next-nearest-neighbor spin-dependent
hopping iλ) connects lattices sites within the same sublattice,
and is denoted as the blue dashed arrows. (b) Schematic plot
of |Ω〉 and |Ψ〉 in single-particle strange correlator calculation,
where |Ω〉 is a trivial band insulator with spin Chern number
Cs = 0 and the detected target state |Ψ〉 is the many-body
ground wave function of KMH Hamiltonian in Eq. 1 evaluated
in the QMC simulation. It is prepared by applying projection
operator e−ΘH onto a noninteracting trivial wave function
|ΨT 〉 (eigenstate of KM model with U = 0). The topological
nature of |Ψ〉 depends on the interaction strength U/t, when
U ≤ Uc the system is in the QSH insulator phase with spin
Chern number Cs = 1, but when U > Uc, the system is the
AFMI phase, which spontaneously breaks the key symmetry
that protects the topological insulator.

Switching on finite but weak interaction (U/t > 0), the
system is adiabatically connected to the noninteracting
QSH. At strong interaction, U/t will drive the QSH state
into an antiferromagnetic ordered Mott insulator (AFMI)
state41, through a continuous quantum phase transition
at critical point Uc (e.g., at λ = 0.1t, Uc ∼ 5t). At
the transition, the single-particle gap remains open, but
the corresponding spin gap closes35,37,40. The transition
from the QSH to the xy AFMI has been shown to be
consistent with the 3D XY universality class35,36,42. As
both U(1)spin and ZT

2 symmetries are spontaneously bro-
ken in the AFMI phase, only U(1)charge remains. Mean-

Γ
M

K

K′

FIG. 2. (color online) Illustration of the k-mesh in the Bril-
louin zone (BZ) of finite-size systems studied in QMC sim-
ulations with linear system size L = 9, 12, 15, 18. The black
line is the high-symmetry paths Γ → M → K → Γ. As L in-
creases, the k-mesh becomes denser. The inset is the hexagon
BZ of honeycomb lattice and the shaded region represents the
segment of the BZ shown in the main panel.

while there is another time-reversal-like symmetry ZT ′

2 :
ciα → Kσx

αβciβ , so the total remaining symmetry is

U(1)charge ⋊ ZT ′

2 with T 2 = 1 and the fermion SPT
classification becomes trivial, as such a time-reversal-
like symmetry with T 2 = 1 does not lead to Kramers
doublet. This means if we neglect the Goldstone mode
in the bosonic sector, the AFMI state must belong to
the trivial SPT class which can be smoothly connected
to a trivial band insulator (such as a spin density wave
(SDW) insulator) in the fermionic sector. So there is
no symmetry-protected gapless fermionic edge mode be-
tween this AFMI and a trivial insulator.

Of course, interaction-driven topological phase tran-
sitions happen in other models as well, for example
in the Bernevig-Hughes-Zhang model, dynamical mean-
field theory studies43–46 reveal interesting (first order)
topological phase transitions in the paramagnetic sector
of the solution.

B. Strange correlator in QMC

To effectively diagnose the SPT states, the concept of
strange correlator was proposed in Ref. 26. It is a cor-
relation function defined between two many-body wave
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functions in the same Hilbert space,

C(r, r′) =
〈Ω|φ(r)φ(r′)|Ψ〉

〈Ω|Ψ〉 , (2)

where |Ω〉 is a trivial band insulator, and |Ψ〉 is the wave
function whose topological nature we would like to di-
agnose. The physical meaning of C(r, r′) becomes man-
ifest after a space-time rotation26: |Ψ〉 can be obtained
by evolving a generic initial state from imaginary time
τ = −∞ to τ = 0 with the parent Hamiltonian of |Ψ〉,
and |Ω〉 can be obtained by evolving a generic final state
backward from imaginary time τ = +∞ to τ = 0, thus
C(r, r′) can be viewed as a correlation function at the
temporal domain wall. Because most of the topologi-
cal insulators have an effective Lorentz invariant descrip-
tion47, after a space-time rotation C(r, r′) becomes the
space-time correlation at the spatial interface between
|Ψ〉 and |Ω〉, which may have gapless modes depending
on the nature of these two states.
The proposition given in Ref. 26 is that if |Ψ〉 is a

nontrivial topological insulator (or more generally a SPT
state) in one or two spatial dimension, i.e., there exit
one or more gapless edge modes at the spatial bound-
ary of |Ψ〉, then for local operator φ(r) that transforms
nontrivially under symmetry, C(r, r′) will either develop
long-range order (saturate to a constant) or decay as a
power law in the limit |r − r′| → +∞, which mimics the
edge states of |Ψ〉. In the momentum space, this corre-
sponds to a singularity at certain symmetric momentum
point ks: Ck ∼ 1/|k − ks|α, if |Ψ〉 is in a nontrivial
topological insulator phase. Based on the space-time ro-
tation argument given above, the 2D strange correlator
C(r, r′) should behave very similarly to the (1+1)D cor-
relation functions at the boundary. For example, if |Ψ〉
is a generic noninteracting 2D TI, and φ(r) is simply the
electron operator, i.e. C(r, r′) = 〈Ω|c†(r)c(r′)|Ψ〉/〈Ω|Ψ〉,
then α = 1. The strange correlator has been success-
fully applied to detect topological phase transitions in
1D and 2D spin systems26,28,29, as well as in noninter-
acting fermionic system26.
In our QMC simulations, to detect the correlated QSH

phase and the interaction-driven phase transition in the
KMHmodel, we prepare |Ω〉 as the wave function of Eq. 1
with U = 0, but keep td different from t. At the nonin-
teracting level, with finite λ, td/t will drive a topological
phase transition between QSH and trivial band insulator
at td = 2t37,39,40, therefore, throughout this paper we
choose |Ω〉 with λ = 0.2t and td = 100t, which guaran-
tees it is a topologically trivial band insulator. On the
other hand, |Ψ〉 is prepared as the ground state wave
function of interacting Hamiltonian in Eq. 1 with td = t.
In the quantum Monte Carlo simulation, it is prepared
as |Ψ〉 = e−ΘH |ΨT 〉, where |ΨT 〉 is the wave function of
noninteracting Hamiltonian in Eq. 1 with U = 0, λ = 0.2t
and td = t, the projection operator e−ΘH is applied onto
|ΨT 〉 in quantum Monte Carlo sampling such that when
the projection parameter Θ is sufficiently large, the QMC
ensemble average guarantees |Ψ〉 is the ground state of

the interacting Hamiltonian H . In most of the simula-
tions, we set Θ = 50t.
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FIG. 3. (color online) 1/|C↑
kAB | as a function of td in |Ψ〉.

The linear divergence of |C↑
kAB | around M point holds robust

until td > 2t. We can use the divergent to nondivergent be-
havior of |C↑

kAB | to determine the critical point precisely in
this noninteracting case.

In this paper, we define the strange correlator in the
momentum space. The strange correlator in single-
particle channel for spin flavor σ is then defined as

Cσ
kAB =

〈Ω|c†
kAσckBσ|Ψ〉
〈Ω|Ψ〉 , (3)

where c†
kAσ = 1

L

∑

i e
ik·Ri,Ac†i,A,σ with k inside the BZ

shown in Fig. 2, and A, B are the two sublattices of the
honeycomb lattice in Fig. 1 (a). The schematic plot of
Fig. 1 (b) depicts the idea of the strange correlator in
KMH model, on the left hand side, the wave function
|Ω〉 is a trivial band insulator (with spin Chern number
Cs = 0); on the right hand side, the projection opera-

tor e−ΘĤ guarantees |Ψ〉 = e−ΘĤ |ΨT 〉 is the many-body
ground state wave function of KMH Hamiltonian at cer-
tain U/t, although the trial wave function |ΨT 〉 is nonin-
teracting (with spin Chern number Cs = 1). In this way,
as we gradually increase the interaction strength U/t in
the KMHHamiltonian, the nature of |Ψ〉will change from
QSH at weak interaction (U ≤ Uc) to AFMI at strong
interaction (U > Uc).
We also measure the strange correlator in the spin and

Cooper-pair channels respectively as follows.

S±
kAA =

〈Ω|S+
kAS

−
kA|Ψ〉

〈Ω|Ψ〉 , (4)

DkAA =
〈Ω|∆†

kA∆kA|Ψ〉
〈Ω|Ψ〉 , (5)

these are two-particle strange correlators in particle-
hole and particle-particle channels, respectively, where
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FIG. 4. (color online) (a). Finite size scaling of xy antifer-
romagnetic structure factor for various values of U/t, with
linear system size L goes to 27. The extrapolated values of
magnetic moment mxy is plotted in (b).

S+
kA = 1

L

∑

i e
ik·Ri,AS+

i,A and ∆†
kA = 1

L

∑

i e
ik·Ri,A∆†

i,A,

with S+
i,A = c†i,A,↑ci,A,↓ flipping spin in sublattice A of

unit cell i, and ∆†
i,A = c†i,A,↑c

†
i,A,↓ creating a Cooper pair

of spin singlet in sublattice A of unit cell i.
Although the magnetic nature of the QSH to AFMI

transition has been studied thoroughly35,40, here we find
the topological nature of this transition is well captured
by the strange correlators in single- and two-particle sec-
tors. As will be explained later, the QMC computation
of strange correlator is more efficient and robust than the
QMC simulations with either open boundary condition
(OBC) to directly probe the edge modes33,34, or mea-
surements of entanglement spectrum where one has to
bifurcate the already small finite-size system and analyt-
ical continue the imaginary-time data22,23.

III. NUMERICAL RESULTS AND

DISCUSSIONS

A. Single-particle strange correlator

We first apply the single-particle strange correlator to
detect the topological phase transition driven by td at
noninteracting limit. In Fig. 3, we set U = 0 but gradu-
ally increase td in |Ψ〉. One clearly sees that when td < 2t,

the strange correlator |C↑
kAB| is linearly divergent at one

M point in the Brillouin zone, which is consistent with the
prediction in Ref. 26. When td > 2t, both 〈Ω(td = 100t)|
and |Ψ(td > 2t〉 become topological trivial state (Cs = 0),

the divergence of |C↑
kAB| is removed. 1/|C↑

kAB| shows a
upturn behavior around kM .
Before we move on to strange correlator in the inter-

acting case, we first look at the phase transition from
QSH to AFMI from the magnetic perspective. Fig. 4 (a)
shows the 1/L extrapolation of antiferromagnetic struc-
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FIG. 5. (color online) The contour plot of single-particle

strange correlator |C↑
kAB | with increasing Hubbard interac-

tion U/t. The finite system size used here is L = 21. The
k-space area in the four panels is the same as the dashed
region in the inset of Fig. 2, which is the whole BZ.

ture factor

Sxy
AF =

1

4L2

∑

〈i,j〉

∑

α=A,B

〈S+
i,αS

−
j,α + S−

i,αS
+
j,α〉 (6)

for various values of U/t. 〈· · · 〉 means QMC average with
|Ψ〉 on both sides of the observable, hence, Sxy

AF is not
measured as strange correlator but as regular QMC cor-
relator. From the extrapolated values of L → ∞, one
can see the xy antiferromagnetic order sets in around
Uc ≈ 5.7t which is consistent with previous QMC re-
sults36,42. The corresponding magnetic moment is ob-
tained as mxy =

√

Sxy
AF /L

2, and its value is plotted as a
function of U/t in Fig. 4 (b). The appearance of magnetic
long-range order breaks the time-reversal symmetry and
destroy the bulk topological state. Previous theoretical
and numerical studies show that the counter propagat-
ing edge modes in the QSH phase are expected to become
gapped exactly at the point where long-range magnetic
order in the bulk breaks time-reversal symmetry48.
After determining the critical Uc from magnetic per-

spective, we monitor the single-particle strange correlator

|C↑
kAB| as a function of U/t in the whole Brillouin zone.

For a global view, Fig. 5 shows the contour plot of strange

correlator |C↑
kAB| with increasing U/t for a fixed system

size L = 21. When U is small, there is a clear singular-
ity at one and only one of the time-reversal-symmetric
M point. In the thermodynamic limit, the single-particle
strange correlator is still divergent at one M point in
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Fig. 5 (a-c). When U > Uc, see Fig. 5 (d), there will be
no divergence in the single-particle strange correlator.

A careful analysis of 1/|C↑
kAB| along the high-

symmetry path K→M→G is shown in Fig. 6. In Fig. 6
(a-d), the single-particle strange correlator still shows di-
vergent tendency at M point with the finite system size
up to L = 27. When U > Uc, see Fig. 6 (e) and (f), where
the detected target state |Ψ〉 becomes topologically triv-
ial, we clearly see the upturn behavior around M point

in 1/|C↑
kAB|.

To give a better understanding of the results in Fig. 6,
we turn to the helical Luttinger liquid theory. Based
on the space-time rotation interpretation of the strange
correlator, we can analyze the single-particle strange
correlator using the helical Luttinger liquid theory at
the (1+1)D boundary49–52, according to which, the
real-space strange correlator in the single-particle sector
scales as

Cσ
rAB ∼ r

−g/2−1/2g, (7)

where g is the Luttinger parameter related to U/t, g ∈
[0, 1]. After Fourier transform to the momentum space,

it becomes

Cσ
kAB ∼ k̃

g/2+1/2g−2, (8)

where k̃ = |k− kM |. Unlike the noninteracting case, the
single-particle strange correlator in the momentum space
may actually stop diverging before the QSH to AFMI
transition point. To see this point more clearly, the criti-
cal gc can be solved from the equation g/2+1/2g−2 = 0,

which gives gc = 2 −
√
3 ≈ 0.268. If g < gc, there

would be no divergent behavior around the M point in
the momentum space of single-particle strange correla-
tor, although the real space strange correlator still obeys
a power-law decay. For g > gc, the power-law divergent
behavior of the single-particle strange correlator around
the M point clearly signifies that the interacting QSH
phase and the trivial band insulator belongs to distinct
SPT phases, and the two states must be separated by
gapless fermion edge modes when they are adjacent in the
space. From the data in Fig. 6, the divergent behavior
persists up to U = 5.5t, which is very close to the quan-
tum critical point extracted from previous QMC simula-
tions. From Fig. 6 here and Fig. 8 in Sec. III B, we can
see that the divergent exponent of single-particle strange
correlator is reduced by the interaction which cannot be
captured by noninteracting topological phase transition
in Fig. 3 and clearly beyond the mean-field level.
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FIG. 6. (color online) The inverse amplitude of single-particle strange correlator 1/|C↑
kAB | along high-symmetry path for various

U/t and system sizes. When the interaction U/t ≤ 5.5t, see (a-d), there is a divergent tendency in |C↑
kAB | around M point.

However, the divergent exponent is reduced due to the correlation effects according to the helical Luttinger liquid theory (see

the main text). In the AFMI regime (e-f), 1/|C↑
kAB | shows upturn behavior around M point. there is no divergence at all.

We notice that the data points exactly at k = kM in Fig. 6 (a-d) suddenly jump up and have larger errobars.



7

This is unphysical, and we will discuss the behavior of

C↑
kAB in the presence of small AF order ∆SDW around

the M point in a mean-field context in Appendix A, where
this unphysical singularity at k = kM will be understood.

We want to stress that based on the Luttinger liquid
theory the single-particle strange correlator, and equiv-
alently the single particle Green’s function at the physi-
cal edge of the system, always follow a power-law decay,
before the system develops a true long range order in
the bulk. This is mainly because when the bulk is fully
gapped, all the low energy physics occur at the boundary
of the system. Then based on the Mermin-Wagner the-
orem53, continuous symmetries cannot be spontaneously
broken in a (1 + 1)D system, and without a true long
range correlation of magnetic or superconductor order
parameter, the fermions at the boundary should remain
gapless (though still strongly interacting).

The technical advantage of strange correlator in QMC
over other numerical diagnoses of interacting TIs is man-
ifestly presented, i.e., we have performed simulations
on finite size system with periodic boundary condition
(PBC), yet, still are able to extract information of the

edge modes which, in the past, could only be obtained
with systems with OBC33,34. It is well known that QMC
simulations with OBC suffer from greater finite-size ef-
fect, apparently, strange correlator avoids this difficulty.
Moreover, direct probe of edge modes with OBC requires
analytical continuation of imaginary-time Green’s func-
tion, i.e., from G(k, τ) to A(k, ω), and that usually ren-
ders ambiguity in the real-frequency data. However, with
strange correlator, we only need to measure static (equal
time) single-particle Green’s function in PBC system,
which is the easiest and most reliable observables in the
QMC simulations. Thirdly, as mentioned in the Intro-
duction, in comparison with measurements of entangle-
ment spectrum to detect the interaction-driven topolog-
ical transition21–23, strange correlator is also physically
more transparent and technically more robust, as in the
entanglement spectrum measurements one has to bifur-
cate the already small finite size system and analytically
continue the imaginary time data, whereas in the strange
correlator both problems are avoided. Hence, at the tech-
nical level, to the best of our knowledge, strange corre-
lator is indeed the easiest diagnosis of the topological
states and the topological quantum phase transition in
interacting systems.
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FIG. 7. (color online) (a), (c) spin and pairing strange correlators |S±
ΓAA| and |DΓAA| as a funciton of system size L for various

U/t. The inset of (a) is a zoomin at small U/t, with a logarithmic fit (magenta solid line) of the data at U = 0 according to
Eq. 13. The dark yellow and red solid lines in the main panel of (a) are power-law fits according to Eq. 15 at U = 5.75t(∼ Uc)
and U = 6t. The logarithmic fit (magneta solid line) in (c) also follows Eq. 14 at U = 0. (b), (d) spin and pairing regular

correlation functions 〈Ψ|S+

k S−
k |Ψ〉 and 〈Ψ|∆†

k∆k|Ψ〉 as a function of L for various U/t. The dark yellow and red solid lines in
(b) are power-law fits according to Eq. 15 at U = 5.75t(∼ Uc) and U = 6t. The inset of (b) is a zoomin of the regular spin
structure factor at small U/t, showing that they are independent of L when U < Uc.

B. Two-particle strange correlators

In this section, we discuss the QMC results on strange
correlators in two-particle sector, i.e., the spin and pair-
ing strange correlators in the presence of interaction.
Again, based on the space-time rotation interpreta-

tion of the strange correlator, we can likewise analyze
the spin and pairing strange correlators using the helical

Luttinger liquid theory at the (1 + 1)D boundary49–52.
According to the theory, the real-space strange correla-
tor in the spin and pairing sectors scale as

S±
rAA ∼ r

−2g, (9)

DrAA ∼ r
−2/g, (10)

where g is the Luttinger parameter. After Fourier trans-



8

form to the momentum space, they become

S±
kAA ∼ k̃

2g−2, (∼ L2−2g at k = Γ), (11)

DkAA ∼ k̃
2/g−2, (∼ L2−2/g at k = Γ). (12)

where k̃ = |k − kΓ|. In the noninteracting limit (U=0)
g = 1, and as we increase U/t towards Uc, g will become
smaller and smaller, eventually vanish at the transition
point.
To better understand the behavior in each limit, let us

start with g = 1 (U = 0), and we have

S±
kAA ∼ k̃

0 ∼ ln(k), (∼ ln(L) at k = Γ), (13)

DkAA ∼ k̃
0 ∼ ln(k), (∼ ln(L) at k = Γ). (14)

Such a logarithmic growth in L fits our calculated data
in Fig. 7 (a) and (c) for the U = 0 cases very well. The
logarithmic growth is in strong contrast to the regular
spin and pairing correlators, as shonw in Fig. 7 (b) and
(d), which, at U = 0, are independent of system size
L, meaning both spin and pairing correlations are expo-
nentially short-ranged in real space, corresponding to the
QSH insulator with a bulk gap.
On the other hand, near the QSH to AFMI transition

point, g = 0 (U ∼ Uc), we have

S±
kAA ∼ k̃

−2, (∼ L2 at k = Γ), (15)

DkAA ∼ k̃
∞, (∼ L−∞ ∼ e−L at k = Γ). (16)

As we can see, the calculated data in Fig. 7 (a) at U = 6t
indeed diverge as L2 in the thermodynamic limit. More
interestingly, such a divergence is similar with the one
shown by the regular spin correlator inside the AFMI
phase, as shown in Fig. 7 (b) at U = 6t. This is because
when U = 6t, the ground state wavefunction |Ψ〉 in Eq. 4
is already in the AFMI phase, the spin strange correla-
tor is then similar to the spin regular correlator, because
both of them pick up the long-range AFM spin-spin cor-
relation. In Fig. 7 (c) at U = 6t, the pairing strange
correlator decays exponentially to a constant, also con-
sistent with the prediction in Eq. 16.
Between the limits of g = 1 (U = 0) and g = 0

(U = Uc), we can fit spin and pairing strange correla-
tor data in Fig. 7 (a) and (c), with the Luttinger liquid
theory prediction in Eq. 11 and 12, to extract the Lut-
tinger parameter g. The extracted g values as a function
of U/t are shown in Fig. 8, one can see that g continu-
ously decreases from 1 to 0, which accounts for the in-
creasing electron-electron correlation. The dashed line
in Fig. 8 highlights the gc smaller than which the single-
particle strange correlator stop diverging, as discussed in
Sec. III A.

IV. SUMMARY AND OUTLOOK

In summary, we have employed large-scale QMC sim-
ulations to study the single-and two-particle strange cor-
relators in a realistic model for interacting topological

0 2 4 6 8
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0.2

0.4

0.6

0.8

1.0

g

U/t

gc  0.268

FIG. 8. (color online) The Luttinger parameter g extracted
from the spin strange correlator in Fig. 7 (a) following Eq. 11.
Below the critical value gc, the single-particle strange correla-
tor in the momentum space is no longer divergent at M point.

insulators. We demonstrate that the interaction-driven
topological-to-trivial quantum phase transition can be
well captured by the strange correlators. Although larger
system sizes might be needed for detailed information
very close to the critical point, our results show that the
strange correlator is a powerful and promising tool to
diagnose topological insulator with interaction.
The technical advantage of strange correlator in nu-

merical studies (especially QMC simulations) on interact-
ing fermionic and bosonic SPT states are obvious. As one
only needs to measure static correlations in the bulk sys-
tem, there is no need to apply OBC to actually probe the
spatial edges, no need to apply analytical continuation to
access real frequency data, and no need to bifurcate the
already small finite size systems for entanglement mea-
surements. In short, the strange correlator is much easier
to implement and robust in practical numerical perfor-
mance.
As for future applications, the QSH insulator discussed

in our work has a full spin Sz conservation, which has a
Z classification instead of a Z2 classification for the cases
with time-reversal symmetry but no Sz conservation. In
Ref. 26 the strange correlator was tested for a noninter-
acting QSH insulator with a sizable Rashba spin-orbit
coupling, which does have a Z2 classification. We expect
the same strange correlator is still applicable to the inter-
acting QSH insulator with Rashba spin-orbit coupling as
well, except now that the two electron operators in the
strange correlator Eq. 3 do not have to have the same
spin, since the spin conservation is broken by the Rashba
term.
As we mentioned in the introduction, in all dimensions

interaction can change or reduce the classification of some
topological insulators, for example, interaction may triv-
ialize some topological insulators that are nontrivial in
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the noninteracting limit. This means that in this case
the strange correlator should be power-law or long range
correlated without interaction, but becomes short-ranged
due to interaction, possibly even without going through
any bulk phase transition. We will leave this to future
study.
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Appendix A: A Mean-Field Calculation of the

Strange Correlator

To faciliate the understanding of the behavior of single-
particle strange correlator in the QSH insulator to xy
AFMI transition in the KMH model, below, we also pro-

vide a mean-field level calculation of 1/|C↑
kAB| by intro-

ducing the spin density wave (SDW) order parameter,
∆SDW. The mean-field Hamiltonian can be written as

HMF =−
∑

〈ij〉,σ

tijc
†
iσcjσ + iλ

∑

〈〈ij〉〉,α,β

vijc
†
iασ

z
αβcjβ

−∆SDW

∑

i,α,β

(−)ic†iασ
x
αβciβ ,

(A1)

where ∆SDW is the SDW gap. Here we set λ = 0.2t.
If td = t and ∆SDW = 0, HMF describes the QSH in-
sulator. The trivial band insulator can be obtained by
tuning td > 2t. The strong interacting AFMI can be
phenomenologically modeled by a finite ∆SDW term in
the mean-field theory, which breaks the spin U(1) sym-
metry and describes the spin ordered antiferromagnetic
state. Here we assume the xy spin order lies in the spin-x
direction.
We calculated the inverse strange correlator 1/|C↑

kAB|
with the state |Ψ〉 tuned by the mean-field parameter
∆SDW. The result is shown in Fig. 9. When ∆SDW = 0,
|Ψ〉 is the QSH state, the inverse strange correlator

1/|C↑
kAB| ∼ |k − kM | follows the linear behavior around

the M point, which implies the power law behavior of

the strange correlator |C↑
kAB| ∼ |k− kM |−α with α = 1.

However, beyond the mean-field theory, the interaction
can modify this power α, so the strange correlator can de-
viates from the α = 1 behavior in the momentum space,
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FIG. 9. The inverse strange correlator 1/|C↑
kAB | along the

high-symmetry path in the mean-field theory. The state |Ψ〉
is replaced by an SDW insulator controlled by ∆SDW.

as shown in Eq. 8 and Fig. 8 in the main text. But the
power-law behavior of the strange correlator in the real
space is still expected to survive in the whole QSH phase.

As ∆SDW is turned on, 1/|C↑
kAB| will be lifted from

zero at the M point and replaced by a small peak. The
stronger SDW order will leads to the earlier upturn of
the curve as approaching to the M point. The upturn
behavior around the M point can be described by

C↑
kAB =

(k + imΩ)(∆
2
SDWmΩ + k(k − imΨ)(mΩ +mΨ))

2(∆2
SDWm2

Ω + k2(mΩ +mΨ)2)
,

(A2)
where k = vF |k − kM | is the small momentum devia-
tion from the M point, mΩ and mΨ are respectively the
single-particle mass gaps in the trivial state |Ω〉 and the
QSH state |Ψ〉. Eq. A2 is derived by small momentum
expansion around the M point. As can be seen from the
denominator, the power law divergence of the strange

correlator |C↑
kAB| (as k → 0) will be removed once the

SDW order ∆SDW sets in at the topological transition
to the AFMI phase. What’s more, according to Eq. A2,
the limit of ∆SDW → 0 and the limit of k → kM do not
commute:

lim
k→0

C↑
kAB =

i

2
,

lim
∆SDW→0

C↑
kAB =

(k + imΩ)(k − imΩ)

k(mΩ +mΨ)
∼ 1

k
,

(A3)

If one takes ∆SDW → 0 first, then the strange correla-

tor C↑
kAB indeed follows the 1/k power-law behavior as

expected on the mean-field level. However, in our QMC
simulation, we take k → 0 first due to the presence of
the AF fluctuations as a result of the finite-size effect, so

the strange correlator C↑
kAB approaches to another limit

i/2, which is not divergent. It is this non-commutative
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limit that makes |C↑
kAB | ill-defined at the M point and

the data right at the M point meaningless in Fig. 3 (a-
d). Only when the interaction becomes sufficiently strong
(the Luttinger parameter g < gc), so that the divergence

at kM is removed, and the data of 1/|C↑
kAB| at k = M

becomes meaningful.
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