
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Optical Hall conductivity of a Floquet topological insulator
Hossein Dehghani and Aditi Mitra

Phys. Rev. B 92, 165111 — Published 12 October 2015
DOI: 10.1103/PhysRevB.92.165111

http://dx.doi.org/10.1103/PhysRevB.92.165111


Optical Hall conductivity of a Floquet Topological Insulator

Hossein Dehghani and Aditi Mitra
Department of Physics, New York University, 4 Washington Place, New York, NY 10003, USA
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Results are presented for the optical Hall conductivity of a Floquet topological insulator (FTI)
for an ideal closed quantum system, as well as an open system in a nonequilibrium steady-state with
a reservoir. The steady-state, even for the open system, is strongly dependent on the topological
phase of the FTI, with certain phases showing a remarkable near-cancellation from pockets of Berry-
curvature of opposite signs, leading to a suppressed low-frequency Hall conductivity, that also shows
an anomalous temperature dependence, by increasing as the temperature of the reservoir is increased.
Such a behavior is in complete contrast to heating, and arises because of a strong modification of
the effective system-reservoir coupling by the laser. The Berry curvature of the Floquet modes
is time-dependent, and its frequency components are found to control the main features of the
high-frequency Hall conductivity.

PACS numbers: 73.43.-f, 05.70.Ln, 03.65.Vf, 72.80.Vp

I. INTRODUCTION

Topological systems are characterized by a bulk-edge
correspondence where geometric properties of the bulk
band-structure have a precise connection with the na-
ture of excitations at the edge when the system is placed
in a confined geometry. For an integer quantum Hall
system for example, bulk bands have a non-zero Chern
number C, which also equals the number of chiral edge
modes1–3. This correspondence implies that many bulk
measurements are indirect probes of edge excitations as
well. For example, the dc Hall conductivity at zero
temperature, (which is equal to the Hall conductance
measured in a multi-terminal measurement4) is univer-
sal σdc

xy = σxy(ω = 0) = Ce2/h, and proportional to
the number of edge-states. Moreover, the optical Hall
conductivity σxy (ω 6= 0), while non-universal, neverthe-
less shows signatures of quantum Hall plateaus as the
external magnetic field is varied5. In fact an all optical
measurement such as Faraday rotation ΘF of linearly po-
larized light of frequency ω is related to the optical Hall
conductivity as ΘF (ω) ∼ αcnσxy(ω) [α being the fine-
structure constant, and cn being a material dependent
parameter such as the refractive index]6, and has been
used as an alternate probe of quantum Hall physics, both
in semiconductor heterostructures7, and graphene8,9.

Chern insulators are topological insulators (TIs) which
show quantum Hall physics in the absence of a mag-
netic field, where time-reversal symmetry is broken by
introducing complex hopping amplitudes10. This can
be achieved by the application of a circularly polar-
ized laser11–16, where TIs arising out of such time-
periodic perturbations are referred to as Floquet TIs
(FTIs)14. The field of FTIs has grown in recent years
because of several experimental realizations ranging from
periodically shaken lattices of cold-atomic gases17, to
graphene18,19 and Dirac fermions on the surface of 3D
TIs20 under external irradiation, and also arrays of
twisted photonic waveguides21. In fact FTIs are ex-
tremely rich, showing different topological phases as the
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FIG. 1. Optical Hall conductivity (main panel) with tem-
perature dependence of the dc Hall conductivity (inset) for
laser frequency Ω = 5.0th. The laser amplitude and Chern
number are upper-panel: A0a = 1.5, C = 1, lower-panel:
A0a = 0.5, C = 3 .

amplitude, frequency, and polarization of the periodic
drive is varied22–25.

In this work we present results for the optical Hall con-
ductivity of FTIs by accounting for the fact that these
systems are far out of equilibrium. To this end, the pre-
cise relaxation mechanisms need to be specified as they
sensitively affect results. Thus we present results for two
rather different cases, one where the system is closed and
the laser is switched on as a quench, while the second
is when the system is coupled to an ideal reservoir, and
so the steady-state loses memory of its initial state. Yet
being a driven dissipative system, the steady-state is far
from thermal, resulting in some unusual behavior for the
Hall conductivity, which is sensitive to the topological
phase, and cannot be interpreted as simply “heating”.
In fact we show that the laser parameters, and in partic-
ular the topological phase, strongly affects the effective
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FIG. 2. Quasi-energies in a cylindrical geometry highlight-
ing edge states. The laser frequency is Ω = 5.0th, while
the laser amplitude and Chern number are (upper panel)
A0a = 1.5, C = 1 and (lower panel) A0a = 0.5, C = 3. The
latter shows edge-states both at the center and the edges of
the FBZ.

FIG. 3. (color online) Time-averaged Berry curvature over 4
BZs for Ω = 5th, A0a = 1.5 corresponding to a Chern number
of C = 1. The structure is rather smooth, moreover in the
Fourier decomposition of Fkd(t), two harmonics (Fm=0,1

k ) are
dominant.

FIG. 4. (color online) Upper panel: Time-averaged Berry
curvature over 4 BZs for Ω = 5.0th, A0a = 0.5, C = 3. Lower
panel: Contour plot for the steady-state population difference
for reservoir temperature T = 0.01th. Note the almost com-
plete population inversion between regions around the Dirac
points and the circles.

system-reservoir coupling, and therefore the steady-state,
and its Hall response.

The advantage of the optical Hall conductivity is that
it can be measured both in traditional multi-terminal
measurements26–28, as well as completely optically via
the Faraday rotation, the latter being more suitable for
present day experiments. In fact even the dc limit can
be studied without leads, in optical lattices, by monitor-
ing the transverse drift in time-of-flight measurements17.
Moreover while it is the dc (ω → 0) limit of the Hall con-
ductivity, combined with an ideal electron distribution
function, that is related to a topological quantity, namely
the Chern number of the Floquet bands25,29, we show
that even at non-zero frequencies, some features of the
topological nature of the system survive. In particular,
the Berry-curvature of Floquet bands is time-dependent,
and we show that various frequency components of this
Berry-curvature can be directly probed in the optical Hall
conductivity.

The paper is organized as follows. The model is in-
troduced in Section II and the derivation of the Floquet-
Master equation for the open system is outlined (with
some details relegated to Appendix A). In Section III
the optical Hall conductivity is derived using a linear-
response approach, while in Section IV results for the
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optical Hall conductivity are presented. Finally in Sec-
tion V we present our conclusions.

II. MODEL

Our model is graphene irradiated by a circularly po-
larized laser, and also coupled to a phonon bath. The
Hamiltonian is, H = Hel+Hph+Hc where (setting ~ = 1)
Hel is the electronic part,

Hel= −th
∑
k

(
c†kA c†kB

)( 0 hABk (t)[
hABk (t)

]∗
0

)(
ckA
ckB

)
(1)

where hABk (t) =
∑
i=1,2,3 e

ia(~k+ ~A(t))·~δi , ~δi are the nearest-
neighbor unit-vectors of graphene, a is the lattice spac-

ing, and ~A is the circularly polarized laser of amplitude
A0 and frequency Ω, Ax(t) = θ(t)A0 cos Ωt;Ay(t) =
−θ(t)A0 sin Ωt, which we assume has been suddenly
switched on at time t = 0. We consider dissipation aris-

ing due to 2D phonons Hph =
∑
q,i=x,y

[
ωqib

†
qibqi

]
which

are coupled to the electrons as

Hc =
∑

kqσ,σ′=A,B

c†k+qσ
~Mel−ph(k, q) · ~σσσ′ckσ′ (2)

σ is a pseudospin label denoting the A,B sub-lattices,

and the electron-phonon coupling ~Mel−ph(k, q) =[
λx,kq

(
b†x,−q + bx,q

)
, λy,kq

(
b†y,−q + by,q

)]
is off-

diagonal in pseudo-spin space30,31. While we will
consider only inter-(quasi)-energy-band transitions
driven by long-wavelength optical phonons, our re-
sult showing that the effective matrix-elements of the
electron-phonon coupling is modified by the laser, lead-
ing to nonequilibrium steady-states that depend strongly
on the topological phase of the FTI, is rather general,
and will carry over to other kinds of system-reservoir
couplings.

We assume that initially the system is in the ground
state of graphene |Ψ(t = 0)〉 =

∏
k |ψin,k〉, and we time-

evolve the system according to H. For the closed system

(Hc = 0), this time-evolution can be studied exactly,
while in the presence of phonons, we solve the problem
by assuming a weak electron-phonon coupling, and a very
fast bath so that a Floquet-Markov approximation can be
made25,32–35.

Let us denote W (t) to be the full density ma-
trix obeying dW (t)/dt = −i [H,W (t)], which in
the interaction representation becomes, WI(t) =

eiHphtU†el(t, 0)W (t)Uel(t, 0)e−iHpht, where Uel(t, t
′) =∏

k Uk(t, t′) is the time-evolution operator for the
electrons under a periodic drive, and Uk(t, t0) =∑
α=u,d e

−iεkα(t−t0)|φkα(t)〉〈φkα(t0)| with |φkα(t)〉, εkα
being the quasi-modes and quasi-energies that obey[
Hel − i∂t

]
|φkα〉 = εkα|φkα〉. We restrict the quasi-

energies to a Floquet Brillouin zone (FBZ), −Ω/2 <
εkα < Ω/2, where the two quasi-energy levels are la-
beled εku > εkd. The electron reduced density matrix,
obtained from tracing over the phonons, W el = TrphW ,
has the following form in the interaction representa-
tion, W el

I (t) =
∏
k

∑
αβ ρk,αβ(t)|φkα(t)〉〈φkβ(t)|. For a

quench switch-on, the physically relevant initial condi-
tion is given by the overlap between the initial state and

the Floquet modes at t = 0, ρk,αβ(t = 0) = ρquench
k,αβ =

〈φkα(0)|ψin,k〉〈ψin,k|φkβ(0)〉. Under assumptions that the
bath is Markovian, always stays in thermal equilibrium
at temperature T , and that the electron-reservoir cou-
pling is small in comparison to all quasi-energy level spac-
ings34, the density matrix obeys the equation of motion,
ρ̇k,αα(t) = −

∑
β=u,d L

k
αα;ββρk,ββ(t), where Lkαα,ββ are

the scattering rates. The steady-state solution is:

ρk,αα(t =∞) = ρkα (3)

ρku =
|Lkuu,dd|(

|Lkuu,dd|+ |Lkuu,uu|
) , ρkd = 1− ρku (4)

where the scattering rates for a constant electron-phonon
coupling (λx,qk = λy,qk = λ) with a broad phonon den-
sity of states Dph are,

Lkuu,uu =
∑
n=int

Mn
k

[
θ(−εkd + εku + nΩ)N̄(−εkd + εku + nΩ) + θ(εkd − εku − nΩ)N(εkd − εku − nΩ)

]
(5)

−Lkuu,dd =
∑
n=int

Mn
k

[
θ(εkd − εku − nΩ)N̄(εkd − εku − nΩ) + θ(−εkd + εku + nΩ)N(−εkd + εku + nΩ)

]
(6)

Above θ(x) is the step-function, N(x) = 1/(ex/T − 1)
is the Bose function, N̄ = 1 + N . The matrix el-
ements for scattering of electrons between the quasi-
energy levels εkd ↔ εku + nΩ by phonon absorption or

emission are Mn
k = 2Dphλ

2
∑
σ

(
mn
σk,udm

−n
σ̄k,du

)
, where

〈φkα(t)|c†kσckσ̄|φkβ(t)〉 =
∑
n=int e

inΩtmn
σk,αβ .
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III. DERIVATION OF THE OPTICAL HALL
CONDUCTVITY

We will now explore the optical Hall conductivity σxy
of the open and closed system, where for the latter

ρkα = ρquench
k,αα . σij is a response to a weak perturbation

applied over and above the laser, and is computed using
linear-response theory25,29. In particular the current in

the direction ~i, in response to a weak electric field ~E(t),
is ji(t) =

∫
dt′σij(t, t

′)Ej(t
′). In general σij(t, t

′) is not
time translationally invariant due to the time-periodic
perturbation. We present results after time-averaging
t + t′ over a laser cycle TΩ = 2π/Ω, and then Fourier
transforming with respect to the time difference t − t′.
Before presenting explicit expressions for the σxy, note
that due to the time-dependence of the Floquet modes,
the Berry curvature

Fkd(t) = 2Im

[
〈∂yφkd(t)|∂xφkd(t)〉

]
(7)

is time-dependent. Yet its integral over the BZ is time-
independent and gives the Chern number

C =
1

2π

∫
BZ

d2kFkd(t) (8)

Defining the Fourier transform of the Berry “vector po-
tential”,

Amβiα =
1

TΩ

∫ TΩ

0

dte−imΩt〈φkβ(t)| ∂
∂ki

φkα(t)〉 (9)

a natural object that appears in the optical Hall conduc-
tivity is,

Fmk = i

[
A−muxdA

m
dyu −A−muydA

m
dxu

]
(10)

which can be thought of as a Fourier decomposition
of Fkd(t) and is such that

∑
m=int F

m
k is the Berry-

curvature time-averaged over one cycle of the laser,∑
m=int

Fmk = F kd

=
2

TΩ

∫ TΩ

0

dtIm

[
〈∂yφkd(t)|∂xφkd(t)〉

]
(11)

We find that the optical Hall conductivity at steady-state
may be written as,

σxy (ω) =
∑
m=int

σmxy(ω) (12)

where σmxy depend on Fmk as (δ = 0+),

σmxy(ω) = − e2

(2πh)

∫
d2k

[
εku − εkd −mΩ

]2

Fmk

×

[
ω2 − (εku − εkd −mΩ)

2 − 2iδω

]
[
ω2 − (εku − εkd −mΩ)

2

]2

+ 4ω2δ2

[
ρkd − ρku

]
(13)

In the low frequency (dc) limit, this reduces to25,

σxy(ω = 0) =
e2

2πh

∫
BZ

d2kF kd [ρkd − ρku] (14)

The optical Hall conductivity depends on the occupa-
tion probabilities ρkα=u,d and we refer to the “ideal”
limit as one where only one Floquet band is fully oc-
cupied |ρkd − ρku| = 1, so that the dc Hall conductivity
is σideal

xy (ω = 0) = Ce2/h. We will show below that while∑
m F

m
k controls the low frequency Hall conductivity, the

individual Fmk control the high-frequency Hall conductiv-
ity which show enhancement (side-bands) in the vicinity
of ω ∼ |εku − εkd − mΩ| where k are those points in
the BZ where Fmk are peaked. We will present results for
Re [σxy(ω)], and choose a disorder broadening δ = Ω/100.

IV. RESULTS

The system shows a series of topological phase transi-
tions as the laser amplitude or frequency is varied, with
the topological transitions involving level crossings at the
center and/or boundaries of the FBZ23. Moreover while
topological phases with non-zero Chern number are pos-
sible both for laser frequencies off-resonant (Ω > 6th) and
resonant (Ω < 6th) with the electronic states, the topo-
logical phases may be rather different for these two cases,
as for the latter, the laser can create an effective band
inversion14, strongly modifying the Berry curvature. We
find that the inelastic matrix-elements Mn

k also depend
on the laser parameters, by being strongly peaked around
n = n0, where n0 depends on the resonance condition
(i.e., whether the laser is off-resonant, or single-photon
or two-photon etc processes dominate).

In particular, in the limit of large (off-resonant) laser
frequency, and small laser amplitude (A0ath/Ω � 1),
the Mn=0

k term dominates, and the resultant distri-
bution is very similar to the conventional one ρku →

1/

[
exp (εku − εkd)/T + 1

]
, and thus for this case the

reservoir ”cools” the system, giving a Hall response that
approaches the ideal limit as the reservoir temperature
is lowered25. In contrast, as discussed below, topologi-
cal phases where the laser frequency is smaller than the
band-width can give rise to dominant matrix elements
(Mn0

k ) where n0 are strongly quasi-momentum depen-
dent, resulting in unusual Hall response.

Fig. 1 shows σxy along with its temperature depen-
dence, for laser frequency Ω = 5.0th and two different
amplitudes A0a = 1.5, 0.5, corresponding to two differ-
ent topological phases C = 1, 3 respectively. The quasi-
energy spectra for these two phases in a cylindrical ge-
ometry highlighting edge states is shown in Fig. 1, while
the Berry-curvature of the phase with A0a = 1.5, C = 1
is shown in Fig. 3, and that of the phase with A0a =
0.5, C = 3 is shown in Fig. 4.

One finds that the Chern insulator for A0a = 1.5, C =
1 is a conventional one (n0 = 0), with the bath effectively
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cooling the system in that the Hall conductivity increases
as the temperature of the reservoir is lowered. In contrast
the case of A0a = 0.5, C = 3 is quite different because
the low temperature Hall conductivity is small, almost
zero, and has an anomalous temperature dependence in
that it actually increases as the reservoir temperature is
increased. In fact the entire region of Ω = 5th, 0.01 .
A0a < 1, C = 3 constitutes the same topological phase,
and shares this behavior of low dc Hall conductivity, and
non-monotonic temperature dependence.

Fig. 4 shows the time-averaged Berry curvature and
the population imbalance for the above phase (A0a =
0.5, C = 3). Besides the characteristic peaks at the Dirac
points that one expects in Chern insulators described by
the Haldane model, F̄kd for these laser parameters also
shows sharp circular rings. While the Dirac points con-
tribute to a Chern number of 1/2, the circular rings give
a Chern number of 2, so that in total C = 3 (since the
BZ contains two Dirac points and a ring). The steady-
state distribution function for this case shows that there
is effectively a population inversion between the regions
around the Dirac points where the electrons are primarily
in the ”down” level, and the regions within the circles,
where the electrons are primarily in the “up” level. This
population inversion arises due to the structure of the
the matrix elements Mn0

k where in the vicinity of the
Dirac points M0

k is dominant, while within the circles

the Mn=0
k ' 0, while Mn=−1,−2

k are dominant. This im-
plies that at low temperatures where phonon absorption
is suppressed, the system can only relax via phonon emis-
sion from εkd + Ω → εku within the circles, whereas in
the regions around the Dirac cones, the phonon emission
processes cause relaxation from εku → εkd. Since the Hall
conductivity involves integrating over the entire BZ, this
results in a low Hall conductivity.

One way to differentiate between this subtle matrix-
element effect, and simply heating, where the latter will
also give a low σxy, is by studying the temperature de-
pendence. As the temperature is increased, one finds that
the Hall conductivity actually increases (opposite to the
heating case). This happens because the quasi-energy
level separation near the Dirac points and around the
circles is not the same, with the former being larger than
the latter. Raising the temperature excites electrons to
the ”down” level near the circles, while excitations to the
”up” level near the Dirac cones do not occur until higher
temperatures. This results in a low temperature region
where the Hall conductivity increases with temperature
because in this regime as the temperature increases, the
effective population imbalance between the two Floquet
bands with opposite Berry curvature increases. This
qualitative behavior is not special to these parameters,
but holds for the entire topological phase where the only
difference is the size of the circle in Fig. 4, and more
generically is a signature of the fact that more than one
scattering rate plays a dominant role in transport.

We now discuss this strong matrix element depen-
dence in another phase of the FTI. We choose a much
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FIG. 5. Quasi-energies in a cylindrical geometry highlight-
ing edge states. The laser frequency is Ω = 0.5th, while
the laser amplitude and Chern number are (upper panel)
A0a = 10, C = 0 and (lower panel) A0a = 5, C = 6.0. It
is the top phase (C = 0) whose Hall response is discussed in
detail in the text.

FIG. 6. (color online) Time-averaged Berry curvature over
4 BZs for Ω = 0.5th, A0a = 10 corresponding to a Chern
number of C = 0.
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FIG. 7. (color online) Sign(n0) in the dominant matrix ele-
ment Mn0

k for Ω = 0.5th, A0a = 10, C = 0. The sign of the
population imbalance (ρku − ρkd) entering the Hall response
follows this pattern.

lower laser frequency, but larger laser amplitude (Ω =
0.5th, A0a = 10, C = 0) where one expects several band
inversions as resonances involving n = 1 . . . 12-photon
processes are in principle allowed, although how visible
these are, depends on the laser amplitude. The corre-
sponding quasi-energy spectra and Berry-curvature are
shown in Fig. 5 and 6 respectively.

For A0a = 10, Mn
k has contributions from many n

where the dominant matrix element Mn0

k is such that
−4 . n0 . 4 in the BZ. Fig. 7 shows how the sign of n0

varies through the BZ, where for n0 = 0 or a positive in-
teger, the population is primarily in the ”down” level at
low temperatures, while n0-negative gives a population
primarily in the ”up” level. The sign of the population
difference follows the pattern in Fig. 7, leading to a dc
Hall conductivity that is not only small, but also has a
non-monotonic temperature dependence. Changing the
laser parameters in such a way as to stay within the same
topological phase, simply changes the size of the pock-
ets of max(n0) in the BZ, with no crossings or no new
pockets appearing. Note that this particular phase is not
a usual Chern insulator as C = 0, yet the system does
support edge states. Moreover, while we are studying the
system in the bulk, and edges do not enter explicitly in
our Kubo formula approach, yet we do pick up a non-zero
Hall response coming from the non-zero Berry-curvature
of the bulk bands.

While so far we have been mainly discussing the low
frequency Hall response, we now make some general ob-
servations about the high frequency response. We find
that for small amplitudes A0a ' O(1), σxy(ω) is satu-
rated by ω ∼ Ω (Fig. 1). On the other hand, for larger
amplitudes, like the case just discussed (A0a ' O(10)),
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FIG. 8. σxy(ω) for Ω = 0.5th, A0a = 10, C = 0. In compari-
son to the case of Ω = 5.0th, A0a = 1.5, 0.5, many side-bands
are visible, and the response is sensitive to the distribution
function over a larger frequency range ω.

σxy is non-zero over a larger range of frequencies (see
Fig. 8), with the position and magnitude of the side-
bands depending on the structure of Fmk . This is high-
lighted in Fig. 9 where the structure in the total optical
Hall conductivity plotted in Fig. 8 has been decomposed
into those arising from separate Fourier components of
Fk.

To understand the location of the peaks in ω, it
is convenient to look again at the low amplitude case
(Ω = 5.0th, A0a = 1.5&0.5). Here only Fm=0,1

k are dom-
inant, but while for one (A0a = 1.5), Fm=1

k is peaked
at εku − εkd � Ω, for the other (A0a = 0.5), Fm=1

k is
peaked at εku − εkd ∼ Ω. In fact Fm=0

k , Fm=1
k are re-

spectively the Dirac cones and circles in Fig. 4. Thus a
side-band appears at ω ∼ |εku − εkd − Ω| ∼ 0.75Ω for
the case of A0a = 1.5, C = 1, while no such side-band is
visible for A0a = 0.5, C = 3. Similar arguments can be
utilized to understand the peaks in the high frequency
response for the large amplitude case shown in Figs. 8
and 9. Thus while the optical Hall conductivity at non-
zero frequency σxy(ω 6= 0) is not a topological quantity,
yet it is sensitive to the structure of the Berry curvature
both in momentum and time.

V. CONCLUSIONS

In summary we have presented results for the opti-
cal Hall conductivity which can be measured in an all
optical measurement such as Faraday rotation, as well
as using leads. The low frequency Hall conductivity,
even in steady-state with a reservoir, is remarkably sen-
sitive to the topological phase, which is communicated
through the structure of the system-reservoir matrix el-
ements, resulting in steady-states with anomalous tem-
perature dependence, and also opening up the possibility
of manipulating the steady-state by suitable reservoir en-
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FIG. 9. σm
xy for Ω = 0.5th, A0a = 10, C = 0 and for an ideal

distribution ρku− ρkd = 1. The peaks are at ω ∼ |εku− εkd−
mΩ| where the location of k is determined by the peaks in
Fm
k .

gineering36,37, for example by applying strain fields that
modify the symmetries of the electron-phonon coupling.
We also find that the high-frequency response acts as
a spectroscopic tool for the Fourier components of the
time-dependent Berry curvature.

We presented detailed results for the optical Hall re-
sponse in three different phases of the FTI. One is where
the Chern number coincided with the number of edge-
states which were all in the center of the FBZ (Ω =
5th, A0a = 1.5, C = 1), the other where the Chern num-
ber does not equal the number of edge-states but rather
equals the difference in the number of chiral edge-states
above and below the Floquet band (Ω = 5th, A0a =
0.5, C = 3), while the third was one where C = 0
(Ω = 0.5th, A0a = 10, C = 0), so that the band was
not a conventional Chern insulator, yet the system sup-
ports edge states with the number of chiral edge modes
above and below the band equal to each other (hence
C = 0). An interesting future direction of research is to
compare the results presented here which were based on
a bulk Kubo formula treatment, and which is sensitive to
the bulk Berry-curvature, with a Landauer transport ap-
proach through a short sample where the leads determine
the occupation of the Floquet states.
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Appendix A: Derivation of Floquet-Master equation

We assume that initially the system is in the ground
state of graphene |Ψ(t = 0)〉 =

∏
k |ψin,k〉, and we time-

evolve the system according to H. For the closed system
(Hc = 0), this time-evolution can be studied exactly,
while in the presence of phonons, we solve the problem
by assuming a weak electron-phonon coupling, and a very
fast bath so that a Floquet-Markov approximation can
be made. This approach has been discussed in detail
elsewhere25,35, however for completeness we briefly high-
light the main steps. Let W (t) be the full density matrix

obeying dW (t)
dt = −i [H,W (t)]. In the interaction rep-

resentation, WI(t) = eiHphtU†el(t, 0)W (t)Uel(t, 0)e−iHpht,
where Uel(t, t

′) =
∏
k Uk(t, t′) is the time-evolution op-

erator for the electrons under a periodic drive where
Uk(t, t0) =

∑
α=u,d e

−iεkα(t−t0)|φkα(t)〉〈φkα(t0)| with

|φkα(t)〉, εkα being the quasi-modes and quasi-energies

that obey

[
Hel − i∂t

]
|φkα〉 = εkα|φkα〉. We will follow

the convention of restricting the quasi-energies to a Flo-
quet Brillouin zone (FBZ), −Ω/2 < εkα < Ω/2, and label
the two quasi energy-levels such that εku > εkd. Defining
the electron reduced density matrix as the one obtained
from tracing over the phonons, W el = TrphW , at O(H2

c )
we need to solve,

dW el
I

dt
= −Trph

∫ t

t0

dt′ [Hc,I(t), [Hc,I(t
′),WI(t

′)]](A1)

We assume that at the initial time t0, the electrons
and phonons are uncoupled so that W (t0) = W el

0 (t0) ⊗
W ph(t0), and that initially the electrons are in the post-
quench state |Ψ(t)〉 =

∏
k Uk(t, 0)|ψin,k〉. Thus, W el

0 (t) =
|Ψ(t)〉〈Ψ(t)| =

∏
kW

el
k,0 where

W el
k,0(t) =

∑
α,β=u,d

e−i(εkα−εkβ)t|φkα(t)〉〈φkβ(t)|ρquench
k,αβ(A2)

with ρquench
k,αβ = 〈φkα(0)|ψin,k〉〈ψin,k|φkβ(0)〉. Since the

phonons are an ideal reservoir that stay in thermal equi-
librium at temperature T at all times, we write WI(t) =
W el
I (t)⊗ e−Hph/T /Tr

[
e−Hph/T

]
(we set kB = 1).

The most general form of the reduced den-
sity matrix for the electrons is W el

I (t) =∏
k

∑
αβ ρk,αβ(t)|φkα(t)〉〈φkβ(t)| where in the absence of

phonons, ρk,αβ = ρquench
k,αβ and are time-independent in

the interaction representation. The last remaining step
is to make the following three approximations32–34: (a).
ρk,αβ are slowly varying as compared to the characteris-
tic time scales of the reservoir (Markov approximation),
(b) they are also slowly varying in comparison to the
laser frequency so that the scattering rates can be aver-
aged over one cycle of the laser (modified rotating wave
approximation) and, (c) we are away from any topologi-
cal transitions so that the spacing between quasi-energy
levels is large as compared to the coupling to the bath
(|εku − εkd − nΩ| > Dphλ

2, |nΩ| > Dphλ
2), under such

conditions the off-diagonal matrix elements (ρkud) are
small and can be dropped. These approximations lead to
the rate equation, ρ̇k,αα(t) = −

∑
β=u,d L

k
αα;ββρk,ββ(t)

where Lkαα,ββ are the scattering rates.
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