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We present a novel means of controlling phonons via optical tuning. Taking as a model an array of photo-
responsive materials (photoswitches) embedded in a matrix, we numerically analyze the vibrational response of
an array of bistable harmonic oscillators with stochastic spring constants. Changing the intensity of light incident
on the lattice directly controls the composition of the lattice and therefore the speed of sound. Furthermore,
modulation of the phonon bandstructure at high frequencies results in a strong confinement of phonons. The
applications of this regime for phonon wave-guides, vibrational energy storage, and phononic transistors is
examined.

Light-matter interactions are of great utility for many of
applications. For mechanical vibrations (phonons) these ap-
plications encompass creating or destroying phonons using
light (optomechanics [1, 2], Raman scattering [3–7]), creat-
ing or destroying light using phonons (vibronic spectroscopy
[8], black body radiation [4]), and shifting the refractive in-
dex using phonons (acousto-optics [9–11]). However, the last
quadrant of this interaction (Table I), the control of phonon
properties (e.g. speed of sound, cs) using light remains unex-
plored. As a result, acousto-optic devices (filters, modulators)
are common, whereas controlling phonons remains difficult.
Fundamentally, phononic devices require more than the ma-
nipulation of phonon populations, but also the tunable manip-
ulatin of speed and transmission (phase and amplitude) [12–
14]. Optical control, a fast, non-contact technique, is a natu-
ral candidate for this. The absence of existing optical control
methods for phonons is surprising, as it is well-known both
that light can tune other material properties (particularly mag-
netic and electronic properties) by means of inducing a struc-
tural phase transitions (a.k.a. nonlinear phononics, ionic Ra-
man) [5–7, 15–19], and that other signals (pressure, temper-
ature) can control cs and phonon dispersion (often by phase
transitions) [12–14, 20–29]. So far as we are aware, the only
research that came close to the problem of optical control were
[30–32]. [30] showed that the vibrational properties of a mate-
rial can be optically switched in photo-responsive liquid crys-
tal polymers. But the optical excitation was intense enough for
complete switching, so their focus was rather on the thermal
and strain (rather than the optical) tuning of this switching.
Whereas [31] considered fs laser pulses on bismuth, where
photo-induced thermal expansion induces an optical fluence
dependent red-shift in some of the phonon modes. The ef-
fect is limited by the system melting, as it’s an expected sig-
nature of materials near a phase transition [33]. It is also
similar to the earlier work of [32] on chalcogenide glasses,
where the photo-softening was associated with the approach
of a glass-liquid melting transition. There have been other
scenarios where optical driving has affected phonon dynam-
ics, such as [34], but these have been switches between dis-
crete phases (and therefore not tunable) or changed particular
resonant modes (i.e. polaritons).

Here we analyze an approach to controlling cs via opti-
cal intensity. We present a theoretical model of an array of

Create/Destroy Harden/Soften

Photon→Phonon Optomechanics, Raman ???
Phonon→Photon Vibronic, Fluorescence Acousto-Optics

TABLE I: The quadrants of light-matter interaction. First row is light
used to control phonons, second is sound used to control photons.
First column is changing populations, second is changing dispersion.

generic photo-switches and demonstrate its use at modulat-
ing the phonon bandstructure, tuning cs. Numerical analy-
sis of the dynamics reveals additional confinement effects at
high-frequencies which may prove useful for vibrational en-
ergy storage or phononic transistors.

Consider a solid under illumination, there exist three
photon-phonon coupling mechanisms. If the basis atoms are
polar, then there is a coupling to the electromagnetic field
inducing a localized vibration (direct Raman). If there ex-
ists an infrared-active phonon mode, then photons can excite
that (ionic Raman). Absent these couplings, light can excite
electrons, which excite phonons via electron-phonon coupling
(indirect or stimulated Raman). After this initial excitation
of a single mode, nonlinearities (electron-phonon coupling or
phonon anharmonicity) will disperse this energy into a ther-
mal phonon population. For some materials, these excita-
tions can also induce a structural change, driving the vibra-
tions about some new equilibrium position in ionic Raman
or softening a phonon mode in stimulated Raman. Structural
changes necessarily change the phonon bandstructure. To
avoid conflating the creation of thermalized phonons and the
tuning of the band-structure (distinguishable effects for suf-
ficiently weak anharmonicity, [35]), we concentrate on non-
photoactive modes and neglect thermalization except for its
effect in structural transitions. For consistency, this requires
neglecting phonon-phonon couplings so we concentrate on
harmonic phonons. Hence we confine attention to a chain of
1D simple harmonic oscillators (SHOs) without further loss
of generality.

We therefore model a system of n masses (m ≡ 1) joined
to N = n + 1 photo-switcheable SHOs (ground state spring
constant kD, excited kU ) with a mechanical driving force
F = F0 cos(ω0t) at frequency ω0. Driving pumps a con-
stant supply of energy into the system, so it is helpful to
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modify the standard clamped boundary conditions (u0 =
0 = un, u is displacement) by sandwiching this system be-
tween impedance matched systems of n damped (damping
rate γu ≡ 1) SHOs (k = kD) and clamping these ends (see
Fig. 1). In the more general case, exciting any SHO will not
produce switching elsewhere (i.e. no cascades). This is plau-
sible for sufficiently separated photo-isomerizing molecules
and composite or multilayed structures where only some por-
tion is photo-sensitive (see the bottom of Fig. 1). However,
if there are no photoswitching cascades, then the order and
timing of (de)excitation greatly influence the dynamics. To
avoid a biased order, switching is randomized with Poisson
statistics (excitation rate RD = BDUH and de-excitation
RU = Aspont +BUDH where H is photon fluence at a point
and A and B are the Einstein coefficients [4]). This is plau-
sible in the case of sufficiently low intensity photo-excitation
that shot noise dominates (i.e. individual photon trajectories
are relevant, not an ensemble of photons) but is also a tech-
nique for ensuring the robustness of the response to changes in
the switching order. Switching dynamics are typically compli-
cated, but because the photo-excitation is much faster than any
structural rearrangement, these complexities can be neglected
(to lowest order) by integrating out the shorter time-scales to
give

k̇(t) = −γk(k(t)− kSS(w)) (1)

where γk determines the rate of the structural reaction (typ-
ically O(ω0)) and kSS is the new steady-state, w denotes
the stochastic variable describing switching. In principle a
change in the equilibrium position of the lattice is also pos-
sible. But our system models a photo-switch embedded in a
matrix and does not describe the (realization-dependent) dy-
namics of modes shorter than one supercell, so this shift is
negligible. Hence, the displacement obeys

üi(t) = ki(t) [ui−1(t)− ui(t)] + ki+1(t) [ui+1(t)− ui(t)]
(2)

where i indexes the site.
At steady-state this system’s eigenmode distribution is solv-

able using Random Matrix Theory [36]. However, this does
not describe the effects of changing composition (i.e. travers-
ing the RMT’s solution space [37]). Moreover, the eigen-
functions for a single equation can be solved − exponential
wave-functions when no switching is occuring and modified
Bessel functions of imaginary order when switching is occur-
ing − but the inconsistency of this basis set impedes an ana-
lytic solution for any non-trivial realization. As such, we in-
tegrate the solutions numerically. Switching times/locations,
being stochastic, are computed using the Gillespie algorithm
[38], and the system can be integrated analytically between
switchings. Initial conditions are u(x, 0) = 0 = u̇(x, 0),
ki(0) = kD. We use natural units: a the equilibrium site
separation for length and tγ = 1/γu for time. Using kD =
1/t2γ , kU = 2/t2γ , RU = 1.5/tγ , RD = 2/tγ , F0 = 1a/t2γ ,
a sample of size n =29 is calculated for interval T = 100tγ
giving u(x, t) and k(x, t) at various ω0.
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FIG. 1: Schematic model of system. Photoswitches (green) sand-
wiched between damped regions (brown) which are clamped at the
far ends. Light (orange curves) is applied to the photoswitches,
which are also driven mechanically (blue arrow) to produce phonons.
Photoswitches are modeled as a series of 1D SHOs composed of pho-
tosensitive materials (e.g. anthracene, see bottom) embedded in a
matrix, creating a bistable system with two spring constants.

Given the connection between u(x, t) and k(x, t), plot-
ing them together is useful. Hence an unusual visualization
scheme in Fig. 2 (alternatively see supplementary movies).
The x-axis denotes position along the chain (0 to N ), y time,
colored isoval curves are oscillator amplitude u, and rectan-
gles are lattice composition k (grey = ground state, white = ex-
cited). For clarity, Fig. 2a is supplemented with two subplots.
The bottom subplot shows u(i, t) and k(i± 1, t) for fixed po-
sition i. The side subplot shows u(x, t0) and k(x, t0) for fixed
time t0. This is early in our simulation, so the driving signal
(from x = 0) has not yet propagated along the lattice. Since
at low frequencies (Fig. 2a) we expect wavelengths λ� a, so
the effect of the switching is a weak perturbation that distorts
u. For shorter wavelengths (Fig. 2b), the solutions are more
sensitive to lattice composition and may be scattered at the
composition boundaries (reflecting incident phonons). How-
ever, because the lattice composition changes transmission
and reflection fluctuate, giving intervals of strong transmission
or reflection. This constitutes a potential mechanism for ultra-
fast control of thermal conductivity. For even higher frequen-
cies (Fig. 2c) the system is above the band edge of one state
but not the other (i.e. above ωmin(kmax) ≡ ωg = 2/tγ). This
implies that oscillations decay in one state but freely prop-
agate in the other, allowing tunneling. In this case changing
composition allows standing waves to be trapped and so could
potentially store or steer vibrations. This could also be a form
of phononic memory or (detailed later) phononic transistor.
Finally, at frequencies above the band edge of both configu-
rations (ω > 2

√
2/tγ , not shown), no propagation is possi-

ble and the solution decays. Analyzing u(x, t;ω0) shows that
photo-switching dramatically affects the transmission and dy-
namics, but this frequency dependence is also useful for find-
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FIG. 2: Phonon amplitude under photo-switching. x−axis de-
notes distance along the 1D chain, y−axis denotes time. Contours
(coloured) are isoval curves of phonon amplitude ui(t) (see side-
bar). Grey segments are the ground state (no illumination), white
segments are excited(illuminated), gradients are transitions. (a) Low
frequency (ω = 0.5/tγ). Bottom inset (red, vertical slice) shows
u(N/2, t) (red, solid curve) and k(N/2, t), k(N/2 + 1, t) (black,
dashed curves) as a function of time. Side inset (blue, horizontal
slice) shows a snapshot u(x, t0) (blue, solid curve) and k(x, t0)
(black dots) as a function of position. (b) Mid frequency (ω =
1.5/tγ). (c) High frequency (ω = 2.5/tγ).

ing the dispersion and thereby cs. To generate the dispersion
we Fourier transform u(x, t), giving u(q, ω). The location of
the maxima of u(q, ω) indicates the mode ω(q) that was ex-
cited by driving at ω0. (To generate a smooth dispersion rather
than a series of discrete normal modes, n =124 is used.) This
is repeated for Nrep =10 times with T = 200tγ for ergod-

icity, and ω and q are averaged. Because at high frequencies
waves can be narrowly confined, this will artificially intro-
duce Fourier components near the Γ point. Since these are
not features of the waveform itself, but of its confinement, we
exclude these terms from the average. Repeating this for mul-
tiple frequencies allows us to construct the dispersion, which
is repeated for various combinations of RU/RD in Fig. 3.
Note that for points above ωg (i.e. in the confinement regime),
some of the dispersions show a pronounced drop in q. This is
an artifact of the exponential decay regions, which lower the
effective wavelength. Ergo, this jump is a result of limita-
tions in defining a wavelength for such a heterogeneous sys-
tem. So when we fit the dispersion ω(q;RU/RD) to a sine
curve cs,eff sin(aeffq)/aeff (the dispersion for a homoge-
neous 1D chain, cs,eff and aeff are fitting parameters) it is
helpful to exclude these points.
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FIG. 3: dispersion ω(q) for a 1D chain of photoswitches. Color
denotes strength of illumination from blue (no illumination, all in
ground state) through red (full illumination, all in excited state). Dot-
ted lines and dots (with error bars) indicate numerical results. Solid
lines denote fit to sinusoid dispersion. (inset) Speed of sound as a
function of fraction in the excited state. Colored, solid line is the
numerical fit (color corresponds to dispersion) and the black, dashed
line is the kinetic model

From the fitted dispersion we can extract the effective cs,eff
by expanding for small q giving (in units of a/tγ)

cs,eff = 0.997 + 0.177NU/N + 0.227 (NU/N)
2 (3)

where NU is the excited state population, cs,D = 1a/tγ is
the ground state’s speed of sound and cs,U =

√
2a/tγ is the

excited state’s (see Fig. 3 inset). From the master equation

ṄD = −RDND +RUNU = −ṄU (4)

the steady state compositions are

NU
N

=
RD

RD +RU
=

(gU/gD)H

S(ων) + (1 + gU/gU )H
(5)

where gU,D are the mode degeneracies, S = 2~ω3
ν/πc

3, and
ων is the photon frequency (last relation comes from detailed
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balance of the Einstein coefficients [4]). Changing RU/RD
changes NU/ND, so increasing the optical intensity increases
the equilibrium population in the excited state (to some limit-
ing fraction given by the mode degeneracies). Ergo, changing
illumination gives direct control of cs. Now consider a sim-
ple kinetic model where cs in the ground (excited) state is
cs,D (cs,U ). The average speed for an inhomogeneous system
would be the weighted average cs,DND/N + cs,UNU/N or

c(kin)s = cs,D + (cs,U − cs,D)NU/N (6)

i.e. linear with composition. This disagrees with our observed
relation, which falls below this kinetic limit except for the ho-
mogeneous cases ofNU/N = 0 or 1 which agree with the an-
alytic results to within 99% accuracy (see Fig. 3 inset). This
is expected, though, as reflections delay a pulse and decrease
its effective velocity.

Finally, consider again the confined regime. In the homoge-
neous cases the transmittivity of the material should be nearly
1 (i.e. no loss) or 0 (i.e. perfect damping) for a sufficiently
thick sample. Switching between these compositions (possi-
ble when gU � gD and photon intensity is large, or stochas-
tically possibly for RD > RU and N ≈ gU/gD) allows for
illumination controlled switching between transmission and
reflection. Dynamically changing RD/RU therefore allows
for controlled phonon transmission. This switching mecha-
nism is therefore a potential phononic transistor using the op-
tical analog indirect control scheme presented in [14] (i.e. a
light source instead replaces the electromagnet). Such an in-
direct transistor is more easily tuned than the direct designs,
which rely upon phonon-phonon couplings [29] that are not
dynamically accessible. To show the feasibility of this pro-
posal, we repeat our calculations for a pulsed illumination
(R(on)

D = 4/tγ , R
(off)
D = 0). Pulse widths are selected such

that a homogeneous composition is produced for each state.
Since complete, monotonic switching of a sample has the ex-
pectation value

RU,Dτ
(N)
U,D = N

N∑
1

1

v
= NHN ≈ N lnN (7)

where HN is the harmonic function, we use a sample size of
n =9 for these simulations (illumination period 200tγ , dark
period 200tγ , total run time 2000tγ , RD = 4/tγ = 8RU ).
Plotting the amplitude at the far end of the sample (normalized
to the maximum amplitude without damping max[u0(L, t)])
gives Fig. 4 for a ω = 2.1/τγ . The horizontal lines indicate
the rms average amplitude during each period of darkness or
illumination (including switching intervals, therein underesti-
mating the difference). Frequencies below ωg there is trans-
mission for both states so the ratio of these averages is nearly
1 (not shown). Whereas for frequencies just above ωg there is
a large difference between the states and so a large separation
observed (Fig. 4). As frequency increases above ωg , trans-
mission drops and the ratio again approaches 1 (not shown).
Comparing these results with Fig. 2c reveals a cross-over from

confinement to transmission with increasing photon intensity.
For confinement to be effective, there should be narrow do-
mains of propagating configuration, which is best achieved
with weak driving.
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FIG. 4: Transmitted signal (amplitude vs time) of photoswitches in a
switch/transistor regime. Blue curve is response, black rms average
over dark period, red rms average over illuminated. Separation of the
black and red curves is the switch’s efficacy.

In summary, we have demonstrated a novel approach con-
trolling the phononic properties of a system, using light to
tune the phonon band structure. This reverses the acousto-
optic formulation of phonons modulating the index of refrac-
tion, and instead light modulates cs. The shifting of the dis-
persion that this allows opens several interesting new possi-
bilities for phononic devices. Delay lines and by extension
phase control gates can be constructed by tuning the speed
of sound. Thermal conductivity modulation is clearly achiev-
able by the controlled scattering of short-wavelength phonons
from the configuration boundaries. Vibrational energy stor-
age or phononic memory are possible in the high frequency
regime with phonon confinement under weak optical driving.
And under the same regime with strong optical driving, an
opto-phononic switch or indirect phononic transistor is feasi-
ble. The control of the speed of sound could also improve the
short-term storage (RAM) of phononic information through
delay line memory, similar to [39]. Furthermore, the pattern-
ing of photoswitches in a system − or their patterned photo-
excitation − allows for real-time, adaptable phononic materi-
als, including phononic crystals and metamaterials. This can
be particularly useful (in the confinement regime) for creat-
ing waveguides that dynamically control the propagation of
phonons or for tuning the thermal conductivity by selectively
introducing scatterers. Such an approach would also be ex-
perimentally feasible, as an optically-controlled bandpass fil-
ter was proposed using a superlattice of resonant cavities with
chalcogenide glasses in [40] (only light or dark states were
simulated and so no intensity-dependant tunability was ob-
served). Similar approaches for experimentally realizing these
devices could be achieved by superlattices of photo-sensitive
materials (e.g. photo-isomers [30], ionic Raman active mate-
rials [31], photo-elastic glasses like chalcogenides [32]) sepa-
rated by inactive layers or by embedding these photo-sensitive
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materials (particularly photo-isomers, which are generally
small organic molecules) within an inactive matrix (the sce-
nario illustrated in Fig. 1). Finally, The prevalence of phonon
couplings in quantum computing, electronics, phoxonics, and
spintronics [41–45] implies that these effects may have further
applications in the optical control of a great many signals in
a cavalcade of fields. Thus, our “opto-phononic” framework
introduces an unexplored aspect of light-matter interaction be-
yond the previously studied thermal repopulation regime.

This material is based upon work supported by the Na-
tional Science Foundation Graduate Research Fellowship un-
der Grant No. 1122374.
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[20] N. Sepúlveda, R. Armando, R. Cabrera, and F. Fernández, App.

Phys. Lett. 92, 191913 (2008).
[21] S. Li, X. Ding, J. Ren, J. Li, J. Sun, and E. K. H. Salje,

arXiv:1310.2879 (2013).
[22] Z. Guo, D. Zhang, and X-G. Gong, Appl. Phys. Lett. 95, 163103

(2009)
[23] X. Li, K. Maute, M. L. Dunn, and R. Yang, Phys. Rev. B 81,

245318 (2010)
[24] N. Wei, L. Xu, H-Q. Wang, and J-C. Zheng, Nanotechnology

22, 105705 (2011).
[25] K. G. S. H. Gunawardana, K. Mullen, J. Hu, Y.P. Chen, and X.

Ruan, Phys. Rev. B 85, 245417 (2012).
[26] R. T. Zheng, J. Gao, J. Wang, and G. Chen, Nat. Commun. 2,

289, (2011).
[27] J. Zhu, K. Hippalgaonkar, S. Shen, K. Wang, Y. Abate, S. Lee,

J. Wu, X. Yin, A. Majumdar, and X. Zhang, Nano. Lett. 14,
4867-4872 (2014).

[28] F. Li, C. Chong, J. Yang, P. G. Kevrekidis, C. Daraio, Phys. Rev.
E 90, 053201, (2014).

[29] D. Hatanaka, I. Mahboob, K. Onomitsu, and H. Yamaguchi,
App. Phys. Lett. 102, 213102 (2013).

[30] M. Petr, M. E. Helgeson, J. Soulages, G. H. McKinley, and P.
T. Hammond, Polymer. Comm. 54, 12 (2013); E. Verploegen,
J. Soulages, M. Kozberg, T. Zhang, G. H. McKinley, and P. T.
Hammond, Angew. Chemie. 48, 19 (2009).

[31] T. Garl, E. G. Gamaly, D. Boschetto, A. V. Rode, B. Luther-
Davies, and A. Rousse, Phys. Rev. B 78, 134302 (2008).

[32] J. Gump, I. Finkler, H. Xia, R. Sooryakumar, W. J. Bresser and
P. Boolchand, Phys. Rev. Lett. 92, 245501 (2004).

[33] C. Kittel, Introduction to Solid State Physics (8th ed.) (Wiley,
New York, 2004).

[34] S. L. Johnson, P. Beaud, E. Vorobeva, C. J. Milne, É. D. Murray,
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