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The non-Abelian topological order has attracted a lot of attention for its fundamental importance and ex-

citing prospect of topological quantum computation. However, explicit demonstration or identification of the

non-Abelian states and the associated statistics in a microscopic model is very challenging. Here, based on

density-matrix renormalization group calculation, we provide a complete characterization of the universal prop-

erties of bosonic Moore-Read state on Haldane honeycomb lattice model at filling number ν = 1 for larger

systems, including both the edge spectrum and the bulk anyonic quasiparticle (QP) statistics. We first demon-

strate that there are three degenerating ground states, for each of which there is a definite anyonic flux threading

through the cylinder. We identify the nontrivial countings for the entanglement spectrum in accordance with the

corresponding conformal field theory. Through simulating a flux-inserting experiment, it is found that two of

the Abelian ground states can be adiabatically connected, while the ground state in Ising anyon sector evolves

back to itself, which reveals the fusion rules between different QPs in real space. Furthermore, we calculate the

modular matrices S and U , which contain all the information for the anyonic QPs such as quantum dimensions,

fusion rule and topological spins.

PACS numbers: 73.43.Cd, 03.65.Ud, 05.30.Pr

Introduction.— The topological order of a quantum state

is correlated with the pattern of long-range quantum entan-

glement [1, 2], which is characterized by ground state (GS)

degeneracy on compactified space [3], gapless edge states [4–

6], and fractional quasiparticles (QPs) with anyonic statistics.

According to the braiding statistics of QPs, the topological

ordered states are generally classified as Abelian [7] and non-

Abelian [8–10] states. An interchange of two Abelian QPs

leads to a nontrivial phase acquired by their wavefunction.

On the other hand, an interchange of two non-Abelian QPs

transforms the system from one GS to another and the final

state will depend on the order of the implemented operations.

The non-Abelian QPs and their braiding statistics are essential

information for understanding the topological order, which

can also lead to potential applications in topological quantum

computation [11–13].

Identifying and characterizing the emergent topological or-

der in strongly correlated systems has been regarded as a very

challenging task. Recently, quantum entanglement has been

extensively used to describe the emergent topological order in

strongly interacting systems [14–16, 18–22], which has also

offered a new route for characterizing the topological order

by obtaining the modular matrices of the systems. In par-

ticular, two theoretical progresses are prominent for uniquely

identifying a topological order. First, Li and Haldane have es-

tablished that the entanglement spectrum (ES) of groundstate

of fractional quantum Hall state contains information about

their edge modes [16], if no edge reconstruction occurs in the

system [17]. Since the gapless edge state is universal for topo-

logical ordered systems governed by the conformal field the-

ory (CFT) [6], the ES provides a fingerprint of the topological

order. Secondly, Zhang et al demonstrated that the braiding

statistics of anyonic QPs can be extracted from the minimal

entangled states by constructing the modular matrices using

the projected variational wavefunctions. Theoretically, this

is based on the fact that the minimal entangled state is an

eigenstate of the Wilson loop operator with a definite type of

QP [19], which can be used as the basis states for modular

transformation. This approach has been applied to character-

ize different Abelian topological ordered states including the

Laughlin states on topological bands[20, 23], chiral spin liq-

uid [24–26] and Z2 spin liquid [27] on extended spin−1/2
kagome lattice models based on exact diagonalization (ED)

or large scale density matrix renormalization group (DMRG)

simulations[28, 29]. Since non-Abelian QPs are much more

interesting and their properties are richer and significantly dif-

ferent from the Abelian ones, it is highly desired to extract the

non-Abelian statistics using such kind of entanglement mea-

surement. However, due to the limited computational capabil-

ity, only partial information such as mutual statistics has been

successfully obtained in previous studies [30, 31], which is

not sufficient to uniquely classify a non-Abelian topological

ordered state. Taking the non-Abelian Moore-Read state as

an example, there are 8 different related chiral Ising CFTs that

share the same mutual statistics [32]. To distinguish them, one

needs the self statistics of QPs or chiral central charge [32].

Therefore, both mutual and self statistics are necessary to de-

termine a non-Abelian topological order [22, 33, 34], which

requires an unbiased numerical method to obtain topological

degenerating quantum states for larger systems and overcome

the limitation of previous methods.

The topological ordered state has fractionalized QPs. One

intrinsic property of the anyonic QPs is the fusion rule of the

QPs that a combination of two anyonic QPs yields one or more

than one type of different QPs, which is the fundamental con-

cept for future qubit-based topological quantum computation.

Although the fusion rules can be alternatively obtained from

modular S matrix through the Verlinde formula [35], it is also
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FIG. 1: (Color online) The ES for three topological GSs: (a) Identity GS |Ψ11〉, (b) Fermion GS |Ψf 〉 and (c)Ising anyon GS |Ψσ〉, where

λi is the eigenvalue of reduced density matrix ρ̂L of left half of an infinite cylinder. The ES are labeled by the relative boson number

∆NL = NL −N0
L of left half cylinder in each tower (N0

L is the boson number of the state of ρ̂L with the largest eigenvalue). In each tower,

the horizontal axis shows the relative momentum ∆Ky = Ky −K0
y in the transverse direction of the corresponding eigenvectors of ρ̂L (K0

y is

momentum of the state with the largest eigenvalue for ρ̂L in each tower). The numbers below the red dots label the nearly degenerating pattern

for the low-lying ES with different ∆Ky . The black dashed line shows the entanglement gap in each momentum sector. Here the calculation

is performed on Ly = 6 cylinder using infinite DMRG with keeping 3200 states.

highly desired to directly demonstrate the fusion process be-

tween two given anyonic QPs in real space. The simulation of

the QP fusion rule is regarded as a very difficult task and has

not been directly demonstrated for microscopic non-Abelian

systems. Recently, we[24] illustrate a method of combining

Laughlin gedanken experiment [36] and ES measurement [16]

to simulate the QP fusion rule. To generalize this method from

Abelian system [24] to non-Abelian system is another goal of

the current work.

The aim of this paper is to provide compelling numerical

evidences of the non-Abelian nature of bosonic Moore-Read

state in a microscopic lattice model for large systems. Based

on the DMRG calculations, we are able to access a complete

set of topological GSs with different anyonic flux threading

through the cylinder, which can be identified by the character-

istic edge spectrum governed by SU(2)2 CFT. Then we ap-

ply the newly developed adiabatic DMRG to this system [24].

By adiabatically threading a U(1) charge flux, it is found that

the two Abelian GSs can be adiabatically connected through

pumping a QP with unit charge from one edge to the other,

while the non-Abelian GS only evolves back to itself. Impor-

tantly, this pumping and transferring QP process is equivalent

to the simulation of fusion rules between different QPs. To our

best knowledge, this is the first time to demonstrate such kind

of fusion rules of non-Abelian system in real space. Moreover,

using the GSs in all topological sectors, we also calculate the

modular S and U matrices. which contain the mutual and self

statistics of all three kinds of QPs. On one hand, the fusion

rules from the modular S matrix self-consistently validates

the flux insertion simulation. On the other hand, the further

information (i.e. topological spin, central charge) from mod-

ular U matrix helps us determine Haldane honeycomb model

realizes n = 1 chiral Ising theory [32].

Model and method.— We study the Haldane model on the

honeycomb lattice [37] filled with interacting bosons:

H = t
∑

〈rr′〉

[

b†
r
′br + h.c.

]

+ t′
∑

〈〈rr′〉〉

[

b†
r
′bre

iφ
r
′
r + h.c.

]

+t′′
∑

〈〈〈rr′〉〉〉

[

b†
r
′br + h.c.

]

+
∑

n

Un

n!

∑

r

(b†
r
)n(br)

n, (1)

where b†
r
(br) creates (annihilates) a boson at site r = (x, y).

Here, we adopt the parameters of the nearest neighbor (NN)

hopping t = −1, the second NN t′ = −0.60 and φ = 0.4π,

the third NN t′′ = 0.58 [38]. We also set the on-site N-

body repulsive interaction as U2 = 0 and Un>2 = ∞, which

is equivalent to the “three-body hard-core boson” condition:
(

b†
r

)3
= 0 and (br)

3 = 0 [39]. This model can also be con-

sidered as a spin-1 model through the standard mapping [40].

In this paper we focus on the filling factor ν = 1 for studying

the interesting Moore-Read state[38].

In this work, we study the Hamiltonian Eq. (1) on cylin-

der geometry using the infinite DMRG combined with finite

DMRG method [20, 21, 28, 29]. We consider the cylinders

with finite width Ly = 4, 6 (measured by the number of unit

cells). We have kept up to 3200 states in the DMRG simu-

lation. The different topological GSs are obtained by the ran-

dom boundary condition [20], targeting the excited state in the

initial process, and the inserting flux method[43]. The DMRG

is especially efficient to deal with the topological ordered and

gapped system, which allows us to obtain the GS with well-

defined anyonic flux [20, 41–43]. Compared to the ED calcu-

lations [31, 38], the DMRG algorithm offers great advantages

because it can access larger system sizes accurately. More im-

portantly, by implementing the state-of-art techniques for de-

tecting topological order in DMRG simulations, we can iden-

tify and characterize the topological nature of a potential topo-
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logical ordered state in an interacting system, both at the edge

and in the bulk.

Chiral edge spectrum.— Through initializing the bound-

ary condition, targeting excited state for non-abelian sector,

and optimizing the bulk of the cylinder[20], we obtain three

nearly degenerated GSs (the bulk energy difference per site is

less than 0.0004). We anticipate that the three GSs host dis-

tinct and well-defined topological sectors with different flux a

through the cylinder. From the chracateristic ES discussed be-

low (see Fig. 1), these sectors can be identified as the identity

a = 11, fermion a = f and Ising anyon a = σ sectors. When

the cylinder is being cut into two halves, a a−type QP appears

near the edge of the cut, which leads to different gapless edge

excitation that can be distinguished by the ES.

Fig. 1 shows the ES for each of the three GSs |Ψa〉
(a = I, f, σ) obtained on a cylinder. The ES is grouped

by the relative boson number ∆NL of the half system and

their relative momentum quantum number ∆Ky (both ∆NL

and ∆Ky are related to the quantum numbers of the lowest

level in ES without flux for each topological sector) along

the transverse direction (referred to as y-direction). In Fig.

1(a), the leading ES of |Ψ11〉 displays the sequence of de-

generacy pattern {1, 1, 3, 5, 10, ...} in even ∆NL sector and

{1, 2, 4, 7, ...} in odd ∆NL sector. This even-odd effect can

be understood from the root configuration “..02020202..′′ of

|Ψ11〉 depending on the microscopic environment near a cut

[44–49]. Importantly, the edge mode countings agree with

the prediction of the identity primary field and its descendants

in SU(2)2 Wess-Zumino-Witten CFT. Similarly, as shown in

Fig. 1(b), the low-lying ES of |Ψf〉 shows degeneracy pat-

tern {1, 2, 4, 7, ...} in even ∆NL sector and {1, 1, 3, 5, 10, ...}
in odd ∆NL sector, as expected from the fermion primary

field and its descendants. Physically, the |Ψf 〉 is equivalent

to |Ψ11〉 with creating a pair of charge e (e is the unit charge)

QPs at two ends of the cylinder (see below). Therefore, the

even-odd effect in the ES of |Ψf〉 is shifted by ∆NL = 1,

compared to that of |Ψ11〉. Next we turn to results of the ES

of |Ψσ〉, as shown in Fig. 1(c), which shows two significant

differences compared to the |Ψ11〉 and |Ψf 〉. First, the ES is

symmetric about ∆NL = −1/2 rather than ∆NL = 0. This

feature results from the Ising anyon QP σ created at each edge

of the cylinder, carrying the fractional charge e/2. Second,

the ES shows the same degeneracy pattern {1, 2, 4, 8, ...} in

all ∆NL sectors. It can be understood from the root config-

uration “..11111111..′′ of |Ψσ〉 [49]. These observations are

consistent with the analytical prediction of Ising anyon pri-

mary field according to SU(2)2 CFT [47].

Flux insertion.— We further perform the numerical flux in-

sertion simulations on cylinder systems based on the newly

developed adiabatic DMRG [24, 27, 43, 50–52]. Due to the

quantized Hall response [36], it is expected that a quantized

charge will be pumped from left edge to the right edge by in-

serting a U(1) charge flux. The dynamical pumping process

reveals the nature of the pumped QP and the fusion rules be-

tween different QPs.

As shown in Fig. 2 (a), by threading a 2π flux, |Ψ11〉
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FIG. 2: (Color online) The ES flow with inserting flux θ in the hole

of the cylinder: (a) Starting from the GS |Ψ11〉 at θ = 0 and adiabat-

ically threading a θ = 4π flux. (b) Starting from the GS |Ψσ〉 and

threading a 2π flux. Here the calculation is performed on Ly = 6

cylinder using infinite DMRG with keeping 1200 states.

(|Ψf〉) adiabatically evolves into |Ψf〉 (|Ψ11〉). Further in-

creasing flux up to 4π will drive the system back to the |Ψ11〉
(|Ψf〉). Interestingly, comparing the ESs at θ = 0 and 2π,

the adiabatic flux insertion shifts the lowest level of ES from

∆NL = 0 to ∆NL = −1, signaling a unit charged f QP

transferred from left edge to right edge. Alternatively, we can

visualize the charge transferring mechanism from the charge

accumulation in real-space. As shown in Fig. 3(a), with adi-

abatically threading a flux quantum, a net charge accumula-

tion develops at left edge from ∆QL = 0.0 at θ = 0 to

∆QL = −0.999 at θ = 2π. At the right edge, the charge

accumulation ∆QR = −∆QL always holds because of the

particle number conservation. In fact, by inserting a single

flux quantum, a net charge transfer from left edge to right

edge is ∆Q = ∆QL = −∆QR ≈ 1.0 (in the units of

charge quantum e). If inserting two flux quanta, a net charge

transfer ∆Q = 2.0 is expected (Fig. 3(b)), and consequently

the ES evolves back with the quantum number of ES ∆NL

shifted by 2 as shown in Fig. 2 (a). In this process, two f
QPs are pumped from one edge to another, and they combine,

which drives the bulk GS |Ψ11〉 (|Ψf〉) back to itself. Thus

we find the |Ψ11〉 (|Ψf〉) hosts even (odd) number of edge f
QPs, which are two independent Abelian sectors of the sys-

tem. More importantly, pumping and transferring QP from

one edge to the other edge actually simulates the QP fusion

process: Threading a 2π and 4π flux respectively relates to

11 × f = f and f × f = 11. There are similar to the ν = 1/2
Laughlin state but the f QP here carries unit charge e and they

also satisfy different self statistics (see below).

Interestingly, as shown in Fig. 2(b), the Ising anyon GS

|Ψσ〉 will evolve into itself by threading a flux quantum, al-

though a net charge e QP transfer occurs. It directly results

from the fusion rule of Ising anyon σ QP: To combine one σ
QP (charge-e/2) and one f QP (charge-e) is equivalent to one

σ QP : σ × f = σ. Moreover, the Ising anyon σ QP does not

respond to the U(1) charge flux, which is significantly differ-

ent from the charged fermion f QP.

Anyonic statistics of QPs.— The braiding statistics of any-

onic QPs are encoded in the modular S and U matrices
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FIG. 3: (Color online) Real-space configuration of the accumulated

charge 〈∆Qx〉 =
∑

y
〈∆Qx,y〉 (the summation is over all the 2Ly

sites in each column x) with increasing flux θ. ∆QL(R) is defined

by the total charge localized on left (right) end of cylinder. Here the

calculation is performed on Ly = 4 cylinder with length Lx = 24.

[1, 19, 35, 53–57]. In the topological quantum field theory,

the modular matrices describe the action of modular transfor-

mation on the eigenstates of the Wilson loop operators rep-

resenting different types of QPs. Because the QP eigenstates

always select the minimal entropy [19], one can use the mini-

mal entangled states as the canonical basis for defining S and

U[18, 23, 31]. Remarkably, the minimal entangled states are

these states we obtain in DMRG as described above.

Following the procedure outlined in Ref. [20, 58], we ob-

tain the modular matrix on Ly = 4 cylinder:

S ≈ SCS +





0.068 −0.035 0.015
−0.019 −0.049 + 0.150i 0.039 + 0.146i
0.036 0.061 + 0.121i 0.050 + 0.077i





and

U ≈ UCS ×





ei0.029π 0 0
0 e−i0.083π 0
0 0 e−i0.041π



 .

Indeed, the numerical obtained modular matrices are quite

close to the analytical prediction from SU(2)2 Chern-Simons

theory [19, 53, 54]: SCS = 1

2





1 1
√
2

1 1 −
√
2√

2 −
√
2 0



 and

UCS = e−i 2π
24

3

2





1 0 0
0 −1 0
0 0 ei3π/8



.

In general, from the modular matrices, we have the full

statistics information of emerging QPs: i) The QPs Identity

(11), fermion (f ) and Ising anyon (σ) have the quantum di-

mensions [14, 15] d11 = 1, df = 1, and dσ =
√
2 re-

spectively and the total quantum dimension is D = 2. ii)

The fusion rule of QPs (that specifies how the QPs combine

and fuse) [53–56]: 11 × x = x (x = 11, f, σ), f × f = 11,

σ × σ = 11 + f and σ × f = f × σ = σ. iii) The topolog-

ical spins (from the phase factor for the QP obtained during

a self-rotation of 2π): h11 = 0, hf = 1/2 and hσ = 3/16,

respectively. iv) The chiral central charge c = 3/2. In par-

ticular, the non-trivial quantum dimension dσ =
√
2 signals

the non-Abelian fusion rule of σ QPs: σ × σ = 11 + f , that

two σ QPs may either fuse into an 11 or a f QP. Therefore

each pair of Ising anyon QPs can act as a qubit for quantum

computation [13]. Moreover, non-Abelian nature of σ QP is

also encoded in the topological spin hσ = 3/16, which dis-

tinguishes from boson-like 11 with h11 = 0 and fermion-like

f with hf = 1/2. The topological spin hσ = 3/16 implies

that our model realizes the pure SU(2)2 Chern-Simons the-

ory, rather than the the U(4)1/SU(2)2 gauge theory (which

has hσ = 5/16) [33] or the non-Abelian state in Kitaev hon-

eycomb model (with hσ = ±1/16) [32, 34]. In addition, the

chiral central charge c = 3/2 further supports our Haldane

honeycomb lattice model realizes the SU(2)2 Chern-Simons

theory [32]. Since the potential non-Abelian phase in Hal-

dane honeycomb lattice model may be realized in future cold

atom experiments [59], clarifying which topological order is

realized in this system provides valuable information for the

future study.

Summary and Discussion.— We have numerically studied

the universal properties of the non-Abelian Moore-Read state

by revealing both the characteristic ES and the bulk topolog-

ical nature, without using the empirical knowledge of model

wave functions. The two GSs with Abelian QPs can be dis-

tinguished by transporting a fermionic f QP on a cylinder and

the corresponding unit charge of f QP is determined simul-

taneously through inserting flux simulation. Interestingly, the

QP pumping and transferring process naturally demonstrates

the fusion rules in such non-Abelian system in real space. In

addition, extracting the modular matrices from the GSs of

DMRG, we justify the completeness of the GSs, and deter-

mine which CFT is realized for the non-Abelian state of the

system. Interesting systems for future studies include the pos-

sible non-Abelian state in the spin-1 system [24, 60, 61] and

in the double-layer system with two Abelian Laughlin states

coupled together [62].
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