
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Binding energies and spatial structures of small carrier
complexes in monolayer transition-metal dichalcogenides

via diffusion Monte Carlo
Matthew Z. Mayers, Timothy C. Berkelbach, Mark S. Hybertsen, and David R. Reichman

Phys. Rev. B 92, 161404 — Published  9 October 2015
DOI: 10.1103/PhysRevB.92.161404

http://dx.doi.org/10.1103/PhysRevB.92.161404


Binding energies and spatial structures of small carrier complexes

in monolayer transition metal dichalcogenides via diffusion Monte Carlo

Matthew Z. Mayers,1 Timothy C. Berkelbach,2 Mark S. Hybertsen,3 and David R. Reichman1

1Department of Chemistry, Columbia University, New York, NY 10027, USA
2Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA

3Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973-5000, USA

Ground state diffusion Monte Carlo is used to investigate the binding energies and carrier probability dis-

tributions of excitons, trions, and biexcitons in a variety of two-dimensional transition metal dichalcogenide

materials. We compare these results to approximate variational calculations, as well as to analogous Monte

Carlo calculations performed with simplified carrier interaction potentials. Our results highlight the successes

and failures of approximate approaches as well as the physical features that determine the stability of small car-

rier complexes in monolayer transition metal dichalcogenide materials. Lastly, we discuss points of agreement

and disagreement with recent experiments.

Atomically thin layers of crystalline transition metal

dichalcogenides (TMDCs) have been the subject of intense in-

vestigation in recent years [1, 2]. As with graphene, TMDCs

exhibit remarkable properties that originate from their quasi

two-dimensional nature [3, 4]. However unlike graphene,

TMDCs are direct gap semiconductors, opening up a wealth

of potential practical applications ranging from field-effect

transistors to photovoltaics [5, 6]. Furthermore, due to the

lack of inversion symmetry in these single layer crystals, the

so-called K-points on opposite corners of the two-dimensional

hexagonal Brillouin zone are inequivalent [7–9]. As a result,

a distinct valley degree of freedom associated to states near

these points emerges which may be manipulated and con-

trolled, leading to the possibility of novel “valleytronic” ap-

plications [10–13]. Lastly, carrier confinement and reduced

dielectric screening in these materials leads to large many-

body effects, resulting in bound state complexes of electrons

and holes with very large binding energies [14–20]. In this

work we focus on this latter property, providing a deeper un-

derstanding of the factors that control the binding energies of

electron-hole complexes in two-dimensional TMDCs.

From the computational perspective, the most accurate

means of describing excitonic properties in periodic solids

currently available is the GW+BSE approach [21–25]. Un-

fortunately, analogous fully ab initio approaches have not

been developed for the treatment of larger electron-hole com-

plexes such as trions and biexcitons [17–20]. However, sim-

plified approaches have proved to be effective, building on

well-established coarse-grained methodologies developed for

semiconductor quantum wells and other nanostructures. An

effective real-space electron-hole potential is combined with

an approximate treatment of the band structure, such as an

effective mass model or a few-band tight-binding model, to

build the model Hamiltonian. This also has roots in the

early discussion of the Bethe-Salpeter approach by Hanke and

Sham, demonstrating the relationship to the phenomenologi-

cal approach of Wannier [26].

The pioneering work of Keldysh highlighted the fact that

screening effects in quasi two-dimensional systems are intrin-

sically non-local [27]. Using a generalized Keldysh approach,

Cudazzo et al. formulated a simple and successful theory

for excitons in graphane [28, 29]. This approach has since

been applied by various authors to study optical spectra as

well as the properties of excitons, trions, and biexcitons in

TMDCs [30–35]. These studies have produced exciton bind-

ing energies and real-space structures that are in reasonable

quantitative agreement with first principles GW+BSE calcula-

tions and experiments in a variety of two-dimensional TMDC

systems [36]. This fact is not entirely surprising for three rea-

sons. First, recent ab initio calculations show that the effective

quasiparticle interactions that emerge at the RPA level nearly

perfectly match those used to describe the effective electron-

hole interaction in the models mentioned above [37]. Second,

the ab initio band structure near the K-point is well described

by elementary two- and three-band models [12, 38]. Third, the

spatial extent of the exciton that emerges from fully ab initio

calculations is sufficiently large relative to the atomic scale to

suggest that a coarse-grained Hamiltonian is justified [16].

Even within the simplified framework of an effective

Hamiltonian, the exact solution of the multi-body Schrödinger

equation for larger electron-hole complexes is challenging.

Initial work on exciton and trion binding energies in TMDCs

employed variational wave functions [30]. This approach has

been used more recently and with more intricate trial wave

functions to study biexcitons [17]. In both cases the results

found from variational solutions of the effective few-body

Schrödinger equation are in reasonable agreement with ex-

perimental results. However, since binding energies for tri-

ons and biexcitons are extracted with reference to the exciton

binding energy, the use of variational wave functions for all

excitonic complexes leads to binding energies that need not

provide a lower bound to the “exact” value, and it is unclear

how much error cancellation occurs as a result. For the trion

binding energy, Ganchev et al. have discovered a remarkable

exact solution, but only for the case where the full Keldysh

effective potential is replaced with a completely logarithmic

form that is accurate only at short range [39]. It is the pur-

pose of this work to investigate the nature and accuracy of

these approximate solutions by comparing with numerically

exact results, and thereby to provide insights into the proper-

ties of higher-order excitonic complexes in two-dimensional

TMDCs.

Diffusion Monte Carlo (DMC) provides a useful approach

for studying the energetics of excitonic complexes. Briefly,



2

DMC X (eV) variational X DMC X− (meV) experimental X− DMC XX (meV) experimental XX

MoS2 0.5514 0.54 33.8 43 [40], 18 [18] 22.7 70 [41]

MoSe2 0.4778 0.47 28.4 30 [42] 17.7

WS2 0.5191 0.50 34.0 30 [43], 45 [44] 23.3 65 [43]

WSe2 0.4667 0.45 29.5 30 [45] 20.0 52 [17]

TABLE I. Estimated exciton (X), trion (X−), and biexciton (XX) binding energies for different members of the 2D TMDC class of materials.

Where two numbers are reported, the number on the left is the most current estimate. The statistical uncertainty in the DMC data is on the

order of 0.1–0.3 meV. The column labeled ‘variational’ refers to results based on the Keldysh form, taken from Ref. [30].

the DMC algorithm propagates an initial wavefunction in

imaginary time using a Jastrow-based guiding wavefunc-

tion until the exact ground state wavefunction and energy

is obtained. Technical details of our DMC calculations can

be found in the Supplemental Material. At convergence,

DMC yields numerically exact exciton, trion and biexciton

ground-state energies within the confines of an effective few-

body Schrödinger equation. Specifically, our calculations

employ an effective mass treatment of the band structure

and a screened Coulomb interaction appropriate for the two-

dimensional TMDC family of materials, i.e.

H = −
∑

i

∇2
i

2mi

+
∑

i< j

qiq jV(ri j). (1)

Hamiltonians of this form have been successfully used to

describe excitons, trions, and biexcitons in semiconductor

quantum wells [46–48], as well as scenarios such as exci-

tons in doped quantum wells and electron-hole plasmas [49].

Note that Eq. (1) neglects possible three-body (and higher-

order) effective screened Coulomb interactions between carri-

ers; we will evaluate the success of this approach for mono-

layer TMDCs and return to this point before concluding.

The two-body potential employed in this study is

V(r) =
π

(ǫ1 + ǫ2)r0

[H0(r/r0) − Y0(r/r0)] , (2)

where H0 is the Struve function, Y0 is the Bessel function of

the second kind, and ǫ1 and ǫ2 are the dielectric constants for

the material above and below the TMDC layer; in all results

presented, we use ǫ1 = ǫ2 = 1, relevant for ‘ideal’ or sus-

pended TMDC monolayers.

In addition, DMC allows a full sampling of the square of

the wavefunction, which can be used to extract insight into the

structure of small bound carrier assemblies. Although DMC

has previously been used to calculate ground-state properties

for trions interacting with a purely logarithmic potential [39],

to the best of our knowledge it has not been used to calculate

trion properties with the more realistic electron-hole interac-

tion above, nor has it been used to calculate the properties of

biexcitons. It should be noted that while the present work was

underway, a numerically exact finite temperature path integral

Monte Carlo (PIMC) study of excitons, trions, and biexcitons

using the full Keldysh effective potential appeared [50]. While

we believe that DMC is a more direct method than PIMC for

the study of what are essentially ground state properties, we

note that the results presented here are in quantitative agree-

ment with those presented earlier in Ref. [50], yielding ground

state energies that lie below those of Ref. [50] by fractions of

a percent. On the other hand, the goals of this work are some-

what distinct from those of Ref. [50]. In particular, we focus

on the specific physical factors that influence the delicate bal-

ance of relative trion and biexciton binding energies, as well

as the accuracy of variational approaches in light of the “ex-

act” DMC results.

In Tab. I, we report exciton, trion, and biexciton bind-

ing energies calculated via DMC and compare to those ex-

tracted in recent experiments. The DMC exciton binding en-

ergies, defined as EX
b
= −EX, are only 2–4% larger than those

obtained in previous variational calculations that employed

a trial wavefunction of the form ΨT,var(reh) ∼ exp (−reh/a).

The radial probability distribution for the distance reh, which

completely determines the exciton wavefunction, is plotted in

Fig. 1(a); we compare the variational wavefunction to results
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FIG. 1. (a) Radial probability distributions for the distance reh of

an exciton in MoS2. (b) Radial probability distributions for the dis-

tances reh and ree of a negative trion in MoS2. (c) Radial probability

distributions for the distances reh, ree, and rhh of a biexciton in WSe2.

For the DMC calculation, the curves for ree and rhh coincide because

the electron and hole effective masses are taken to be equal.
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Trion Biexciton

Keldysh pure ln pure 1/r variational 1 variational 2 Keldysh pure ln pure 1/r variational 1 variational 2

MoS2 33.8 48.9 1630 26 14 22.7 26.2 2610

MoSe2 28.4 39.3 1780 21 12 17.7 21.2 2820

WS2 34.0 53.6 1050 26 14 23.3 28.7 1680

WSe2 29.5 44.9 1120 22 12 20.0 23.9 1780 37 16

TABLE II. Comparison of trion and biexciton binding energies for several potential forms in units of meV obtained from DMC, except for the

column labeled ‘variational’; the latter results are based on the Keldysh form and taken from Ref. [30] for trions and Ref. [17] for the WSe2

biexciton. Binding energies in the ‘variational 1’ column are with respect to the variational exciton binding energies, whereas those in the

‘variational 2’ column are with respect to the exact DMC exciton binding energies. For the DMC Keldysh and pure logarithmic potentials, the

uncertainty is of the order of 0.1–0.3 meV. For the pure Coulombic potential, the uncertainty is of the order of 10 meV.

obtained via DMC as well as a grid-based exact diagonaliza-

tion of the one-dimensional Schödinger equation. The sim-

ple 1s-like variational wavefunction matches the true ground-

state wavefunction well, but does not decay rapidly enough

for large r. As we will show, achieving a similar level of

agreement between exact DMC and variational estimates for

the binding energies of larger excitonic complexes is, in prin-

ciple, a much more difficult task because trion and biexci-

ton wave functions are more elaborate and their approxima-

tion may in principle require many variational parameters to

achieve a high level of accuracy.

The DMC trion binding energies given in Tab. I are all in

the range of 28–34 meV, which is in excellent agreement with

current experimental estimates; however it should be noted

that realistic substrate effects have been ignored in the present

calculations. In Tab. II, we compare trion binding energies for

two additional potentials: a purely logarithmic form and an

unscreened 1/r Coulombic form. These two potentials repre-

sent the asymptotic small and large r behavior, respectively,

of (2). The purely logarithmic potential approximation has

been employed by Ganchev et al. in their analytical treatment

of trions in TMDCs [39] while the Coulomb potential is the

standard form for three-dimensional semiconductors. We find

that a purely logarithmic potential overbinds the trion and re-

sults in binding energies about 50% larger than those reported

by experiments. Unsurprisingly, the pure Coulombic potential

vastly overbinds the complex, resulting in binding energies

that are 30–50 times too large and with a different ordering

than is the case for the full potential (2), which is material

dependent. Coulombic binding energies would of course be

reduced with the inclusion of a static dielectric constant sig-

nificantly larger than unity.

Our trion binding energies are about 30% larger than those

calculated variationally. The two-parameter variational trial

wavefunction used in the trion calculations was [30]

ΨT,var(re1h, re2h) ∼ exp
(

−re1h/a− re2h/b
)

+ {a↔ b}, (3)

a form inspired by Chandrasekhar’s treatment of the hydro-

gen anion [51]. Although Fig. 1(b) shows that this optimized

variational wavefunction reproduces p(reh) almost exactly, the

variational form does not capture the electron-electron repul-

sion properly because it lacks any explicit re1
− re2

correlation

terms. The peak of the electron-electron distribution is at too

small a radius, which results in over-estimating the electron-

electron repulsion and underestimating the trion binding en-

ergy, as seen in Tab. II. Nonetheless, the level of agreement is

surprisingly good given the simplicity of the variational wave

function employed in Ref. [30]. Furthermore, by treating the

exciton and trion on equal footing with physically similar vari-

ational wavefunctions, a fortuitous cancellation of total energy

errors leads to binding energies which are quite close to the

exact results (‘variational 1’ column in Tab. II); referencing

the variational trion energy to the exact DMC exciton energy

(‘variational 2’ column in Tab. II) leads to a significant under-

estimation of the binding energy, albeit one that is a genuine

lower bound.

Finally, in Tabs. I and II we report biexciton binding ener-

gies EXX
b
= 2EX − EXX , and in Fig. 1(c) we compare car-

rier probability distributions obtained from DMC and from a

recent six-parameter variational calculation [17]. Other than
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FIG. 2. (a) Radial probability distributions for the distances reh and

ree in the trion (X−) and biexciton (XX) using a Keldysh form for

the inter-carrier potential. (c) The same ree distributions as in panel

(a), but the relocated repulsive weight is shaded. (b),(d) The same

as in panels (a),(c) but using a Coulombic form for the inter-carrier

potential.
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the rhh distance, which is accurately predicted, the variational

wavefunction is a bit too compact, leading to a total variational

energy which is slightly too high. When referenced to the ex-

act DMC exciton energy, we note that the variational biexci-

ton binding energy is actually quite accurate – only 3.5 meV

(about 15%) too small. When referenced to the less accu-

rate variational exciton energy, the mis-matched cancellation

of errors is such that the biexciton binding energy is slightly

overestimated.

In our DMC calculations, we find that the full potential

with dielectric screening (2) yields binding energies that are

smaller than either of the other potentials considered, and that

are smaller than experimental estimates by 60–70%. Most

significantly, exact DMC calculations show that the binding

energies for biexcitons are significantly smaller than that of

trions. This fact, which has been noted in recent PIMC cal-

culations as well [50], disagrees with recent experimental es-

timates and is at odds with expectations that emerge from the

standard case of pure Coulombic interactions. Whereas in the

latter 1/r case biexcitons are more strongly bound than trions

by a factor of about 1.6, in the purely logarithmic case the

situation is reversed and trions are more strongly bound than

biexcitons. Interestingly, we find that for realistically parame-

terized Keldysh potentials, the biexciton binding energies are

slightly smaller than those found with the purely logarithmic

potential, despite the latter being a presumably “weaker” po-

tential; this highlights the subtle balance of energies involved

in the formation of the biexciton. We note in passing that

the binding energies for biexcitons obtained with the logarith-

mic potential are significantly closer to the full Keldysh re-

sults than they are for trions, suggesting that the short-range

approximation of Ganchev et al. may be even better for biex-

citons. This result is consistent with the smaller real-space

structure of the biexciton seen by comparing Figs. 1(b) and

(c).

To gain deeper insight into this balance of energies, we con-

sider the electron-hole and electron-electron distributions for

trions and biexcitons obtained with the Keldysh and Coulom-

bic potentials, plotted in Fig. 2(a),(b). Suppose that for a given

potential, the attractive electron-hole probability profiles were

identical for the trion and the biexciton, and the repulsive

electron-electron (hole-hole) profiles were also identical for

the trion and the biexciton. Then elementary arguments us-

ing the definition of the trion and biexciton binding energies,

along with the pairwise additive potential, show that the biex-

citon binding energy would be exactly twice the trion binding

energy, EXX
b
/EX−

b
= 2. Any deviations from this ideal ratio are

due to relative differences in the attractive and repulsive prob-

ability distributions as the second hole is added to the negative

trion.

Instead, biexciton-to-trion binding energy ratios of less than

2 are observed for both the screened interaction (2) and the

Coulomb interaction. In both cases, about 9% of the total

weight in the p(reh) (attractive) profile is relocated from long r

to short r. More significantly, a much larger fraction of the to-

tal weight in the p(ree) (repulsive) is relocated to short r, lead-

ing to a reduced biexciton-to-trion ratio. Specifically, for the

screened potential (2), about 31% of the weight is relocated,

which leads to a biexciton binding energy that is smaller than

the trion binding energy; for the Coulomb potential, only 26%

of the weight is relocated, and the biexciton binding energy

remains larger than the trion binding energy. The relocated

repulsive area is shaded for both potentials in Fig. 2(c),(d).

From an energetic standpoint, this more notable change in the

repulsive profile occurs because in the trion, there is no reason

for the like charges to be physically close in space. However,

in the biexciton, the complex can achieve stabilizing electron-

hole interactions by having the like charges closer together in

space.

A final question that may be raised concerns the qualita-

tive difference between biexcitonic stability as found by DMC

calculations and that extracted from experiments. As men-

tioned above, experimentally reported biexciton binding en-

ergies significantly exceed experimentally determined trion

binding energies, and are about a factor of two or more larger

than calculated DMC values. Since our DMC values are ex-

act within the confines of the effective mass and effective po-

tential models, one possibility is that these model ingredients

are oversimplified, and need to be amended. First, we have

neglected screening from the substrate and surrounding envi-

ronment. In fact, the results of Refs. [50, 52] suggest that the

biexciton binding energy may be higher than the trion binding

energy for certain substrates; future work will be dedicated to

a more microscopic treatment of substrate screening to eluci-

date this behavior. Second, it is unclear if the assumption of

effective pairwise additive interactions is a good one for larger

excitonic complexes; perhaps three-body or higher-order in-

teractions are needed. On the other hand, experimental de-

termination of biexciton binding energies in the TMDCs is

quite difficult and involves both assumptions of the nature of

spectral signals as well as extrapolations. Clearly future work

should be devoted to addressing this interesting discrepancy

between theory and experiment.

Note added– Since this work was completed, a preprint

has appeared which uses high-accuracy stochastic variational

Monte Carlo to calculate the properties of excitons, trions,

and biexcitons in monolayer TMDCs [53]. The results are in

agreement with the present manuscript and the authors further

speculate as to the origin of the biexciton discrepancy noted

above.
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