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We describe a method for simulating the real time evolution of extended quantum systems in two
dimensions. The method combines the benefits of integrability and matrix product states in one
dimension to avoid several issues that hinder other applications of tensor based methods in 2D. In
particular it can be extended to infinitely long cylinders. As an example application we present
results for quantum quenches in the 2D quantum (2+1 dimensional) Ising model. In quenches that
cross a phase boundary we find that the return probability shows non-analyticities in time.
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The advent of ultra cold atomic gas experiments has
led to a surge of interest in the time evolution and out-of-
equilibrium behaviour of many-body quantum systems.
Much effort has been focused on one dimensional (1D)
problems because these can be tackled by analytically
tractable or highly accurate numerical methods. Key
questions that these studies have sought to elucidate are
whether and how such systems thermalise after a sudden
change, or ‘quantum quench’ of a system’s Hamiltonian;
with particular emphasis on the role played by conserved
charges in 1D integrable systems [1–11].

Experiments however, are not limited to 1D and it is
interesting to explore similar questions in two dimensions
(2D) and above [12]. Unfortunately there is no analogue
in 2D of the aforementioned analytically exact 1D meth-
ods. Numerical approaches using matrix product state
(MPS) representations, so successful in 1D, suffer in 2D
due to the ‘area law’ growth of entanglement [13, 14].
This growth reduces the efficiency of MPS (and related
‘tensor’) algorithms and limits them to smaller system
sizes.

Nonetheless MPS algorithms can be applied in 2D, by
labeling lattice sites (usually in a zigzag fashion) to map
to a 1D system [15]. The cost is that nearest neighbor in-
teractions in 2D are mapped to increasingly long ranged
1D interactions, imposing an increasing numerical bur-
den. Recently progress has been made in performing real
time evolution on MPS with such long ranged Hamilto-
nians by two different routes [16, 17]. Algorithms based
on generalizations of MPS to higher dimensions, such as
projected entangled pair states (PEPS) [18, 19], make
use of imaginary time evolution to find ground states
[20]. However these higher dimensional tensor methods
have not been applied to real time evolution.

In this letter we demonstrate that real time evolution
is possible for large 2D systems by combining informa-
tion coming from exactly solvable models with a highly
anisotropic MPS formulation. Such an approach retains

FIG. 1. Anisotropic setup for a 2D system as an array of
N chains of length R, coupled by an interaction J⊥. The
cylinder can be joined together at its ends to study toroidal
systems.

the contraction efficiency of matrix product states over
other tensor methods, while avoiding the build up of
long ranged interactions. Our setup will be similar to
that used in the density matrix renormalisation group
(DMRG) studies described in Refs. [21, 22] except that
here we are explicit in our use of MPS. This change allows
for straightforward implementation of algorithms other
than DMRG, including those for time evolution and for
accurately working with the thermodynamic limit. In
particular using time evolving block decimation (TEBD)
[23] we demonstrate that we can study the time evolu-
tion after a quench of infinitely long cylinders, with suf-
ficient circumference that we approach the 2D thermo-
dynamic limit. This includes strong quenches where we
cross phase boundaries of a 2D quantum system.

Method: At the core of our method is the wish to max-
imise the analytically exact input going into our MPS
algorithm, while simultaneously controlling the growth
of entanglement entropy. The construction we use is de-
picted in Fig. 1: a coupled array of exactly solvable 1D
subunits. For each subunit, we have exact knowledge of
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the spectrum and matrix elements. This exact knowledge
means that we begin with the numerics already having
accounted for much of the strong correlations of the sys-
tem. We emphasize our use of exactly solvable models
as a building block is not much of a limitation to the
method. Such models are ubiquitous in 1D, including
Heisenberg spin chains, Luttinger liquids, and Hubbard
models to name but a few [24, 25]. In this framework, a
state of a system of N chains is written in MPS form via

|Ψ〉2D =
∑
σ

Aσ1[1] · · ·AσN [N ]|σ1 · · ·σN 〉 (1)

where each matrix Aσi[i] is labelled by a chain i and an
eigenstate of that individual chain σi. Like the single sites
used in 1D MPS algorithms, we are able to manipulate
these chain eigenstates because we know their energies
and matrix elements for any relevant operator.

For ground and low-lying states of the system the en-
tanglement entropy SE scales as the boundary ‘area’,
that is to say the chain length. By keeping the chain
length finite we can throttle the growth of SE . By part-
nering this with the fact that for the systems that we
will study, finite size effects are exponentially suppressed,
we are able to keep SE small while remaining in the 2D
thermodynamic limit. We have previously demonstrated
the effectiveness of this methodology in equilibrium by
studying a 2D quantum (i.e. 2 + 1 dimensional) critical
point [21, 22].

The continuum 1D subunits will necessarily have an
infinitely large Hilbert space. However if the system size
R is finite the spectrum is discrete, and we may trun-
cate at a cutoff energy Ec. This step is justified by ap-
peal to the truncated conformal spectrum approach [26]
where it has been observed over a wide body of examples
[27–29] that for relevant (in the renormalisation group
sense) interchain interactions, the low energy sector of
a perturbed integrable system is formed primarily from
(possibly strong) admixtures of low lying states of the
unperturbed system. Here we will focus on exactly such
interchain perturbations.

Eq. 1 differs from a MPS for a 1D system only in
that the ‘physical indices’ σ may be large (see Table 1 of
[30]), requiring strict use of sparse matrices to maximise
computational resources. It is also important to take ad-
vantage of good quantum numbers and to perform ma-
trix operations (e.g. singular value decompositions) in a
block diagonal manner, to help preserve the sparse nature
of the matrices and increase numerical efficiency.

MPS time evolution algorithms may then be imple-
mented just as for a 1D system, including TEBD [23]
and its infinite counterpart (iTEBD) [31, 32]. For the
former we may work with a torus or open cylinder ge-
ometry; the latter corresponds to an infinitely long cylin-
der. Both algorithms decompose the time evolution oper-
ator exp[−iHt] into a product of Nt time step operators,
t = Ntτ . Each step is itself approximately decomposed

into a product of two site (or chain) operations. The er-
ror at each step is proportional to the time increment τ
raised to a power given by the order of the decomposition.

A more important source of error is the compression of
the MPS after each step via Schmidt decompositions. We
compress by fixing a minimum singular value size, smin:
singular values smaller than this threshold value are dis-
carded. In this sense our algorithm is adaptive, as χ,
and the degree of encoded entanglement can grow. ‘Lieb-
Robinson’ type arguments limit the rate of growth of SE
after a quench [33–35], but χ may grow exponentially,
limiting the maximum timescales that can be reached.

For our 2D algorithm, forming the time evolution op-
erator requires the exponentiation of a two chain Hamil-
tonian, which in turn necessitates the diagonalisation of
the same object. This is a numerically costly step, but
need only be done once at the beginning, and the result
stored for later use.

In this letter we present results for quenches in the 2D
quantum Ising model:

H2DQI =
∑
i

[
H1D,i + J⊥

∫ R

0

dx σzi (x)σzi+1(x)

]
. (2)

We represent the model as 1D Ising chains (of index i and
length R) coupled together with a longitudinal spin-spin
interaction. We take each chain H1D,i to be the con-
tinuum limit of the 1D lattice quantum Ising model—or
transverse field Ising model (TFIM)—with Hamiltonian,
−J‖

∑
l[σ

z
i,lσ

z
i,l+1 + (1 + g)σxi,l)] with l an index along

the chain. In the continuum limit this reduces to a the-
ory of a 1D Majorana field with mass ∆ = gJ‖. An-
alytic expressions for the spectrum of this theory and
the spin matrix elements are detailed in Ref. [36]; we
summarize the salient features in [30]. Expanding the

Majorana field in terms of fermionic modes ψ†ki and
ψki (the continuum versions of the usual Jordan-Wigner
lattice fermions) yields a quadratic chain Hamiltonian

H1D,i =
∑
ki
εkiψ

†
ki
ψki , with dispersion εki =

√
∆2 + k2

i .
We work in units such that the intrachain velocity, v, is
dimensionless and equal to unity. We also define a dimen-

sionless interchain coupling j⊥ = J⊥ |∆|−7/4
. For disor-

dered (∆ < 0) chains a finite value of the interchain cou-
pling j⊥ leads to a 2D quantum (d=2+1) order-disorder
transition at a critical value j⊥ = jc = 0.185 [22].

We compute the evolution of the postquench state us-
ing iTEBD and TEBD, with first and second order Trot-
ter decompositions of the time evolution operator, and
time steps τ . The error associated with such decomposi-
tions is dependent on j⊥ and τ , but even for the strongest
quenches presented in this work we can choose τ small
enough for convergence (see the supplementary material
[30]). For each set of parameters, we first establish that
the numerical results are converged in smin or χ before
increasing the cutoff Ec. Convergence of the method in
smin is demonstrated in [30]. We have also checked the
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FIG. 2. Fermion occupation number, ni(x) scaled by inter-
chain coupling, j2

⊥. We indicate the time scale tR at which
we expect the system postquench to see the effects of the fi-
nite circumference of the system. Inset: R = 10 iTEBD data
compared with the perturbative result (P.T.) (dashed line).
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FIG. 3. Fermion occupation number, ni(x), scaled by inter-
chain coupling, j⊥ = 0.2, squared. Curves for different Ec

are shown, corresponding to more than doubling the num-
ber of retained states in the chain spectrum. The agreement
is excellent until the latest times, even though this quench
crosses a critical point. Inset: the nearest neighbor spin-spin
correlation function showing scaling with j⊥ and R.

algorithm for two analytically tractable cases: the per-
turbative limit (j⊥ � 1) and a model of free fermionic
chains with interchain hopping. In both cases we find
excellent agreement with our numerical results [30].
Results: In the following we present results of quan-
tum quenches where the initial state of the system corre-
sponds to the j⊥ = 0 ground state, whereupon at t = 0
we turn on a finite interchain coupling j⊥. We focus
mainly on results for infinitely long cylinders, leaving a

discussion of the effect of finite chain number, N , until
the end. We first address the question of what time scales
we expect to feature in the quench. To provide a partial
answer we turn to the quasiparticle causality picture of
Refs. [1, 2, 33]. The energy imparted by the quench pro-
duces quasiparticle excitations which are entangled on a
length scale |∆|−1

along the chain. Intrachain scattering
then only has an effect after a time, t∆ = (2v |∆|)−1.
On the other hand, the time scale governing interchain
scattering can be estimated using Fermi’s golden rule to

be tJ⊥ = |∆|1/2 (J⊥R)−2. The final time scale of import
is that encoding the chain length, R. This scale, given
by tR ∼ R/2v = |∆|Rt∆, describes the time for two
quasiparticles, created at the same point and moving in
opposite directions, to travel around a chain and then
meet again. Hence there is a region, t∆, tJ⊥ < t < tR,
where we may expect the time evolution to be represen-
tative of the 2D thermodynamic limit. But for t > tR
the finite nature of the chains’ circumferences will play
a role. We stress that tR does not govern the time scale
for revivals in the system. Instead these occur on a much
longer time scale, trevival ∼ NtJ⊥ where N is the number
of chains in the system. Thus in our iTEBD simulations,
we never expect to see strict revivals.

To illustrate these time scales in operation, we con-
sider the occupation number, ni(x) = ψ†i (x)ψi(x), for a
fermionic mode on chain i, a simple measure of how the
system departs from the initial state, for which ni(x) = 0.
In Fig. 2 we present how ni(x) evolves with time for a
quench to j⊥ = 0.1. On the basis of our perturbative
results for very small j⊥ [30], we plot n(x) in units of
j2
⊥ for all four quenches presented. These four quenches

correspond to four different chain lengths, R.
We see that at short times, the results for ni(x)/j2

⊥
collapse onto a single curve as a function of t/t∆. As
time increases, the curves cease to track one another.
The first to do this is the R = 4 curve, then the R = 6
curve, and then finally the R = 8 curve. The time at
which this happens corresponds, approximately, to tR:
the scale on which the quench explores the finite length
of the chain. We expect small departures from this time
scale because a finite j⊥ will renormalize the quasiparticle
velocity v = 1 in tR. We also see from the inset of Fig. 2
that the evolution at longer times is no longer described
by perturbation theory.

In Fig. 3 we explore a quench to a j⊥ which exceeds
jc, the critical coupling for the 2 + 1 dimensional system.
Such a quench is among the most challenging numerically
as the population of higher energy chain states becomes
significant. Concomitantly, the time evolution is most
dependent on Ec in this case. Ramped, rather than sud-
den, quenches can be implemented with some possible
advantages in this regard [37], though we have not yet
explored this possibility. Nonetheless in Fig. 3 we see
that for a given chain length, R, we can find cutoffs, Ec
such that the time evolution is converged.
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FIG. 4. Logarithm of return probability G(t), for R = 6 for
j⊥ = 0.1, 0.5. Non-analytic behaviour is seen at short times
for a quench to j⊥ = 0.5. We find no non-analytic points
for the corresponding quench to j⊥ = 0.1, even at longer
times up to t = t∆ = 10.0 (not shown). Inset: comparison
of the infinite chain number system data with a system with
N = 100 chains computed using TEBD. The first non-analytic
point for the infinite cylinder forms the edge of a plateau,
whereas for a finite number of chains it takes the form of a
peak.

It is also possible to calculate postquench correla-
tions between the chains. We show the nearest neigh-
bor spin–spin correlation function as a function of time,
〈σzi (x, t)σzi+1(x, t)〉, for a selection of R and j⊥ in the
inset of Fig. 3. Our choice of j⊥ > 0 favors antifer-
romagnetic correlations, producing the overall negative
sign. An expansion in small t shows that this quantity
is proportional to j⊥t

2 allowing us to collapse the results
onto a single curve at short times. Here we see signa-
tures of both the tJ⊥ and tR scales. In the inset we have
marked the intrachain scattering time tJ⊥ , for the system
with R = 8 and j⊥ = 0.1. It is visible as the time that
the j⊥ = 0.1 and j⊥ = 0.01 data begin to diverge. We
also mark the time scale tR at which the data for chains
with R = 8, j⊥ = 0.01 begins to diverge from that of
R = 10, j⊥ = 0.01.

To show that our method can handle non-trivial as-
pects of quenching through the critical coupling of the
coupled chain system, we search for non-analyticities
in the Loschmidt echo as a function in time. The
‘Loschmidt echo’ or overlap probability at a particular
t is the modulus squared of the overlap between the ini-
tial and time evolved state:

G(t) =
∣∣〈Ψ0| e−iH2DQIt |Ψ0〉

∣∣2 (3)

where Ψ0 is the ground state of the uncoupled chain sys-
tem. In 1D it is useful to define a per site rate func-
tion, `(t) via G(t) = exp[−N`(t)]. Non-analyticities in

`(t) have been interpreted as ‘dynamical phase transi-
tions’, following an exact calculation of this quantity for
the 1D TFIM [38–40]. The general association of such
non-analytic points with equilibrium critical phenomena
is contested [41, 42], but we demonstrate analytically in
low order perturbation theory[30] that for quenches to
j⊥ > 0.27 we expect non-analyticities in G(t). While
this estimate for the value of j⊥ is larger than jc – be-
cause of the low order to which we took the computation
– it does suggest that simple perturbation theory for the
quantity G(t) can be used to estimate the phase bound-
aries in some 2D quantum systems.

In Fig. 4 we plot logG(t) for a quench to j⊥ = 0.5 – a
value of j⊥ where we should see non-analyticities. In 2D
this quantity scales with system volume RN , as does its
1D counterpart [38]. We also observe that it scales with
j2
⊥. As expected we find non-analytic behaviour for this

quench, within the time window we are able to simulate,
and see that the non-analyticity has the same qualitative
structure for both Ec = 7 |∆| and 8 |∆|. For compari-
son we plot logG(t) for a quench to j⊥ = 0.1, where in
contrast we find that this quantity is smooth within our
simulation window. We remark that non-analyticities ap-
pear for the same quantity with j⊥ = 0.2 (not plotted),
just above jc = 0.185, but they first occur only at the
edge of the attainable times with iTEBD.

Finally we consider the case of finite length and open
boundary conditions. The TEBD algorithm is slower by
approximately a factor of N due to the loss of transla-
tional invariance along the cylinder. We find negligible
effect, for finite N & 10 and i away from the ends of
the cylinder, on the results for local quantities such as
ni(x) (up to the time scales we reach). However this is
not true for the Loschmidt echo (a global measure), es-
pecially when |j⊥| > jc. The inset of Fig. 4 shows the
difference between the iTEBD and N = 100 results for
R = 6, j⊥ = 0.5. While there is excellent agreement up to
t ∼ t∆ (not shown), afterwards there is a clear change in
the non-analytic point structure. We also find that this
effect is even more pronounced for very small R and large
N (where our model reduces to a single 1D TFIM), sug-
gesting that boundary conditions have a non-negligible
effect on the Loschmidt echo even for large systems. This
last result has important consequences for possible exper-
imental investigations.

Conclusions: We have demonstrated a robust method
to compute dynamical behaviour in 2D quantum
(d=2+1) systems after a quench, which we intend to use
to study other systems including coupled quantum wires
(i.e. coupled Luttinger liquids) and Heisenberg chains.
The algorithm should prove especially useful when inter-
preting non-equilibrium cold atom [43, 44] and pump-
probe experiments in the cuprates [45, 46].

We wish to acknowledge enlightening discussions with
John Cardy, Fabian Essler, Andrew Goldsborough, Is-
rael Klich, Anatoli Polkonikov, Rudolf Römer and Steve
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