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The structure, thermodynamics and band gaps in graphene/graphene (G/G), boron nitride/boron
nitride (BN/BN), and graphene/boron nitride (G/BN) bilayers are determined using several differ-
ent corrections to first-principles approaches to account for the dispersion interactions. While the
density functional dispersion correction (DFT-D2), van der Waals density functional (vdW-DF2),
meta-generalized gradient approximation (MGGA-MS2) and adiabatic fluctuation-dissipation the-
orem methods (ACFDT-RPA) all lead to qualitatively similar predictions, the best accuracy is ob-
tained through the application of the computationally expensive ACFDT-RPA method. We present
an accurate ACFDT-RPA-based method to determine bilayer structure, generalized stacking-fault
energy (GSFE) and band gaps as a function of the relative translation states of the two layers.
The GSFE data clearly identifies all of the stable and metastable bilayer translations as well as
the barriers between them. This is key for predicting the sliding, formation and adhesion energies
for homo- and hetero-bilayers as well as for the determination of defects in such multilayer van der
Waals systems. These, in turn, provide an accurate approach for determining and manipulating the
spatial variation of electronic structure.

PACS numbers: PACS appear here

I. INTRODUCTION

Bilayer systems, such as homo-bilayer graphene
(G/G), homo-bilayer boron nitride (BN/BN), and
hetero-bilayer graphene/boron nitride (G/BN), show
promise for applications in electronic nanodevices. Bi-
layer graphene has been employed in field-effect transis-
tors and optoelectronics for its negligible effective mass1,2

and unique quantum Hall effect3–6. Boron nitride has
large band gap and provides an atomically flat surface,
which makes it an appealing substrate for nanodevices7,8.
Hetero-bilayer G/BN devices possess a favorable band-
gap opening, higher carrier mobility, and an improved
on/off ratio, compared with conventional silicon-based
graphene devices8,9. Building bilayer devices inevitably
involves mechanical processes such as rotation and trans-
lation of one layer relative to the other. This has sub-
stantial influence on the performance and quality of such
devices10,11. For example, rotation between the layers
in bilayer graphene commonly occurs by design or de-
fault. Such rotation gives rise to structural Moiré pat-
terns which directly affect the electronic properties of
bilayers12,13. In this report, we focus primarily on the
structural and mechanical aspects of bilayers, including
the influence on bilayer energy, interlayer spacing, and
band gap in the G/G and BN/BN homo-bilayers, and
the G/BN hetero-bilayer .

The generalized stacking-fault energy (GSFE) is the
difference of energy (per area) between the ground-state
structure and the uniformly disregistered structure (dis-

registry refers to the relative displacement of one layer
with respect to the other)14. The GSFE landscape pro-
vides information on the preferred directions of disreg-
istry as well as the barriers between the metastable dis-
registry states. The relaxed bilayer structure is a com-
promise between the GSFE, that tends to keep the lay-
ers registered, and the elastic strain energy required to
do so. We note that the GSFE is a local property; it
describes the mechanical response at any local position
within the bilayer structure. As such, the GSFE plays a
key role in determining bilayer structure under any kind
of deformation (homogeneous or inhomogeneous, flat or
curved). While this is obviously important for hetero-
bilayers, where the layers have different lattice constant
(leading to the formation of misfit dislocations), it also
applies to homo-bilayers. As in the case of twist grain
boundaries in bulk materials15,16, the GSFE plays a fun-
damental role in determining the structure, energetics
and properties of homo-bilayers where one layer is rotated
with respect to the other17. The mechanically-relaxed bi-
layer structure must be determined before local electronic
and optical properties can be reliably determined. There-
fore, accurate determination of the GSFE is necessary in
order to predict the structure and the mechanical, elec-
trical and/or optical properties of flat, curved, misfitting,
and twisted bilayers.

The calculation of GSFEs has been reported for a few
bilayer systems. While these earlier studies provide im-
portant information and insight, two major issues remain
that prevent the general application of these GSFEs to
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accurately determine the structure and properties of bi-
layers (discussed above).

First, the effect of interlayer spacing on GSFEs has
not been fully accounted for. In both hetero-bilayer
and twisted homo-bilayer systems, the interlayer spacing
varies through the layer – especially near the dislocation
cores. In other applications, the interlayer spacing varies
with application of stress/strain in the bilayer plane of
the bilayer (Poisson effect) or normal to this plane (e.g.,
at contacts or during friction experiments18). In most of
the existing studies GSFEs were obtained at fixed inter-
layer spacing19,20. However, in a few recent GSFE cal-
culations, the interlayer spacing was fully relaxed (nor-
mal to the bilayer plane) for each disregistry state21,22.
While this is an important step, a complete description
of GSFE should include interlayer spacing as a variable
(rather than a parameter predetermined). Recent results
in bulk materials show that the GSFE is sensitive to this
variable23,24. Although ideally the GSFE obtained for
fully relaxed interlayer spacing corresponds to the case
of free-standing bilayers, the GSFE at different strains
(normal to the bilayer plane) is critical for describing bi-
layer under mechanical load and local structures within
bilayers (such as near dislocation cores).

Second, conventional DFT does not account for the
dispersion interactions which dominate interlayer inter-
actions in van der Waals solids25,26. This can be eas-
ily understood from the fact that dispersion interactions
arise from instantaneous polarization multipoles, which
involve dynamic correlations not captured by conven-
tional density functionals27. Thus, reliable GSFE land-
scapes based on conventional DFT cannot be directly
applied to van der Waals bilayer systems. Many ap-
proaches have been suggested to correct this shortcom-
ing. The Grimme’s density functional dispersion correc-
tion (DFT-D2) adds a semi-empirical term to the con-
ventional Kohn-Sham (KS) energy to account for disper-
sion interactions28, while the non-local van der Waals
density functionals (vdW-DF2) captures the long-range
van der Waals interactions without relying on empirical
input29,30. Recently, the meta-generalized gradient ap-
proximation (MGGA-MS2) was shown to capture much
of the intermediate-range van der Waals interactions we
are interested in here31–33. The adiabatic-connection
fluctuation-dissipation theorem within the random phase
approximation (ACFDT-RPA) has been shown to pro-
vide a reliable description of dispersion interactions34–36.
Although DFT-D2 (or similar approaches) is computa-
tionally much less costly than ACFDT-RPA, it has yet
to be demonstrated whether this approach can be used to
give quantitatively reliable GSFEs. While the ACFDT-
RPA should be considered a benchmark against which
such calculations can be compared, the considerable com-
putational resources required for such calculation makes
it extremely difficult to obtain the GSFE using ACFDT-
RPA.

In this paper, we describe the development of an ap-
proach to obtain bilayer GSFEs that address the short-

comings of earlier studies; i.e., to obtain GSFE that are
both accurate and general. We present calculations of the
GSFE landscapes and the energy versus interlayer spac-
ing for G/G, BN/BN, and G/BN bilayer systems based
on four different correction methods, i.e., DFT-D2, vdW-
DF2, MGGA-MS2, and ACFDT-RPA. While ACFDT-
RPA has been shown to be more accurate than the other
approaches, we perform such a comparison to determine
if these less computationally costly approaches yield the
qualitatively correct GSFE and to determine whether the
quantitative differences are sufficient to justify the ad-
ditional cost. In short, we find that, while one of the
methods leads to qualitatively incorrect results (e.g., in-
correct ordering of the energies of several high-symmetry
disregistry states), the other methods lead to significant
quantitative errors (with respect to the more accurate
ACFDT-RPA results and each other). Next, we proceed
to the determination of accurate GSFE landscapes and
interlayer spacing based on ACFDT-RPA calculations.
We propose an analytical symmetry-respecting descrip-
tion of these landscapes that can be accurately param-
eterized with a small number of ACFDT-RPA calcula-
tions. This leads to a description of the bilayer GSFE
and its dependence on interlayer spacing that is suitable
for use in multiscale methodologies for determining the
structure and properties of strained and dislocated bi-
layer systems. The effectiveness of this function is vali-
dated by detailed comparison of these analytical GSFE
landscapes and first-principles results. Finally, we show
an example of how to apply this approach to determine
how shifts (disregistry) between the layers affect proper-
ties; in this case we focus on the band gap.

II. COMPUTATIONAL DETAILS

We examined the efficacy of several competing DFT
methods for determination of the GSFE and the relaxed
interlayer spacing as a function of disregistry. DFT-D2
simply adds a semi-empirical term to the KS energy to
account for the missing long-range interactions. DFT-D2
provides better results than conventional density func-
tionals with little added computational cost. Unlike con-
ventional functionals in the local density approximation
(LDA) or generalized gradient approximation (GGA),
the total exchange-correlation energy in vdW-DF2 is sep-
arated into semi-local and non-local terms. The semi-
local term limits the gradient corrections to the exchange
term and a non-local term captures the correlation that
involves the electrodynamic coupling29,37,38. The semi-
local MGGA functional adds the kinetic energy density
of the occupied orbitals as input, whereas conventional
GGA uses only the density and the corresponding gra-
dient as input32. Because the kinetic energy density en-
ables the MGGA functional to capture the intermediate-
range van der Waals interaction, and the MGGA func-
tional should be suitable for studying weakly bonded lay-
ered materials39,40. The ACFDT-RPA is derived from
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TABLE I. The parameters used in the bilayer calculations for each correction method

Method
G/G BN/BN G/BN

Ecut (eV) k-mesh Ecut (eV) k-mesh Ecut (eV) k-mesh
DFT-D2 500 36× 24× 1 700 24× 14× 2 720 24× 14× 2

vdW-DF2 680 20× 12× 3 800 20× 12× 2 780 20× 12× 2
MGGA-MS2 800 20× 12× 3 640 24× 14× 2 420 20× 12× 2

ACFDT-RPA exchange 540 16× 16× 2 540 16× 16× 2 540 16× 16× 2
ACFDT-RPA correlation 400 12× 12× 1 440 12× 12× 1 420 12× 12× 1

the adiabatic-connection fluctuation-dissipation theorem
within a direct random phase approximation34. Such cal-
culations involve two distinct parts. The correlation en-
ergy is described by

Ec =
1

2π

∫ ∞
0

dwTr
{

ln
[
1− χ0(iw)v

]
+ χ0(iw)v

}
, (1)

where Tr indicates the trace, χ0 is the independent par-
ticle response function and v is the Coulomb kernel. The
exchange energy Ex is calculated within the Hartree-Fock
approach. Both parts are evaluated using the Perdew-
Burke-Ernzerhof (PBE) orbital to find the total ground-
state energy E = Ex +Ec. Previous research35,36,41 sug-
gests that ACFDT-RPA should provide the most accu-
rate description of the dispersion interactions. However,
this method requires substantially more computational
resources than the other methods, described above.

All of the calculations were performed using the KS
orbitals from an initial calculation with the PBE func-
tional42, followed by application of the correction meth-
ods. The calculations were performed using the Vi-
enna ab initio simulation package (vasp)43–46 with the
projector-augmented wave method47,48. The detailed
calculation parameters for all the correction methods are
summarized in Table I. The cutoff energy (Ecut) and
k-meshes were optimized to ensure that the energy con-
verges to within 1 meV. We explicitly assume that each
layer in the bilayer is flat and that the two layers are
parallel to one another in all of the calculations.

III. COMPARISON OF COMPUTATIONAL
METHODS

We first calculated the in-plane lattice parameter a0
and the equilibrium interlayer spacing d0 using all four
correction methods described above. (Note, for the
G/BN case, we strain the two layers to match lattice
parameters and minimize the energy with respect to
the matched lattice parameter.) For the cases where
ACFDT-RPA was used, a0 was optimized using the stan-
dard PBE functional while d0 was optimized using the
ACFDT-RPA method. These calculations were first per-
formed based upon the experimentally observed layer
registry51,54; referring to Fig. 1, these are AB for G/G,
AA′ for BN/BN, and AB for G/BN. The values of a0 and

(a) G/G [1100]a0 

[1
12

0]
a 0

/3
 

AB SP AA 
(b) BN/BN-1 

A’B AB’ AA’ 
(c) BN/BN-2 

SP AA AB 
(d) G/BN 

AB’ AA AB 

FIG. 1. Schematic representation of several high-symmetry
configurations of (a) G/G, (b) BN/BN-1, (c) BN/BN-2, and
(d) G/BN. The three figures for each bilayer correspond to
different disregistry states (disregistries resulting from the rel-
ative displacements of the layers along the [1100] direction).
The black, blue, and red circles represent C, N, and B atoms,
respectively. The larger, open circles connected by dashed
lines represent atoms in the lower layer and the smaller solid
circles connected by solid lines represent atoms in the upper
layer.

d0 obtained are summarized in Table II. All the meth-
ods reproduce the experimentally measured in-plane lat-
tice parameters (a0) to within better than 1%. However,
the equilibrium interlayer spacings (d0) show a variation
of approximately 10% between the methods for all three
bilayer systems. In each case, d0 is underestimated by
DFT-D2 and overestimated by vdW-DF2 and MGGA-
MS2, as compared with the experimental values. In con-
trast, the values of d0 obtained using ACFDT-RPA are
in excellent agreement (to within 0.1 Å) with the exper-
imental results for all three bilayer systems49,51,53.

We also calculated the n ⊗ n component of the elas-
tic constant tensor Cnn,0 (n is the bilayer normal; con-
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TABLE II. The in-plane lattice parameter a0 (Å), the equilibrium interlayer spacing d0 (Å), the n ⊗ n component of the
equilibrium elastic constant tensor Cnn,0 (GPa), and the cohesive energy per area γcoh (mJ/m2) for bilayer G/G, BN/BN, and
G/BN as determined using the four correction methods and from experimental data. Each calculation was performed for the
experimentally observed registry state; i.e., AB for G/G, AA′ for BN/BN, and AB for G/BN (see Fig. 1).

Method
G/G BN/BN G/BN

a0 d0 Cnn,0 γcoh a0 d0 Cnn,0 γcoh a0 d0 Cnn,0 γcoh
DFT-D2 2.46 3.25 38 308.9 2.51 3.12 55 402.5 2.49 3.14 44 373.8

vdW-DF2 2.47 3.55 30 297.3 2.52 3.51 24 291.6 2.50 3.51 36 298.9
MGGA-MS2 2.45 3.59 12 47.86 2.50 3.51 17 58.48 2.48 3.49 12 63.56
ACFDT-RPA 2.46a 3.39 30 558.5 2.50a 3.34 46 222.7 2.49a 3.32 33 345.4

Experimental data 2.4649b 3.3449b 36.5± 1.050b 2.5051b 3.3351b 32± 352b 3.3253c

a These data were obtained using the standard PBE functional.
b These experimental data were obtained for bulk materials (graphite or hexagonal boron nitride) rather than bilayer structures.
c These experimental data were obtained for heterostructures.

ventionally this is C33) and the cohesive energy per
area γcoh in the equilibrium structure (i.e., the first im-
ages on the left in Fig. 1). These quantities are de-
fined as Cnn,0 = (d0/A)

[
d2E2L(δ)/dδ2

]
δ=d0

and γcoh =

[E2L(∞)− E2L(d0)] /A, where E2L(δ) is the total energy
of the bilayer as a function of interlayer spacing δ, and
A is the area of each layer in the bilayer. The cohesive
energy here refers to the binding energy of the two layers
(rather than the energy of binding atoms); this can also
be thought of as the cleavage or adhesion energy. The
values of Cnn,0 and γcoh are listed in Table II.

Next, we investigated the GSFE and the relaxed inter-
layer spacing versus disregistry along the high-symmetry
[11̄00] (armchair) direction as shown in Fig. 2 and Fig. 3,
respectively. The corresponding high-symmetry configu-
rations are shown in Fig. 1. For each disregistry, the in-
terlayer spacing was allowed to relax (i.e., we minimized
the energy with respect to interlayer spacing at fixed dis-
registry). For G/G and G/BN, all of the high-symmetry
configurations can be transformed into one another by
the translation of one layer with respect to the other.
However, for BN/BN, some high-symmetry configura-
tions (e.g., AB and AA′) cannot be related by translation;
in addition to the stable configuration AA′ (associated
with the minimum in Fig. 2(b)), a non-equivalent stable
(metastable) configuration AB exists (associated with the
minimum in Fig. 2(c)) corresponding to a 60◦ rotation of
one layer of AA′ with respect to the other about an axis
going through a pair of atoms (normal to the layer). The
set of disregistry states generated from AA′ is labeled
BN/BN-1 (see Fig. 1(b)); the set of disregistry states
generated by AB is labeled BN/BN-2 (Fig. 1(c)).

For G/G and G/BN, all four correction methods in-
dicate that the stable structure is AB . Note that the
apparent local minimum in the G/BN GSFE curve along
[11̄00] (Fig. 2(d)) between the AB′ and AA states is a sad-
dle point. For BN/BN, the DFT-D2 correction predicts
that the stable structure corresponds to the AB state
(in BN/BN-2) rather than the AA′ state (in BN/BN-1);
this contradicts the results from the calculations using
all of the other methods. The experimental observation
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FIG. 2. The GSFE versus disregistry along the [11̄00] direc-
tion for (a) G/G, (b) BN/BN-1, (c) BN/BN-2, and (d) G/BN.
For BN/BN-1 and BN/BN-2, the reference configuration was
set to be AA′ (BN/BN-1).

suggests that AA′ stacking is favored in bulk hexago-
nal boron nitride51. Recent calculations based on lo-
cal second-order Møller-Plesset perturbation theory also
shows that AA′ is the most stable state20. We therefore
conclude that the DFT-D2 correction does not yield the
correct equilibrium stacking in BN/BN. The other three
methods show the same order of stacking energies for
BN/BN: AA′ and AB are the most and second most sta-
ble states, respectively. The energy difference between
these two states is very small (1.1–2.6 mJ/m2), which
explains why both the AB and AA′ polytypes have been
observed in experiments51. In addition, our calculations
also show that the AB′ state is metastable, with an en-
ergy 8.4–20.2 mJ/m2 higher than that of the AA′ state.
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FIG. 3. The relaxed interlayer spacing versus disregistry along
the [11̄00] direction for (a) G/G, (b) BN/BN-1, (c) BN/BN-2,
and (d) G/BN.

Figure 3 shows the relaxed interlayer spacing as a func-
tion of disregistry along the [11̄00] direction for all four
correction methods. The main features of the relaxed
interlayer spacing curves mimic those of the correspond-
ing GSFE curves, i.e., the positions of minima, maxima,
and saddle points in the relaxed interlayer spacing curves
are also the positions of minima, maxima, and saddle
points in the GSFE curves. The observation that signif-
icant differences in the values of the relaxed interlayer
spacing with different correction methods suggests, not
surprisingly, that dispersion interactions are particularly
important in determining the relaxed interlayer spacing.

We now draw conclusions from the results in this sec-
tion. First, since the ACFDT-RPA has been widely
shown to reproduce the experimental bulk properties
measured for many materials35, including layered sys-
tems55, we use it as the benchmark for our bilayer stud-
ies. We find that, while all of the other methods yield
similar qualitative results (see Fig. 2 and Fig. 3), all have
serious deficiencies. DFT-D2 predicts a BN/BN stack-
ing order that is inconsistent with experimental obser-
vations51. MGGA-MS2 yields unphysically small bilayer
cohesive energies56. Using the ACFDT-RPA as the ref-
erence, the error in the GSFE profile barrier (i.e., the en-
ergy difference between the saddle point and the ground
state) is 7%–70% for DFT-D2, 39%–58% for vdW-DF2,
and 44%–65% for MGGA-MS2 (the error ranges repre-

sent the different bilayer systems). Therefore, while sev-
eral of the more computationally efficient alternatives to
the ACFDT-RPA yield qualitatively reasonable behav-
ior, they cannot be depended upon to yield quantitatively
reliable GSFE and relaxed interlayer spacing for van der
Waals bilayer systems. Based on these conclusions, we fo-
cus on determining accurate GSFE and relaxed interlayer
spacing landscapes based on the ACFDT-RPA. This re-
quires developing an approach that reduces the extremely
high computational cost inherent to the ACFDT-RPA
approach while retaining the requisite accuracy. This is
achieved through the use of the bilayer symmetry and a
flexible fitting procedure.

IV. THE GSFE AND RELAXED INTERLAYER
SPACING LANDSCAPES

Since ACFDT-RPA is the most accurate method for
determining the GSFE and the relaxed interlayer spacing
curves along the [11̄00] direction and its result cannot be
quantitatively reproduced by other less costly methods
for such calculations, we view it as the only reliable choice
for the determination of the full GSFE and relaxed inter-
layer spacing landscapes. However, performing ACFDT-
RPA calculations of these landscapes is too computa-
tionally costly to apply over a fine three-dimensional
grid of translations. Therefore, we adopted the follow-
ing strategy. First, we determine the landscapes using
the simplest (and least computationally costly) correc-
tion method, DFT-D2, the results of which are inaccu-
rate but show the same qualitative trends as the other
(more costly) methods. Second, we construct an analyt-
ical function to describe these landscapes that respects
the structural symmetry. Third, we demonstrate that
this function can describe the full landscape with suffi-
cient accuracy with fitting to only a small set of data.
Fourth, we obtain the same small set of data using the
ACFDT-RPA method. Finally, we generate the GSFE
and the relaxed interlayer spacing landscapes by fitting
the function to the ACFDT-RPA data for G/G, BN/BN,
and G/BN.

The upper panels of Fig. 4 and Fig. 5 show the
GSFE and relaxed interlayer spacing landscapes for G/G,
BN/BN-1, and G/BN obtained using the DFT-D2 (see
Supplemental Material for additional results). These
landscapes exhibit the same general features (plane-
groups: p6mm for G/G and BN/BN-2, and p3m1 for
BN/BN-1 and G/BN) except for scale. The GSFE γ
and relaxed interlayer spacing d landscapes can be fitted
to a symmetry-respecting function F (φ, ψ), where φ and
ψ are the disregistries along [1̄1̄20] (zigzag) and [11̄00]
(armchair), respectively:
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energies are obtained by relaxing the interlayer spacing. These images are contour plots constructed using the calculation data
at the location of the white dots and stars. The best fits of the function form of Eq. (2) to the six/four data points at the
positions labeled by the white stars in (a), (c), and (e) are shown in (b), (d), and (f), respectively.
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FIG. 5. The relaxed interlayer spacing landscapes determined using the DFT-D2 method for (a) G/G, (c) BN/BN-1, and (e)
G/BN corresponding to the GSFE landscapes in Fig. 4. The best fits of the functional form of Eq. (2) to the six/four data
points at the positions labeled by the white stars in Figs. 4(a), (c), and (e) are shown in (b), (d), and (f), respectively..

F (φ, ψ) =

c0 + c1

[
cos 2π

a0

(
φ+ ψ√

3

)
+ cos 2π

a0

(
φ− ψ√

3

)
+ cos 4πψ√

3a0

]
+ c2

[
cos 2π

a0

(
φ+
√

3ψ
)

+ cos 2π
a0

(
φ−
√

3ψ
)

+ cos 4πφ
a0

]
+ c3

[
cos 2π

a0

(
2φ+ 2ψ√

3

)
+ cos 2π

a0

(
2φ− 2ψ√

3

)
+ cos 8πψ√

3a0

]
+ c4

[
sin 2π

a0

(
φ− ψ√

3

)
− sin 2π

a0

(
φ+ ψ√

3

)
+ sin 4πψ√

3a0

]
+ c5

[
sin 2π

a0

(
2φ− 2ψ√

3

)
− sin 2π

a0

(
2φ+ 2ψ√

3

)
+ sin 8πψ√

3a0

]
, (2)

where c0–c5 are constants to be determined by fitting for
each bilayer material system. The constant c0 = −3(c1 +
c2 + c3) + F0, where F0 is the excess energy per area
(in reference to the ground state) at (φ, ψ) = 0 when F
refers to the GSFE γ, and F0 is the relaxed interlayer
spacing at (φ, ψ) = 0 when F is the relaxed interlayer
spacing d. This function is the same as that proposed by
Xiang et al.57. While it has the flexibility to describe a
landscape with either p3m1 or p6mm symmetry, in cases
where the symmetry is p6mm (i.e., G/G and BN/BN-2)
the number of independent parameters can be reduced
from five to three; i.e., c4 =

√
3c1 and c5 = −

√
3c3.

For the systems with landscapes of p3m1 symmetry
(BN/BN-1 and G/BN), there are only five independent
parameters in the function, so five independent data
points should suffice to fit this function for each land-
scape. For the systems for which the landscapes possess
p6mm symmetry, i.e., G/G and BN/BN-2, only three in-
dependent data points are needed. In order to validate
this approach, we fitted the parameters to six or four
non-equivalent data points obtained by DFT-D2 for each
landscape (of either GSFE or relaxed interlayer spacing);
an extra point was added to improve the fitting quality.
The positions of these points were chosen as indicated by
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FIG. 6. The GSFE landscapes derived from fitting six or four
data points (indicated by white stars) obtained from ACFDT-
RPA for (a) G/G, (b) BN/BN-1, (c) BN/BN-2, and (d) G/BN
to the function form of Eq. (2).

the white stars in Fig. 4. The fitted GSFE and relaxed in-
terlayer spacing landscapes are shown in the lower panels
of Fig. 4 and Fig. 5, respectively (the fitting parameters
are reported in the Supplemental Material). Comparison
of these fits with the results of direct calculations (upper
panels of Fig. 4 and Fig. 5) shows that excellent agree-
ment is obtained over the entire disregistry landscape.
This demonstrates the validity and accuracy of the pro-
posed function and fitting procedure.

Given the excellent fits that Eq. (2) provides for the
GSFE and relaxed interlayer spacing landscapes based
on six or four DFT-D2 data points, we employed the
same approach to generate the GSFE and relaxed inter-
layer spacing landscapes based on the same limited set of
data points obtained using the ACFDT-RPA approach.
The resultant GSFE and relaxed interlayer spacing land-
scapes are shown in Fig. 6 and Fig. 7, respectively. The
parameters in Eq. (2) obtained using the ACFDT-RPA
method are reported in Table III.

There are two minima in the GSFE landscapes of G/G
and BN/BN-2 within one period of disregistry; they have
exactly the same energy (i.e., the ground-state energy)
and the corresponding structures are equivalent. The
structure created by displacing the upper layer of the AB
configuration with respect to the lower layer (see Fig. 1(a)

and (c)) in the 〈11̄00〉 direction by a0/
√

3 is equivalent
to that created by inverting the stacking order of the AB
configuration (i.e., the BA configuration). For BN/BN-1,
there is one global minimum and one local minimum cor-
responding to the stable AA′ and metastable AB′ states,
respectively (see Fig. 1(b)). The local minimum corre-
sponds to an intrinsic stacking fault. The G/BN GSFE
landscape exhibits only one minimum; i.e., AB is the only
stable state in G/BN and there are no metastable states.

The vector that connects the nearest neighboring
global and/or local minima in the GSFE landscape can
be interpreted as the Burgers vector of an interlayer dis-

a
0

3a0

(a) G/G (b) BN/BN-1

(c) BN/BN-2 (d) G/BN

3.3 3.4 3.5 3.6 3.65
Å

FIG. 7. The relaxed interlayer spacing landscapes derived
from fitting six or four data points obtained from ACFDT-
RPA for (a) G/G, (b) BN/BN-1, (c) BN/BN-2, and (d) G/BN
to the function form of Eq. (2).

TABLE III. The parameters in the fits of Eq. (2) to the
ACFDT-RPA data. The units for c0–c5 are mJ/m2 and Å
in the fits to the data of GSFE and relaxed interlayer spac-
ing, respectively.

Parameter G/G BN/BN-1 BN/BN-2 G/BN
GSFE, γ

c0 21.336 31.584 28.454 39.222
c1 −6.127 −9.935 −7.160 −11.96
c2 −1.128 −0.918 −0.496 −0.748
c3 0.143 0.325 −0.339 −0.366

c4
√

3c1 −7.848
√

3c1 1.640

c5 −
√

3c3 0.670 −
√

3c3 0.201
Relaxed interlayer spacing, d

c0 3.47889 3.44998 3.42584 3.45362
c1 −0.02648 −0.03667 −0.03375 −0.04510
c2 −0.00352 −0.00333 0.00250 0.00000
c3 0.00037 0.00334 −0.00236 0.00056

c4
√

3c1 −0.03752
√

3c1 0.00866

c5 −
√

3c3 0.00481 −
√

3c3 0.00096

location in the bilayer system (this Burgers vector lies in
the bilayer plane). For G/G, BN/BN-1, and BN/BN-
2, these are partial dislocations with Burgers vector
a0
3 〈11̄00〉, implying that dislocation dissociations of the

type a0
3 [1̄1̄20]→ a0

3 [01̄10]+ a0
3 [1̄010] can occur and gener-

ate a stacking fault region between the two partials. For
G/G and BN/BN-2, the stacking fault structure (corre-
sponding to the BA state) is equivalent to the unfaulted
structure (corresponding to the AB state) as shown in
Fig. 1. (Note that, since the AB and BA states have the
same energy, there is no stacking-fault energy, yet the
dislocation corresponding to a0

3 〈11̄00〉 should be viewed
as a partial dislocation in the sense that this transla-
tion is not a full translation vector of the lattice.) In
the G/BN case, there is only a single minimum within
one disregistry period. The vector connecting the near-
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est neighboring minima is a0
3 〈1̄1̄20〉, corresponding to a

full dislocation in this bilayer system (i.e., no dissociation
is possible).

The layers in a bilayer can slide relative to one an-
other; for different bilayer systems, the preferred sliding
directions are different. Such information is also con-
tained in the GSFE landscape. The preferred sliding di-
rections for G/G and BN/BN-2 are 〈11̄00〉. The associ-
ated energy barriers are symmetric for forward and back-
ward sliding; the barriers are 7.9 mJ/m2 and 15.7 mJ/m2

for G/G and BN/BN-2, respectively. For BN/BN-1, the
preferred sliding direction is also 〈11̄00〉, but because of
the existence of the stacking fault (corresponding to the
metastable AB′ state) the barriers are asymmetric; the
forward-sliding (AA′ → AB′) and backward-sliding (AB′

→ AA′) barriers are 25.2 mJ/m2 and 4.1 mJ/m2, respec-
tively. Finally, for G/BN, sliding occurs in the 〈11̄20〉
direction with a barrier of 51.1 mJ/m2. In practice, slid-
ing is likely to occur via the motion of dislocations rather
than rigid sliding of one entire layer. The resistance to
sliding should be the Peierls barrier for dislocation mo-
tion which, in such systems, is expected to be very low
because the dislocation core widths in van der Waals bi-
layer systems are very large58. The rigid sliding case can
be thought of as providing the theoretical upper bound
on the true sliding resistance.

V. THREE-DIMENSIONAL GSFE

The conventional definition of GSFE is the stacking-
fault energy as a function of disregistry at the relaxed
interlayer spacing for each disregistry state. However,
the out-of-plane separation is also an interesting variable;
it is important for evaluating how individual layers are
assembled or decreed, for evaluating the ease of interca-
lating atoms/molecules between the layers of a bilayer,
or for understanding the elastic distortion of the bilayer
upon introduction of defects. The stacking-fault energy
is sensitive to strain23,24. To enable the application of
first-principles input for bilayer deformation more gen-
eral than pure sliding, we extended the two-dimensional
GSFE to three dimensions, i.e., γ(φ, ψ) → Γ(φ, ψ, δ),
where δ is the variable interlayer spacing.

Γ is the excess energy per area relative to the equilib-
rium configuration (i.e., AB for G/G, AA′ for BN/BN,
or AB for G/BN). We propose a simple form for the de-
pendence of Γ on δ

Γ(φ, ψ, δ) = A exp (−αδ)−B
(
d

δ

)4

+ γcoh, (3)

where A, B, and α are functions of φ and ψ and d(φ, ψ) is
the relaxed interlayer spacing. The first term in Eq. (3)
is of the Morse-potential type, an empirical description of
the short-range repulsion. The second term guarantees
that the energy converges to the functional form expected
for the long-range part of the van der Waals interaction.

The power in the van der Waals term (δ−4), results from
the double integral of the classical r−6 interatomic form
to account for the interaction between two layers. We
note that the power law for graphite has been reported41

to be δ−4.2 for 3 Å ≤ δ ≤ 9 Å and for large δ the dom-
inant term is δ−3. Here, given the empirical nature of
this fit, we focus on the more widely applicable δ−4 form
for bilayer materials.

There are four δ-independent functions in Eq. (3), i.e.,
A, B, α, and d. d as a function of φ and ψ were reported
above. Focusing on the behavior of Γ in the vicinity of
the relaxed interlayer spacing d(φ, ψ), we can determine
A, B, and α from the three conditions:

Γ(φ, ψ, δ)

∣∣∣∣
δ=d(φ,ψ)

=γ(φ, ψ),

∂Γ(φ, ψ, δ)

∂δ

∣∣∣∣
δ=d(φ,ψ)

=0,

∂2Γ(φ, ψ, δ)

∂δ2

∣∣∣∣
δ=d(φ,ψ)

=
Cnn(φ, ψ)

d(φ, ψ)
≡ κ(φ, ψ), (4)

where Cnn(φ, ψ) is the n ⊗ n component of the elas-
tic constant tensor at each (φ, ψ) disregistry state. In
principle, A, B, and α in Eq. (3) can be determined by
Eq. (4) if the functions γ(φ, ψ), d(φ, ψ), and Cnn(φ, ψ)
are known. γ(φ, ψ) and d(φ, ψ) have been obtained by
fitting Eq. (2) to the ACFDT-RPA results in Section
IV. However, the accurate ACFDT-RPA calculation of
Cnn(φ, ψ) was considered to computationally costly for
direct calculation. Our strategy to limit such computa-
tion is to ignore the φ- and ψ-dependence of ∂2Γ/∂δ2

and instead use κ = κ0 ≡ Cnn,0/d0 evaluated at the
equilibrium registry (φ = 0, ψ = 0). In this way, Eq. (4)
becomes

α =

{
−
[
κ0d

2 − 20(γ − γcoh)
]

+

√
[κ0d2 − 20(γ − γcoh)]

2
+ 64κ0d2(γ − γcoh)

}
/

[8d(γ − γcoh)] ,

A = [4(γ − γcoh) exp (αd)] / (4− αd) ,

B = [αd(γ − γcoh)] / (4− αd) . (5)

Based on Eq. (3) and Eq. (5), extension of the GSFE to
three dimensions requires only one additional material
parameter κ0 = Cnn(φ = 0, ψ = 0)/d0 = Cnn,0/d0.

In order to validate the simple form of Eq. (3) and to
ensure that the assumption κ(φ, ψ) = κ0 is reasonable,
we compare the G/G bilayer data directly calculated by
DFT-D2 for a set of (φ, ψ, δ) and the Γ hypersurface con-
structed according to Eq. (3) with the fitted γ(φ, ψ) and
d(φ, ψ). First, we examine the behavior of Γ(φ′, ψ′, δ),
where (φ′, ψ′) correspond to the AB, AA, and SP states
(see Fig. 8). Overall, the Γ versus δ curves show the cor-
rect behavior, especially near the minimum for all three
registries. The agreement is especially good near the min-
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FIG. 8. The plot of Γ(φ′, ψ′, δ) based on the DFT-D2 cal-
culations of G/G. The curves are constructed according to
Eq. (3) with the fitted γ(φ, ψ) and d(φ, ψ); the points de-
note the raw data directly obtained by DFT-D2 calculations.
(φ′, ψ′) is taken to be associated with AB (φ′ = 0, ψ′ = 0),
AA (φ′ = 0, ψ′ = a0/

√
3), and SP (φ′ = 0, ψ′ = 5

√
3a0/6)

disregistry states.

ima δ = d(φ′, ψ′), where the fit was performed. Slight de-
viations between the calculations and the fit are observed
only for the AA state (corresponding to a maximum in
γ(φ, ψ)); however, this is of little significance since this
corresponds to the most unstable disregistry (i.e., one
which would likely never be observed in equilibrium or
in dynamic processes). Next, we examine Γ(φ, ψ, δ′) for
several interlayer spacings near the minimum in δ; see
the comparison of these fit forms with those obtained di-
rectly from the DFT-D2 calculations in Fig. 9. The upper
panels of this figure show the DFT-D2 calculations (first
row) and fit landscapes (second row) and the lower panel
of Fig. 9 shows the same comparison along [11̄00]. These
results shows that the fitted Γ profile (Eq. (3)) agrees well
with the direct calculation data except near the peak in
γ(φ, ψ); the minimum at AB and the saddle point at SP
are accurately determined. The deviation near the peak
can be understood from the constraints employed in fit-
ting. The first constraint in Eq. (4) on the Γ(φ, ψ; δ) is
that, for each state (φ, ψ), when the interlayer spacing δ is
at its equilibrium value d(φ, ψ), i.e., Γ(φ, ψ; δ) is exactly
equal to γ(φ, ψ). Naturally, the deviation between the
fitted form of Γ(φ, ψ; δ) and the DFT-D2 results arises
with increasing deviation of the interlayer spacing from
where the fitting was done, i.e., d(φ, ψ). Indeed, we find
that the fit is excellent for the AA state near δ = 1.02d0
(close to equilibrium spacing for AA; Fig. 9(i)) and gets
worse as the spacing decreases from d0 (Fig. 9(h)) to
0.962d0 (Fig. 9(g)). Also, the third constraint in Eq. (4)
and the assumption that κ(φ, ψ) = κ0 guarantee that the
deviation of the fitted Γ profile from the DFT results is
always small near the stable state (AB state). As the
result of mechanical deformation, the local structure will

be dominated by the stable state (which we reproduce by
design) and the path between stable and/or metastable
states; fig. 9 shows that we properly reproduce the en-
ergy associated with all states between these (including
the saddle-point state).

Given the function Eq. (3) works so well as δ varies
around d(φ, ψ) based on the DFT-D2 data, we em-
ployed the same strategy with input data obtained from
the ACFDT-RPA calculations to make accurate three-
dimensional GSFE predictions. The Γ(φ, ψ, δ′) surfaces
fit to the ACFDT-RPA data are shown in Fig. 10, where
δ′/d0 = 0.95, 1, 1.05, and 1.15, each for G/G, BN/BN-
1, and G/BN bilayer systems. The Γ hypersurfaces ob-
tained here are accurate in the sense that they are pa-
rameterized via the accurate ACFDT-RPA data; they
are expected to be valid at least near the minimum inter-
layer spacings and be reasonable at all interlayer spacings
accessible to experiments (e.g., elastic deformation, bi-
layer formation and decohesion, interlayer sliding59, and
bilayer-dislocation-core distortion58).

In summary, the three-dimensional generalized
stacking-fault energy is

Γ(γ, d; δ) = A(γ, d)e−α(γ,d)δ −B(γ, d)

(
d

δ

)4

+ γcoh, (6)

where, of course, γ and d are functions of φ and ψ. In
this way, the complete three-dimensional GSFE can be
written using this function where A(γ, d), B(γ, d), and
α(γ, d) are given in Eq. (5), and γ(φ, ψ) and d(φ, ψ) are
given explicitly in Eq. (2) with parameters from Table III.
The remaining parameters in Eq. (5) are γcoh and κ0 ≡
Cnn,0/d0 which may be obtained directly from Table II.

VI. BAND-GAP LANDSCAPES

Finally, just in order to exemplify how the disreg-
istry states determines the local properties of bilayers,
we present the calculation of band gap as a function of
disregistry.

The electronic band structure of a bilayer system can
be modified by changing the disregistry of one layer with
respect to the other. The presence of defects such as
interlayer dislocations and twist boundaries can locally
produce such variation in disregistry and thus induce spa-
tial variation in the band structure on a length scale that
can be manipulated by, for example, changing twist an-
gle between layers or by choosing van der Waals layers
which are misfitting with respect to one another (hetero-
bilayers). It has been proposed that spatial variations in
the band gap can be used to funnel excitons into local
band gap minimum regions; this mechanism can be used
for solar energy harvesting and electroluminescence60.
Local variations in band gap should be observable us-
ing scanning tunneling spectroscopy (STS); macroscopic
changes in band structure with layer rotation in bilayer
graphene has been observed via Raman spectroscopy
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FIG. 9. The G/G Γ(φ, ψ, δ′) surfaces obtained directly from the DFT-D2 data at (a) δ′/d0 = 0.962, (b) δ′/d0 = 1, and (c)
δ′/d0 = 1.02, and those derived from Eq. (3) parameterized by the data at (d) δ′/d0 = 0.962, (e) δ′/d0 = 1, and (f) δ′/d0 = 1.02.
The corresponding Γ profiles along [11̄00] are shown in (g), (h), and (i).
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FIG. 10. The Γ(φ, ψ, δ′) surfaces for G/G (a–d), BN/BN-1 (e–h), BN/BN-2 (i–l) and G/BN (m–p) derived from Eq. (3) and
parameterized by the ACFDT-RPA data at δ′/d0 = 0.95, 1, 1.05, and 1.1.

(and explained theoretically)61,62. The implementation
of such band gap engineering relies on knowledge of the
spatial variation of disregistry (φ(r), ψ(r)) and the band
gap versus disregistry landscape Eg(φ, ψ). The disreg-
istry distribution (φ(r), ψ(r)) associated with interlayer
twist or misfit dislocations can be obtained by minimizing

the total energy including the interlayer bonding energy
γ(φ, ψ) and elastic strain energy (e.g., using the Peierls-
Nabarro model16). Here, we report the band gap land-
scapes Eg(φ, ψ) for G/G, BN/BN, and G/BN bilayer sys-
tems.

The two steps in the calculation of Eg(φ, ψ) for each
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FIG. 11. The band-gap (meV) landscapes for (a) G/G, (b)
BN/BN-1, (c) BN/BN-2, and (d) G/BN. Note that the LDA
results in (b) and (c) were shifted by 1470 meV and the LDA
results in (d) by 5 meV to be consistent with HSE calcula-
tions.

bilayer system are (1) determining the relaxed interlayer
spacing versus disregistry d(φ, ψ) and (2) determining the
band gap as a function of disregistry at the appropriate
interlayer spacing.

The first step was reported above using the ACFDT-
RPA method. It is noted that the reasonable band gap
can be obtained on the premise that the disregistry struc-
ture (particularly relaxed interlayer spacing) is correct.
The fitting scheme proposed above enables us to obtain
the reliable disregistry structure based on ACFDT-RPA
approach; without such strategy, it is impossible to ob-
tain the reliable band gap even if the band-gap calcula-
tion method is absolutely accurate.

For the second step, we determine the band gap by
combining the results of conventional LDA functional
and HSE hybrid functional63. Since calculations using
the LDA are computationally efficient, we map out the
entire band-gap landscapes via an LDA functional. How-
ever, it is well-known that the band gaps of semiconduc-
tors and insulators are commonly underestimated using
LDA64 (such systematic error is attributed to the fact
that in the LDA the energy versus number of charges is
convex rather than linear65). It has been shown that hy-
brid functionals, such as HSE, can effectively avoid this
problem65 and, indeed, HSE yields reliable band-gap for
many semiconductors66. However, it is impractical to
produce the entire band-gap landscapes using HSE since
such calculation are computationally costly. Our strat-
egy is to shift the LDA results by a constant value deter-
mined from the data for a few disregistry states produced
by HSE (see Supplemental Material for details).

Figure 11 shows the band-gap landscapes for G/G,
BN/BN-1, BN/BN-2, and G/BN. For G/G (Fig. 11a),
the band gap vanishes at the equilibrium AB registry
state; this is consistent with the well-known result that
the ground-state bilayer graphene is metallic67. Al-

though the band gap can be opened up to 400 meV as
the unstable AA state is reached, this state can never be
accessed in any local position of a G/G bilayer or dur-
ing a realistic mechanical process. The maximum band
gap that might be actually achieved is about 200 meV,
corresponding to the SP state, since the SP state may
locally exist in the core of a bilayer dislocation. For
G/BN (Fig. 11d), the variation of band gap with the
change of disregistry is very small (only 30 meV). It shows
that Eg(unstable AA state) > Eg(unstable AB′ state) >
Eg(stable AB state); such order is consistent with the re-
sults of earlier study7 (although in the earlier study the
relaxed interlayer spacing was obtained by LDA rather
than ACFDT-RPA). In general, BN/BN has much larger
band gap than G/G and G/BN. For BN/BN-1 (Fig. 11b),
the maximum band gap is about 5.8 eV, which occurs at
the stable AA′ registry state. Beyond the AA′ state,
the variation of band gap is mild with the change of
disregistry (including the metastable AB′ state). The
minimum band gap occurs near the saddle point (about
5.5 eV). The situation of BN/BN-2 is quite similar to
that of BN/BN-1, i.e., the maximum and minimum band
gaps correspond to the stable state and the saddle point,
respectively, and they are also at the same scale as the
band gaps of the respective states in BN/BN-1.

Figure 11 shows the band-gap landscapes for G/G,
BN/BN-1, BN/BN-2, and G/BN. For G/G (Fig. 11a),
the band gap vanishes at the equilibrium AB registry
state; this is consistent with the well-known result that
the ground-state of bilayer graphene is metallic67. Al-
though the band gap can be as wide as 400 meV at the
most unstable disregistry (the AA state), this state will
likely never be accessed anywhere in the G/G bilayer
(including at dislocation cores) or during realistic me-
chanical processes (e.g., sliding). We suspect that the
maximum band gap that will be observable in spots in
a G/G bilayer may be ∼ 200 meV, corresponding to the
SP state, since the saddle-point configuration may ex-
ist within the core of a bilayer dislocation. For G/BN
(Fig. 11d), the variation of band gap with the change
of disregistry is very small (only 30 meV). It shows
that Eg(unstable AA state) > Eg(unstable AB′ state) >
Eg(stable AB state); this order is consistent with the re-
sults of an earlier study7 (although in the earlier study
the relaxed interlayer spacing was obtained by LDA
rather than ACFDT-RPA). In general, BN/BN has a
much larger band gap than G/G and G/BN. For BN/BN-
1 (Fig. 11b), the maximum band gap is ∼ 5.8 eV, which
occurs at the stable AA′ registry state. Beyond the AA′

state, the variation of the band gap with disregistry is
small (including the metastable AB′ state). The mini-
mum band gap occurs near the saddle point (∼ 5.5 eV).
The situation for BN/BN-2 is quite similar to that of
BN/BN-1, i.e., the maximum and minimum band gaps
(and their magnitude) correspond to the stable state and
the saddle point in both BN/BN-1 and BN/BN-2, respec-
tively.
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VII. DISCUSSION AND CONCLUSIONS

The structure, energy, and band structure of G/G,
BN/BN, and G/BN bilayers are functions of the dis-
registry between the layers. An accurate determination
of the bilayer structure and energy depends sensitively
on the manner in which the dispersion interactions are
treated. We found that, while many of the corrections
methods employed today for the determination of these
interactions can lead to qualitatively correct trends in
the bilayer energy and the relaxed interlayer spacing with
disregistry, only the ACFDT-RPA method (amongst all
of the methods tested) leads to reliable quantitative pre-
dictions. Unfortunately, the computational cost for the
ACFDT-RPA method is high. This makes its routine
application in situations where a large number of calcu-
lations are required prohibitive. Such a case is the deter-
mination of the energy as a function of disregistry and
interlayer spacing – our focus in this report.

In order to overcome the difficulty associated with this
high computational cost, we adopted the following strat-
egy. First, we calculated the relaxed interlayer spacing
and energy as a function of disregistry using the compu-
tationally efficient DFT-D2 method and demonstrated
that these results could be accurately fitted to an em-
pirical function that respects the bilayer symmetry. We
also demonstrated that this fit can be obtained with ex-
cellent accuracy based on a small number of disregistries.
Using this validated fitting approach, we then obtained
the requisite data for fitting the bilayer energy and in-
terlayer spacing functions using the accurate ACFDT-
RPA method. This approach allowed us to accurately
determine the entire energy and relaxed interlayer spac-
ing landscapes at reasonable computational cost. These
landscapes provide an accurate prediction of not only
the equilibrium bilayer structural state, but also the
metastable states and the barriers between these states.
Such barriers are upper bounds on the resistance to layer
sliding.

The bilayer energy as a function of disregistry (the
generalized stacking-fault energy) is important for the
determination of defect structures in bilayers. For ex-
ample, edge dislocations are intrinsic features in many
hetero-bilayer systems, such as G/BN, where they can
account for the mismatch in lattice constants. The ex-

tended dislocation core structure of such hetero-bilayer
structures is sensitive to the generalized stacking-fault
energy. With only the generalized stacking-fault energy
and the elastic constants of the individual layers as in-
put, a generalized Peierls-Nabarro model57,68,69 can be
formulated to predict detailed dislocation structure.

Equally interesting is the case where the two layers in
a homo- or hetero-bilayer structure are rotated with re-
spect to one another. Such twisted bilayers have been de-
scribed as a Moiré structures, although the actual struc-
ture will be considerably different and more appropri-
ately described as composed of a two-dimensional peri-
odic array of screw dislocations, at least at small twist
angles. This structure too can be predicted using the
same type of generalized Peierls-Nabarro model16,57,68,69.

Using the relaxed interlayer spacing and energy results,
we also calculated the band-gap landscapes by correc-
tion scheme: correct the band gap produced by LDA
functional according to the fewer data obtained by HSE
functional. These results show that the band gap varies
in the range of 0–0.4 eV in G/G, 5.5–5.8 eV (5%) in
BN/BN, and 0.04–0.07 eV (100%) in G/BN. This implies
that in both homo-bilayer systems, where the two layers
are rotated relative to each other, and hetero-bilayer sys-
tems with or without rotation, the band gap will vary
from region to region through the bilayer. Such a varia-
tion should be directly observable using scanning tunnel-
ing spectroscopy. For the case of homo-bilayer rotation,
this will lead to a a two-dimensional periodic band struc-
ture with the periodicity determined by the twist angle70.
These periodic variations in band structure can lead to
an electronic metamaterial behavior that can be used
to engineer excitonic behavior to tailor properties. The
present band gap and generalized stacking-fault energy
provide the basis for future prediction of defect structure
and electronic behavior of homo- and hetero-structured
van der Waals layered systems.
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