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We employ a simple analyic model to calculate the thermopower of low transparency molecular
nanosystems. It turns out that the sign of the thermovoltage for this model depends sensitively
on the participating molecular orbital, and one finds a sign change when the transport channel
switches from the highest occupied molecular orbital to the lowest unoccupied molecular orbital.
Comparing our results to recent experimental data obtained for a BDT molecule contacted with an
STM tip, we observe good agreement.
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I. INTRODUCTION

Studies of the origin of a voltage or current in nanosys-
tems in the presence of a temperature gradient are an ex-
tremely interesting and promising area in the field of nan-
otechnologies [1–3]. There are several important possi-
ble future applications in several areas of devices, among
them the development of nanothermosensors (see, e.g.,
[4]), which is especially urgent for a number of techno-
logical processes and for research in biology concerning
the functioning of life.
However, different from the classical description of

thermoelectric phenomena, which is already challeng-
ing enough, the necessity to apply strictly quantum-
mechanical methods in the realm of nano-objects makes
the whole problem an extremely difficult one, and a
proper theory for studying transport phenomena in the
most general setup does not yet exist. However, for the
description of most experimental realizations of thermo-
electric transport through nano-structures, one can for-
tunately make some simplifying assumptions. Usually,
one can consider the system to consist of two metal-
lic structures, which are typically very good conductors
and which we will call leads, that are spatially separated.
Hence, there will be no current flowing between the leads.
Placing an active element like a molecule between these
leads will thus induce a transport path and, when volt-
age or temperature differences between the leads are im-
posed, thermoelectric phenomena [5–10]. The coupling of
the molecule and the leads will be quantum mechanical,
i.e., one can usually assume that the coupling that gives
rise to a transfer of mobile electrons from the leads onto
the molecule is governed by tunneling processes. For ex-
ample, if one uses gold leads and the molecule has thiol
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groups on it, so that the contact is formed via a covalent
bond, one can nevertheless still have situations where the
electron transport across that interface is described via
a tunneling process because the charge in the covalent
bond remains localized in the bond region. This is sim-
ilar to the well-known phenomena in Nb-based Joseph-
son junctions, where the Nb superconductor has a thin
layer of aluminum evaporated on top of it which is ex-
posed to oxygen forming a disordered aluminum-oxide
barrier. Then more Nb superconductor is deposited on
the other side. Even though Al2O3 is a covalent insula-
tor, quantum-mechanical tunneling between the Nb su-
perconductors occurs due to the exponentially decaying
wavefunctions of the Nb metal leads through the insu-
lating barrier. The same type of exponentially decaying
connection between metallic leads and molecules should
exist regardless of how the molecule bonds to the leads.

Although this setup seems rather straightforward, its
actual experimental realization is by no means trivial.
In particular, a good control over whether a molecule is
even attached to one (or both) leads and a reliable char-
acterization of the coupling of electrons in the leads to
the quantum states of the molecule is difficult to obtain
[2]. Furthermore, when using two extended leads on a
common substrate, it is not easy to set up a temperature
gradient across the molecule. An interesting technical so-
lution to this problem has been achieved recently by using
a scanning tunneling microscope (STM) tip to contact
individual molecules on a metal surface in a controlled
manner, thereby generating well-defined break junctions
[2]. In this way, control over the tunneling between elec-
trons in the molecule and in the leads can be achieved
by moving the STM tip, and a temperature gradient can
easily be applied by heating the metal while keeping the
tip at a fixed temperature [2]. The voltage between the
tip and the metal can then be adjusted as well to arrive
at the case where no charge current flows through the
molecule. This then is the experimental setup for mea-



suring the Seebeck coefficient: the system has no charge
current flowing, but has heat current flowing through it.
The ratio of the voltage difference to the temperature
difference yields the Seebeck coefficient of the device.

In the present paper, we develop a simple nonequilib-
rium model to describe the stationary thermotransport
through such a nanostructure, using a Green’s-function-
based approach that is capable of describing sequen-
tial tunneling (the electron tunnels without maintain-
ing phase coherence between the tunneling onto and off
of the molecule), co-tunneling (the electron tunnels co-
herently through the molecule by virtually occupying an
off-resonant molecular energy eigenstate), and resonant
tunneling (which is similar to co-tunneling, but the vir-
tual state is energetically close to the chemical potential).
Guided by the experimental findings, we argue that one
can actually restrict the theory to the lowest nonzero
order in the tunneling. The resulting model is rather
simple, but can be solved analytically, and the theoret-
ical results can be directly compared with experimental
data by adjusting just a few parameters. We generically
find good agreement between experiment and the simple
model.

The reason why such a model might be important to
the community is that it can serve as a means to try to
characterize some of the parameters related to how the
leads couple to the molecule. In this sense, it is similar to
the Simmons model [11], which is widely used to estimate
the tunnel barrier strength and width in a tunnel junc-
tion, and is often used by experimentalists as a unifying
means to describe experimental data that is independent
of the detailed properties of the materials. The Simmons
model simply assumes that the electron tunnels through
a barrier described by a simple square well potential. It
has proved to be quite useful in describing many devices.
We believe the model we develop here will share a similar
status when we examine experiments that have thermo-
electric effects in molecules.

What this model cannot do is determine where the
chemical potential of the leads lies relative to the lead-
broadened molecular levels of the attached molecule. The
reason why is that once we take the limit of no broad-
ening of the molecular levels (which is required for the
analytic solution), we must have the chemical potential
pinned near (on the order of kBT or less) one of the levels
to be able to model the charge transfer associated with
the (perhaps small) ionicity of the bonds with the leads.
In the absence of the leads, the chemical potential for the
molecule is very sensitive to small perturbations (includ-
ing temperature) and can be easily forced to move close
to one or the other molecular levels. When the leads
cause significant broadening of these levels, the chemi-
cal potential becomes much more robust and does not
change signifiantly with small perturbations. But, be-
cause we maintain the sharp levels in the analytic model
presented here, the chemical potential has a strong de-
pendence on perturbations and must lie close to one of
the molecular levels. It turns out that even though the

precise location of the chemical potential is not well de-
termined by this model, one can still accurately calculate
the thermopower. We will discuss this effect further be-
low.
The remainder of the paper is organized follows. The

model Hamiltonian and observables of interest are de-
scribed in Sec. II. Sec. III describes the thermoelectricity
in tunneling nanostructures. Sec. IV concludes.

II. ANALYTIC MODELING OF ELECTRON

TUNNELING WITH AN APPLIED

TEMPERATURE GRADIENT

Electron tunneling through a quantum system consist-
ing of double potential barriers is sensitive to the position
of the electronic states in the constricted quantum struc-
ture [12]. This circumstance can be used for an effective
control over the tunneling process. While it is usually
challenging to contact molecules via standard leads, us-
ing an STM tip to create break junctions with molecules
immersed on a metal surface allows for a controlled way
to generate reliable contacts. This has been used recently
for benzenedithiol (BDT), dibenzenedithiol (DBDT) and
tribenzenedithiol (TBDT) to study thermoelectric effects
in the transport through such molecules [2].
Based on the setup of the experiment in Ref. 2 and

depicted schematically in Fig. 1A, we model the device
with a double-barrier tunneling system that has an en-
ergy profile shown schematically in Fig. 1 [13–17]. In the
following, we identify the substrate with the label “L”
and the STM tip with “R”. The Hamiltonian describing
the tunneling of electrons through such a structure is of
the form

H = H0 +HW +HT . (1)

The first term of this Hamiltonian

H0 =
∑

kσ

εL(k)a
†
k,L,σak,L,σ +

∑

kσ

εR(k)a
†
k,R,σak,R,σ. (2)

describes electrons in the left lead (metal surface) and in
the right one (STM tip). Because we are not interested
in the detailed properties of the leads, we assume that
these charge carriers can be taken to be noninteracting

quasiparticles, and a†k,L,σ(ak,L,σ) and a†k,R,σ(ak,R,σ) are

the creation (annihilation) operators for these quasiparti-
cles in the surface and, respectively, tip. The dispersions
are, in the same spirit, given by εL/R(k) = ~

2k2/2mL/R,
where mL/R denote the effective masses for the left and
right leads. We will assume mL = mR = m in the fol-
lowing for simplicity.
The Hamiltonian HW describes the electronic states

on the molecule. It can be written in the form

HW =
∑

α

Eα a†αaα +HI , (3)

where α labels the single-particle levels of the molecule,
and HI denotes possible interactions. The single-particle



FIG. 1: Schematic model to study thermoelectric phenomena for a BDT molecule attached to leads. A shows the case where
the LUMO provides the nearby molecular level, and B corresponds to the HOMO as the nearby molecular level. The energies of
the orbitals, the bias ∆V and the temperature difference ∆T are chosen to provide a setup for the thermopower measurement,
i.e., no electrical current is flowing, but heat current is.

energies in the well depend on the applied bias ∆V across
the molecule and can be written as Eα = ǫα − e0 β∆V ,
where ǫα is the bare energy of the molecular state in the
quantum well (that is, the energy with no field applied
across the molecule), ∆V is the potential drop across the
molecule, e0 > 0 is the elementary charge, and β is a fac-
tor depending on the profile of the potential barriers (for
identical barriers, β = 0.5). Note that the bare molec-
ular energy levels need not be the levels of the isolated
molecule if they shift due to the bonding of the molecule
to the leads. What we require in our theory is that the
levels will not be significantly broadened due to the cou-
pling of the molecule to the leads, which is expected in
cases where the tunneling connection corresponds to a
low transparency coupling. Finally, the Hamiltonian HT

describing the tunneling of electrons through the contact
barriers with the leads has the conventional form

HT =
∑

kα,δ=L,R

(

Tασδ(k) a
†
k,δ,σaα +H.c.

)

. (4)

Here, Tασδ(k) is the matrix element of tunneling from the
surface (respectively, the tip) to and from the molecule.
When we apply a constant external bias across the

system, a nonequilibrium steady-state electron distribu-
tion will result. We assume that the electron distribu-
tion functions in the electrodes (source, drain) are equi-
librium ones, i.e., Fermi functions, due to the large vol-
umes of these reservoirs, but their chemical potentials
and temperatures can be different. The chemical poten-
tials in each lead then encode the voltage drop across the
nanoregion where the molecule is. Hence, in our model,
µL = µ+∆µ, µR = µ, and ∆µ = −e0∆V .
The setup of the system in Fig. 1 makes the evaluation

of nonequilibrium properties comparatively simple. The
important quantity entering all formulas is the density
of states (DOS) ρα(E) for the local level in the presence

of the leads [18]. To calculate it, we need the retarded
Green’s function Gα,α(E) [19], which is defined via

Gα,α(t, t
′) = −iTre−βH(∆V=0){aα(t), a

†
α(t

′)}/Z (5)

where Z = Tr exp[−βH(∆V = 0)] is the initial equilib-
rium partition function when there is no voltage or tem-
perature difference over the molecule. The fermionic cre-
ation and annihilation operators of the molecular eigen-
states are in the Heisenberg representation. We apply
the voltage difference and temperature difference at time
t = 0 and take the limit where t + t′ → ∞ but t− t′ re-
mains finite. The steady state Green’s function in the en-
ergy representation, then arises as the Fourier transform
of the Green’s function in the long-time limit with respect
to the relative time t − t′ and is denoted Gα,α(E + ıη).
From this we can obtain the DOS as

ρα(E) = −
1

π
ImGα,α(E + ıη).

The electron distribution function fα
W (E) in the quan-

tum well is essentially nonequilibrium. It can be deter-
mined from the condition of equality of the tunneling
currents through the source and the drain. The resulting
distribution function has the form [18]

fα
W (E) =

1

Γα(E)
[Γα

L(E)fL(E) + Γα
R(E)fR(E)], (6)

Γα(E) = Γα
L(E) + Γα

R(E), (7)

where Γα
L(E) and Γα

R(E) are the tunneling rates for
source (L) and drain (R), given by the expressions

Γα
L(E) =

∑

kσ

|TασL(k)|
2
δ(E − εL(k)), (8)

Γα
R(E) =

∑

kσ

|TασR(k)|
2
δ(E − εR(k)), (9)



and fL(E) and fR(E) are the quasiparticle distribution
functions in the source and the drain, respectively. They
have the Fermi–Dirac form, and their temperature de-
pendences read

fL/R(E) =

{

1 + exp

[

E − µL/R

kBTL/R

]}−1

, (10)

where kB is the Boltzmann constant, and TL/R are tem-
peratures in the source and the drain, respectively.

III. DOUBLE BARRIER

THERMOSTRUCTURES FOR ELECTRON

TUNNELING

With the above formula for the distribution function,
one can straightforwardly evaluate physical quantities.
For example, the occupancy of the molecule can be de-
termined with the help of the expression [13]

nα = −
1

π

∫

dE fα
W (E) ImGα,α(E).

Note that when the chemical potential is far from one of
the molecular levels, the density depends exponentially
weakly on the chemical potential, hence it always will be
pinned to lie close to one of the molecular levels. More-
over, the net current Jsd between the source and the drain
through the molecule is given by the equation [15, 18]

Jsd = −
e0
~

∑

α

∫

Υα(E) [fL(E)− fR(E)] ρα(E) dE,

(11)
where Υα(E) = Γα

L(E)Γα
R(E)/Γα(E). Since we assume

tunneling contacts, the transition rates Γα
R, Γ

α
L are ex-

ponentially dependent on the barrier widths and heights.
Correlation effects between the electrons in a nanostruc-
ture encoded in HI can be taken into account by means of
ρα(E), too [18], and will in general dramatically modify
the properties [20, 21]. Unfortunately, a complete theo-
retical solution of this more realistic model is at present
possible in the linear response regime only (see for exam-
ple Ref. 22 for an overview). In particular, treating ther-
moelectric effects is a significant challenge as the temper-
ature gradient across the dot cannot be simply included
into the Hamiltonian of the leads.
Fortunately, the situation for the experiment con-

ducted in Ref. 2 appears to be such that further ap-
proximations become possible. To this end, we refer to
Fig. 3A in Ref. 2, where an estimate [1] of the transmis-
sion function through the molecule as a function of energy
is shown. From this figure, one can infer that the system
is indeed in the weak-coupling regime, with a rather good
separation between the HOMO and LUMO of several eV.
(Weak coupling here refers to a low transparency tunnel-
ing connection between the leads and the molecule for the
electrons being transported through the molecule.) Note
that, to lowest order, the width of transmission function

is directly related to the effective coupling Γα(E) defined
in Eq. (9) [18]. This observation motivates us to assume
a low transparency of the barriers, i.e. Γ(E) ≪ |∆E|
with ∆E being the difference in energy between LUMO
and HOMO. This assmption implies that structures in
the transmission function will be quite sharp, and not
be significantly broadened due to the attachment of the
molecule to the leads.
While it is possible to examine these results numeri-

cally, as many other researchers do, we next take an ex-
treme limit, which allows for the system to be analyzed
analytically. This limit is an important one to take, as
it also provides a benchmark for numerics, in a regime
where the numerics can become difficult to carry out. In
particular, we use the limit Γ → 0, i.e. we approximate
the local Green’s function by its atomic limit1

ρα(E) ≈ Cα δ(E − Eα), (12)

where the weights Cα encode the effect of interactions
on the molecule and we take into account only the pole
with the strongest weight. In other words, we neglect the
influence of the leads on the molecule’s states, in partic-
ular also renormalizations due to nonequilibrium. This
is, admittedly, a rather severe approximation, but it is
consistent with the above interpretation of the particular
experimental setup: The experimental results do not in-
dicate a significant change in the observed dependencies
down to the smallest distances between surface and tip.
As with increasing distance the tunnel coupling becomes
exponentially small, we expect our approximation to be
valid in the intermediate to large distance regime and,
with the previous observation, therefore also down to the
smallest distances covered in the experiment. It is impor-
tant to note that according to standard many-body the-
ory, the temperature does not enter into the broadening
of the molecule’s levels, i.e. although the actual working
temperature of the device at 300 K is rather high, it will
not alter our above argument or conclusion. This limit
is the opposite limit to the one considered by Paulsson
and Datta [1], where the molecular levels are broadened
sufficiently that one can determine the themopower via
a Mott-like formula that involves the derivative of the
transmittance with respect to the energy.
Inserting the approximation (12) into the expression

for the charge current, we finally obtain the formula

Jsd = −
e0
~

∑

α

Cα Υα(Eα) (fL(Eα)− fR(Eα)) . (13)

The distribution functions fL/R(Eα) are exponentially
dependent on the energy Eα (note that these energies are

1 One could in principle also use a Lorentian form with width
∝ Γα(E) here, but we would then lose the analytical solution.
Furthermore, this approach would at the present level only in-
troduce a further unknown parameter into the calculations.



the electronic energies of the molecule; we are ignoring
vibrational excitations). Thus, when |Eα −Eα′ | ≫ kB T ,
where Eα′ denotes a neighboring molecular orbital, there
will be one particular energy Eα for which |Eα − µ| is
minimal. As discussed previously, we can assume a weak
tunneling coupling and a reasonably strong energetic sep-
aration of the molecular orbitals, and hence the trans-
port through all other orbitals will be exponentially sup-
pressed compared to this orbital and can be neglected.
Within this approximation, Eq. (13) can thus be reduced
to the simple form Υα(Eα)[fL(Eα) − fR(Eα)] = 0, re-
spectively, for small but finite Γα

L/R(E),

fL(Eα)− fR(Eα) = 0, (14)

since a thermoelectric measurement is made with an open
circuit that has no charge current flow, only heat current
flow.
According to our definition, Eα is the energy level

of the molecule which has the smallest distance to the
chemical potential. This will either be the highest oc-
cupied molecular orbital (HOMO) or the lowest unoc-
cupied molecular orbital (LUMO). That molecular level
is, as noted before, shifted by the voltage ∆V as ∆E =
Eα − ǫα = −e0β∆V = β∆µ. For asymmetric barriers
we have β = aL/(aL + aR), where aL and aR are the
widths of the left and right barriers, respectively. With
the explicit form for Fermi’s function (10) the solution of
Eq. (14) becomes

e0∆V =
(ǫα − µ)

T + β∆T
∆T. (15)

This is the condition relating the voltage across the
molecule to the temperature gradient to ensure that no
charge current flows (given the aforementioned approxi-
mations). Equation (15) has a rather interesting implica-
tion. Assuming a positive temperature gradient, ∆T > 0,
the sign of the thermovoltage depends solely on the rela-
tive position of the level contributing to the electron tun-
neling and the chemical potential. In the case ǫα > µ we
would observe a positive thermovoltage, while a negative
one will occur for ǫα < µ. Note that this scenario is valid
only when |ǫα−µ| ≪ |ǫβ−µ| for all other orbitals β 6= α.
However, for |ELUMO − µ| ≈ |EHOMO − µ|, i.e. close to
a particle-hole symmetric situation, the two transmis-
sion channels would contribute with opposite sign, and
we would expect thermoelectric effects to be strongly
suppressed, presumably below the noise level of the ex-
periment. (Indeed, just by continuity, if one goes from
HOMO dominated to LUMO dominated, the thermoelec-
tric voltage must vanish somewhere during the transition
because it is positive for one limit and negative for the
other.) Since the experiment shows a clear thermoelec-
tric signal, we infer that there is only one orbital domi-
nating the tunneling contribution to the transport. Note
that this conjecture is also in agreement with the general
discussion in Ref. 2 following their Eq. (4).
Our result in Eq. (15) can now be used to interpret the
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FIG. 2: Comparison of experimental data (blue circles [2])
with the theoretical curve (from Eq. (15)).

experimental data. To this end, we take the results from
Fig. 2D in Ref. 2 to estimate our parameters for BDT.
The first observation is that the experiment gives

∆V < 0, i.e. according to our result we must have ǫα < µ.
Thus, the energy level ǫα seen in experiment is a HOMO,
i.e. we have realised the condition shown in Fig. 1B. In
fact, the conductivity of the tunneling structure is deter-
mined by electron holes. The detailed comparison of the
thermovoltage ∆V as a function of ∆T is shown in Fig. 2.
Since ∆T ≪ T ≈ 300 K, Eq. (15) can be approximated
by a linear relation

e0∆V = (ǫα − µ)∆T/T. (16)

From the comparison with the experiment, we get an
average value of (µ− ǫHOMO)/e0T ≈ 7 µV/K. While this
may seem like a close pinning of the chemical potential
to the molecular level, if we examine the distance of the
chemical potential relative to the width of the molecular
level (which is zero) it is an “infinite” distance away. The
point is that once we have chosen to neglect broadening
of the molecular level, the chemical potential must lie
close to one of the molecular levels to properly handle
the charge balance.
To study the dependence of thermoelectric effects on

the distance d between the substrate surface (source)
and the STM tip (drain), let us consider our double-
barrier system as a simple resistor network. In this case,
Eqs. (14) and (13) can be reduced to

−
e0
~

Cα Υ(Eα)[fL(Eα)− fR(Eα)] = Jsd, (17)

with an externally imposed current Jsd = ∆V/R0, where
R0 is the external impedance of the whole network. We
note that if the conditions e0|∆V | ≪ kB T and |ǫα−µ| ≪
kB T are valid, Eq. (17) can be rewritten as

(ǫα − µ)∆T/T + e0∆V = −e0 p∆V, (18)

where

p−1 =
e20R0 Cα Υ(ǫα)

~

∂fR(ǫα)

∂µ
.
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FIG. 3: Dependence of ∆V on the distance Au-BDT-Au for
different temperatures. The full lines are the results of our
model. For simplicity we assumed that aL was fixed and the
movement of the tip only increased aR.

In the case of an open circuit, R0 = ∞, we have p = 0,
and Eqs. (16) and (18) are the same. The quantities ΓL

and ΓR entering Υ(E) are exponentially dependent on
the barrier widths, i.e. we can approximate them as

ΓL/R = Γ0 exp(−γaL/R), (19)

where aL/R are the widths of the left and right barri-
ers, respectively, and γ depends on the barrier height.
The barrier lengths can be controlled in the experimen-
tal setup by moving the STM tip [2]. Finally, relation
(18) can be written in the form

e0∆V =
(ǫα − µ)

1 + B(d)

∆T

T
, (20)

where

B(d) = B0[exp(γaL) + exp(γaR)], B0 = pΥ(ǫα)/Γ0.

Note that the total distance between the source and the
drain is d = aL + aR + aBDT, where aBDT is the BDT
molecule diameter.
This theoretical length dependence of the thermoelec-

tric voltage can be compared with experimental data
[2]. The result is shown in Fig. 3. In our calcula-
tions, we fixed the parameters by obtaining the best
fit for ∆T = 20 K and aBDT = 0.6 nm [2], result-
ing in aL ≈ 0.2 nm, γ = 5 nm−1, B0 = 2 × 10−5,
(µ−ǫHOMO)/e0T = 9.54 µV/K. The remaining curves for
the other temperatures were then calculated using these
parameters. Let us emphasize that in contrast to the
data from Fig. 2, we deal with measurements performed
on a single molecule here, i.e. the individual results for
the parameters of the molecule will in general differ from
the average extracted from Fig. 2.
Relation (20) together with Eq. (2) from Ref. 2 allows

us to determine the Seebeck coefficient as a function of
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FIG. 4: Seebeck coefficient as a function of the molecular
length for BDT, DBDT, and TBDT. The circles are the ex-
perimental data from Ref. 2. The results of our calculation
are given by the solid line obtained from Eq. (21) using the
results for B(d) from Fig. 3 with aR and ǫHOMO as fit param-
eters.

parameters of the nanostructure as

Sjunction = SAu −
(ǫα − µ)

1 +B(d)

1

Te0
, (21)

where SAU is the Seebeck coefficient for the gold sur-
face 2. In particular, at a fixed distance between the
electrodes, it follows from Eq. (21) that the Seebeck coef-
ficient depends on the size of the molecule, through which
the electron tunneling is realized and the orbital which
dominates the tunneling. Again, because SAu > 0 [2],
we expect S > 0 if the HOMO dominates the transport,
while the second term becomes negative and hence S < 0
can become possible when the LUMO is the relevant or-
bital. As we already know that for BDT the HOMO is
the important orbital, we can use the Seebeck coefficient
for this molecule as reference and draw conclusions about
others depending on their absolute values of S.
The resulting dependence of Sjunction on the differ-

ent molecules is shown in Fig. 4 using SAu = 2 µV/K,
d = 2.93 nm and the other junction parameters as in
Fig. 3. Again, the experimental data are averaged over
1000 individual measurements. As before, the Seebeck
coefficient of the junction is predominantly determined
by the width of the right barrier. All Seebeck coeffi-
cients are positive, and their value increases for DBDT
and TBDT. This means, that as for BDT, the thermo-
voltage is negative and hence the HOMO is the orbital
dominating the transport process. We also note that in
contrast to the fit in Ref. 2, we do not obtain a linear re-
lation, but a strongly non-linear one due to the presence
of B(d). Our result obviously gives a better account of
the data.

2 A derivation for this expression can be found in the supplemen-
tary material to Ref. 2.



The particularly interesting observation is that the
comparison of theory and experiment results in a con-
stant value of (µ − ǫHOMO)/e0T ≈ 12 µV/K for all
molecules. At first glance, this is a strange result. We
however think it can be explained in a simple way. Both
the substrate, on which the molecules are located, and
the STM tip consist of gold, which, as is well known,
forms a strong (localized) covalent bond with the thiol
groups. The HOMO and LUMO levels will shift with the
electric field, as discussed above, and there can be charge
transfer onto or off of the molecule due to the electrical
contact with the leads which are at fixed chemical poten-
tials. The chemical potential of a free molecule is usually
positioned in the middle between HOMO and LUMO lev-
els. When the molecule and electrode form a contact, the
chemical potentials become leveled. This is accompanied
by a change in the population of the molecular levels.
Two cases can now be realized. If the chemical potential
of the free molecule is larger than the chemical poten-
tial of the electrodes, their leveling requires that some
portion of the electronic charge on the molecule must be
transferred to the contacts, and the chemical potential
will lie close to the HOMO. In the second case, electrons
will be injected into the molecule, and the gap between
the chemical potential and the LUMO level decreases.
Thus, the electrostatic potentials due to the formation
of the junction will cause a shift of either the HOMO
or LUMO level of the molecule closer to the chemical
potential, which further enhances the dominance of that
particular level in the transport process.
At some point, the equilibrium with the external po-

tential is reached, which determines the difference (ǫα −
µ). This final distance between the chemical potential
of the system and the position of the closest molecular
level is in lowest order determined by the level width
Γα and temperature T . Within the approximation that
Γα ≪ kBT , we may expect that the position is mainly
determined by the temperature. It is thus reasonable,
that the resulting average level position for all molecules
BDT, DBDT, and TBDT is similar within the error bars
of the statistics.

IV. SUMMARY

A theoretical calculation of the transport through
nanostructures makes a full quantum-mechanical descrip-
tion of the system mandatory. In contrast to bulk mate-
rials, one cannot even adopt some semiclassical approach
based on, e.g., the Boltzmann equation here. Since one
also needs to take into account the inherent nonequi-
librium situation in many cases, solving this problem
has become one of the most challenging tasks in mod-
ern condensed matter theory. A certain simplification
arises when one can use the concept of electron tunneling
with low-transparency barriers. This is usually possible
in weakly contacted nano-objects like molecules, and al-
lows one to quite accurately describe the thermoelectric
phenomena in these systems.

We have presented here the calculation of thermotrans-
port through a BDT molecule contacted with a metal
substrate and a STM tip via the generation of a break
junction [2]. In the limit of only weakly transparent bar-
riers, we were able to obtain an explicit formula for the
voltage drop across the molecule as a function of the tem-
perature difference between the substrate and the tip.
We found that the experimental data are described rather
accurately by our simple model involving only one tun-
neling process through the HOMO of the molecule.

Modelling the dependence of tunneling rates between
the molecule and substrate/tip with a simple exponential
ansatz, we were furthermore able to give a closed expres-
sion for the dependence of the thermoelectric effect on
the distance between tip and substrate. The compari-
son to experiment could be done by extracting the rele-
vant model parameters from one set of data for a fixed
∆T = 20 K only, reproducing the remaining curves with
good accuracy. Furthermore, using the parameters for
the dependence of the thermovoltage on the length of
the Au-molecule-Au junction, we were able to provide
an accurate description of the dependence of the Seebeck
coefficient on the size of the molecule. As an interesting
by product, we found that apparently the molecular level
position is only weakly dependent on the molecule. This
rather odd observation could be explained by including
the electrostatic fields due to the formation of the break
junction, nicely explaining why the appearance of the
HOMO in the thermopower measurements is so robust.

Thus, our formula accurately describes the transport
through such a nano-object, provided the tunneling cou-
pling to the leads is of sufficiently low transparency and
the initial separation of the molecular levels around the
Fermi energy is sufficiently large. There are, of course,
several severe simplifications in the model. The most
relevant is of course the neglect of the influence of the
tunneling on the electronic structure of the molecule. In
connection with interaction effects on the molecule, as
well as molecular vibrations and also vibrations of the
whole molecule between the contacts this can lead to se-
vere modification. These additional features can be taken
into account in the linear-response regime [22, 24] and,
under very simplifying assumptions, also analytically un-
der nonequilibrium conditions [24]. For the present ex-
perimental setup we however think that our simplified
theory is at least qualitatively valid and can be used to
understand several features of the experiment using only
a limited set of input data.

Given the complexity and in particular nonavailability
of full-featured theoretical calculations off thermal equi-
librium, we believe that such analytical results – even
if they appear simple or straightforward – are neverthe-
less important steps to enhance our knowledge about the
transport through nanostructures and can actually also
serve as benchmarks to test more elaborate theoretical
tools to be developed.

In addition, similar to the simplifying assumptions of
the Simmons model [11], which has been used for decades



to characterize the tunneling behavior of normal-state
tunnel junctions, the present model provides a simple
framework, with a few parameters, that can characterize
the transport, especially the thermal transport, across a
molecule. We hope that it can then be used to char-
acterize a range of new experimental systems and help
understand the tunneling behavior through individual
molecules. Unfortunately, we have not been able to find
other experiments that have low transparency junctions
that we can compare the theory to, but we anticipate
such systems will be available to apply this theory to in
the future.
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