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We investigate the evolution of attosecond to femtosecond screening and emergent potentials that
govern the dynamics and energetics of electrons and holes excited in the various stages of multipho-
ton photoemission processes and control the photoelectron yield in recently reported experiments
[Nature Phys. 10, 505 (2014)]. The study is focused on the dynamical screening of holes cre-
ated in pre-existent quasi-two dimensional Shockley state bands on Ag(111) and Cu(111) surfaces
and of electrons excited to the intermediate and emerging screened states. Using the formalism
of self-consistent electronic response we analyze first the effects of screening on the dynamics of
photoexcited electrons and holes and then of the Coulomb correlated photoexcited pair. Special
attention is paid to the correlated primary electron-hole states which commence as transient surface
excitons and develop in the course of screening into uncorrelated electron and hole propagating in
the image potential and surface state bands, respectively. The obtained results enable to establish a
consistent picture of transient electron dynamics at Ag(111) and Cu(111) surfaces that are becom-
ing accessible by the time, energy and momentum resolved pump-probe multiphoton photoelectron
spectroscopies.

PACS numbers: 71.10.-w, 73.20.-r, 78.47.J-, 79.60.-i

I. INTRODUCTION

Screening is a fundamental process which determines
the dynamical properties of charged Fermi liquids.1 Of
special interest are the dynamical screening properties
of inhomogeneous electron gas and their manifestations
in the various measurements, particularly at solid sur-
faces and interfaces where photoexcited charged parti-
cles can turn on Coulomb interactions whose effects can
be gleaned from a variety of energy and time resolved
electron spectroscopies.

The act of probing the properties of electronic systems
by various spectroscopic techniques involves in one way or
another nonadiabatic external perturbations that cause
transitions of the system from the initial equilibrium into
the ionized or excited final states. These primary tran-
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sitions give rise to fast deviations from the initial charge
density distribution in the system which, in turn, couple
to the dynamical polarization or screening response of the
surrounding electronic density. This coupling is strong
because it is governed by the Coulomb forces throughout
the duration of the screening process. In photoelectron
spectroscopies that leave the system in an ionized final
state dynamical screening is essential for achieving the
total energy balance and manifests itself through the en-
ergy relaxation shifts and characteristic lineshapes of the
probed electronic states. The effect is particularly strong
for localized initial electronic states or orbitals of atoms
and molecules in the bulk2–4 and at surfaces.4,5

Metals and degenerate semiconductors are the media
which support most efficient screening of external per-
turbations either in the bulk or at surfaces. Spatial ex-
tension of the screening charge induced near the surface
by external perturbation fields depends on the density of
the electron gas. For metallic densities of practical in-
terest the major part of the screening charge is localized
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within a few atomic radii of the surface region, with the
induced charge density or Friedel oscillations extending
deeper into the bulk.6–13 It also turns out that for per-
turbations induced by external charge spatially restricted
outside the equilibrium surface electronic charge density,
the self-consistent linear response provides a complete
picture of screening which has a classical analog in the
form of image charge.6,8,11

Early theoretical studies of the screening properties of
surfaces were focused mainly on the energetic and spatial
aspects of the induced and image charge which proved
accessible by the then available experimental techniques
(for review see Chapters 2 and 3 in Ref. [11] and refer-
ences therein). Less attention has been paid to tempo-
ral aspects of surface screening because the detection of
screening charge formation and saturation requires the
techniques with high resolution both in the energy and
time domains. However, the advent of time and energy
resolved electron spectroscopies,14–21 and particularly of
the multiphoton photoemission (MPPE) spectroscopies
utilizing ultrashort laser pulses, has provided tools for
studying ultrafast electron dynamics under the strong
influence of screening processes which in metals are man-
ifest on the femto- and atto-second time scale.

One of the most fascinating characteristics of low in-
dex surfaces of some metals are the series of quasi-two
dimensional (Q2D) electronic band states in the surface
projected bulk band gaps.22,23 These states arise from
the interplay of the truncated periodic crystal potential
which prevents the electrons to move inside the crystal
with energies and momenta that span the band gap, and
the attractive image potential which keeps them local-
ized close to the surface. In the standard nomenclature
the lowest surface state or resonance derived from the
nearly free-electron sp-band is termed the Shockley sur-
face state (SS-state with energy ESS), and the unoccu-
pied Rydberg-like states detached from the vacuum level
and extending below the upper sp-band gap edge are
termed the image potential states (IP-states with low-
est state energy EIP ). Both groups of states exhibit
quadratic dispersion with effective masses of the order
of free electron mass.24–26 Calculations of the energetics
of these states27 have been based on the assumption of
instantaneous image potential V im(z) where z is the elec-
tron coordinate perpendicular to the surface. Abundant
experimental evidence from steady state experiments in-
cluding high resolution one-photon photoemission (HR
1PPE), inverse photoemission (IPE), continuous wave
two-photon photoemission (cw 2PPE) etc., fully supports
this picture.24–26,28–33 The first series of investigations of
nonadiabatic aspects of ultrafast dynamics of quasipar-
ticles in surface bands assumed such preexistent SS-and
IP-states,34–41 in accord with the existence of instanta-
neous (nonretarded) V im(z) modifying the crystal pseu-
dopotential in the surface region.

The assumption of instantaneous V im(z) becomes in-
applicable on the ultrashort time scale because surface
screening is a dynamical, damped oscillatory process

whose cycle duration and attenuation can be in the sim-
ple models identified with the inverse of surface plasmon
frequency and its width, respectively. Thus, upon sud-
den promotion of a probe charge in front of the surface
the formation of its stationary image charge and ensuing
potential occur after several such cycles when dephas-
ing processes eliminate the screening transients. Only
in that limit the employment of standard static V im(z)
can be justified. Apart from these energetic aspects, the
dynamical screening processes also give rise to specific
features in the optical absorption (OA) and photoemis-
sion (PE) spectra which cannot be interpreted within
the one-electron picture but require a full many-body
approach.2,3,42,43

The most frequently employed spectroscopic methods
for studying the surface electronic structure are based
either on the photon-induced emission of electrons out
of the initial occupied states into outgoing states above
the vacuum level EV in which they are detected (the
case of 1PPE), or on radiative transitions of the injected
probe electrons from the states above EV into unoccu-
pied states below EV (the case of IPE). In OA the system
remains neutral and the probed states are electron po-
larization states, either localized or itinerant. The more
involved techniques of MPPE and sum frequency gener-
ation (SFG) are applied to create coherent sums of path-
ways in which multiple interactions with photon fields
excite electrons from the occupied initial, over the un-
occupied intermediate into the final unoccupied states
below and above EV . Here the information on the am-
plitudes of intermediate states is contained in the final
photoelectron or photon yield, respectively. Since the
yields are detected long after the completion of transient
surface dynamics their integrated spectra must satisfy
the on-the-energy-shell requirements.

The primary excited states of 1PPE (i.e. prior to
screening and relaxation of quasiparticles) are charac-
terized by a single uncompensated charge of the hole
localized in the system and of the electron in the de-
localized outgoing state above EV in which interactions
with the response of the system are neglected in the so-
called sudden approximation.44 The primary and inter-
mediate states of MPPE and SFG are polarization states
comprising the hole evolving from the initial state and
electrons excited and relaxing during the sequence of ex-
citations induced by the pump photon field. Here it is
important to observe that before the formation of screen-
ing charge the photoexcited electron and hole interact
through the bare (unscreened) Coulomb potential which
may bind the pair into a localized excitonic state45–47

(see Fig. 1(a)). The duration of such primary excitonic
states is largely determined by the time scale of screening
which is system specific. To analyse these processes we
note that at any instant of evolution of the probed sys-
tem each excited quasiparticle couples to the electronic
response of the environment. This produces a twofold
effect on their motion: (i) dynamical screening renor-
malizes the spectrum of one-particle energies (dynamical
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FIG. 1: (Color online) (a) Illustration of the role of tran-
sient excitonic states (denoted by horizontal lines enclosed in
dashed box) as intermediate states in 3PPE from SS-band on
Ag(111) surface in the experiment described in Ref. [48]. Op-
tical transitions are induced by two delayed identical phase-
locked laser pulses with frequency tuned to two-photon reso-
nance with relaxed IP- and SS-states, 2h̄ωpulse = EIP −ESS .
Electrons excited in high transient excitonic states, which in
the model description of Sec. III C make a Rydberg-like qua-
sicontinuum below Usp, converge into the emergent first image
potential state as denoted. Dashed rounded box symbolizes
coherent e-h pairs constituting the TE wavepacket. (b) Dia-
grammatic illustration of the amplitude of two-pulse photoex-
citation processes in (a). Dashed and full lines denote the SS-
hole and excited electron propagators, respectively. Dashed
wavy lines denote the dynamically screened e-h e xcitonic
interactions, full wavy lines denote the dynamical e-e and h-
h interactions involving bosonized electronic charge density
fluctuations that give rise to self-energy renormalizations of
excited quasiparticles. Open end boson propagators describ-
ing excitation of real charge density fluctuations are not shown
in the picture. All interactions renormalize the 3PPE ampli-
tude. The time axis is common to both panels.

self-energy effect), and (ii) the bare Coulomb interaction
between the excited electron and hole in OA, MPPE and
SFG at surfaces is strongly reduced during the screen-
ing from a monopole-dominated to a much weaker inter-
action of excited electrons with the dipole composed of
the hole and its image. Such dynamical vertex correc-

tion effect has so far been treated only approximately for
bulk systems.49–52 Screening is a complex nonlinear pro-
cess but a simplification of its description arises at metal
surfaces where it can be adequately treated within the
self-consistent linear response formalism, i.e. described
by the standard density-density response function repre-
sentable by a boson type of propagator.35–38 In this case
the primary transient excitonic interaction and both ef-
fects (i) and (ii) can be schematically illustrated on the
example of single-colour 3PPE from an SS-band state as
shown in Fig. 1(b).

Therefore, besides the basic one-particle picture of sur-
face electronic excitations, a prerequisite for the inter-
pretation of spectroscopic measurements that probe the
system electronic properties on the ultrashort time scale
is the knowledge of concurrent evolution of screening.
This becomes particularly important in the interpreta-
tion of MPPE using ultrashort laser pulses because some
of the intermediate steps of perturbative photoemission
may proceed via the states created in and affected by ul-
trafast screening processes. Here the detection and iden-
tification of the various manifestations of screening as a
paradigm of many-body interactions enables deep insight
into electron dynamics of the studied systems.

In Refs. [12,13,47] we have set foundations for a theo-
retical description of the temporal and spatial evolution
of the induced screening charge and ensuing potentials,
respectively, and applied it to the Cu(111) surface. The
latter is considered as a prototype system for demonstrat-
ing the existence of well defined SS- and IP-band states
on metals, both experimentally and theoretically. In the
present paper we extend the earlier investigations of the
screening properties of Cu(111) surface and complement
them with the analogous ones for Ag(111). The rationale
for this comparative study is that despite the similar en-
ergetics of SS- and IP-states on Ag(111) and Cu(111)
these two paradigmatic surfaces exhibit very dissimilar
electron polarization dynamics which can be utilized to
demonstrate the different regimes of ultrafast screening
at surfaces. In Sec. II we modify and improve the earlier
developed method for calculation of the electronic struc-
ture and response properties of thick metallic slabs and
use it to derive the ground state electronic structure and
dynamical electronic response of Ag(111) and Cu(111)
surfaces. In this approach the SS-bands are incorporated
in the initial electronic structure pre-existent with re-
spect to the action of external probe fields that polarize
and excite the system. In Sec. III A we apply the devel-
oped response formalism to study the screening dynamics
of SS-holes created in the primary excitation steps com-
mon to 1PPE, MPPE, OA and SFG. In Sec. III B we ex-
tend our study to the screening of Coulomb interactions
between the primary excited electrons and holes and de-
rive their temporal and spatial limits in the region out-
side the surface. Analogously to the screening of single
quasiparticles elaborated in Sec. III A, we find significant
difference between the duration of saturation of screen-
ing of interparticle interactions on Ag(111) and Cu(111)
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surfaces. Noninstantaneous saturation of screening al-
lows the formation of transient excitonic states in which
the primary excited electron-hole (e-h) pairs are bound
by the yet unscreened interparticle interactions. In Sec.
III C we calculate the energy spectra, wavefunctions and
lateral extensions of transient excitons emerging in pri-
mary excitations from occupied SS-bands on Ag(111) and
Cu(111). In the course of screening the primary coher-
ent excitonic states evolve into asymptotic uncorrelated
IP-SS electron-hole states.53 The pace of this process is
dictated by the dynamics of formation of electron image
potential and corresponding IP-states on pertinent sur-
faces, which we investigate in Sec. III D. The conclud-
ing section puts the discussed processes within a unified
framework that has enabled consistent interpretation of
the recent time resolved 3PPE spectra from surface bands
on Ag(111)48 and Cu(111)15. Perspectives of the investi-
gations of the described phenomena in other condensed
matter systems are briefly outlined.

II. SELF-CONSISTENT LINEAR ELECTRONIC
RESPONSE TO PERTURBATIONS AT

SURFACES

Linear electronic response formalism which we adopt
to study the dynamics of screening at (111) surfaces of
Cu and Ag has been elaborated in Sec. 2 of Ref. [38]
and here we reiterate only its most salient features. It
is based on the calculation of self-consistent retarded lin-
ear response function χ(r, r′, t − t′) in the slab model of
the pertinent metal. The slab consisting of several tens
of atomic layers is assumed translationally invariant and
isotropic in the (x, y) = ρ planes parallel to the slab
surface. The z-axis is perpendicular to the slab and for
convenient positioning of the image potential we take the
origin z = 0 to coincide with the outermost right-hand-
side (RHS) crystal plane (cf. Fig. 1 in Ref. [38]). The
effective one-electron potential within the slab is adopted
from Ref. [27]. Exploiting the symmetry of the prob-
lem we can introduce the two-dimensional (2D) spatial
and time Fourier transform (FT) of the response func-
tion χ(ρ − ρ′, z, z′, t) for the slab (hereafter h̄ = 1 and
electron charge e = −1):

χ(Q, z, z′, ω) =

∫
d2ρ̄e−iQρ̄

∫
dteiωtχ(ρ̄, z, z′, t), (1)

where ρ̄ = (ρ − ρ′) and Q is a 2D wavevector paral-
lel to the surface. The dimension of the thus defined
χ(Q, z, z′, ω) is (length)−4 × (energy)−1.

The various levels of approximate treatment of screen-
ing were discussed in Ref. [54]. Our earlier analyses
of the linear electronic response of metal surfaces have
shown that the properties of χ(Q, z, z′, ω) describing the
interactions of probe particles with screening electrons
are accurately described in the self-consistent random-
phase-approximation (SC RPA) which neglects exchange
effects in the vertices of Coulomb interactions.55 On the

FIG. 2: (Color online) Calculated surface loss function (7) of
Ag(111) surface (a) without and (b) with inclusion of the d-
polarizable medium. Splitting of the surface plasmon peak66

and the appearance of hot spots at small values of Q are due
to the finite thickness slab effect and discretization of the Q-
space, respectively.

FIG. 3: (Color online) Same as in Fig. 2 but for the Cu(111)
surface. In (a) the surface plasmon corresponds to a well
defined peak whereas in (b) this structure is destroyed by the
d-renormalization.

level of SC RPA the response function (1) is obtained by
solving the integral equation

χ(Q, z, z′, ω) = χ0(Q, z, z′, ω) +

∫
dz1

∫
dz2χ

0(Q, z, z1, ω)

× V (Q, z1, z2)χ(Q, z2, z
′, ω). (2)

Here χ0(Q, z, z′, ω) is the retarded response function of
noninteracting electron gas in the slab, and

V (Q, z1, z2) = VQe
−Q|z1−z2| =

2π

Q
e−Q|z1−z2| (3)

is the 2D FT of the bare Coulomb potential (for details
see Sec. II of Ref. [38]). In the following we shall find
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surface EF Usp Lsp ESS − EF m∗
SS E

(1)
IP m∗

IP

Ag(111) -4.56 -0.66 -4.96 -0.065 0.39726 -0.77 1

Cu(111) -4.94 -0.69 -5.83 -0.39 0.41226 -0.82 1

TABLE I: Values of the parameters used in the calculations of the response function (2) and energetics of primary exciton on
Ag(111) and Cu(111) surfaces presented in Table II. All energies are in eV and referenced to the vacuum level EV = 0 which

is the natural origin for the image potential state energies EIP . EF is the Fermi level energy and Lsp, Usp, ESS and E
(1)
IP

denote the energy of the lower and upper edge of the surface projected bulk sp-band gap, surface state energy and the first
image potential state energy at the Γ̄-point of the surface Brillouin zone, respectively. m∗

SS and m∗
IP denote effective masses of

the SS-hole and IP-electron in the lateral (x, y) directions, respectively, in the units of free electron mass. In the present slab
model based on the pseudopotentials from Ref. [27] the electron mass in the Usp-band and mIP are equal.

convenient to use the spectral or Lehmann representation
of the response function (2) which we write in the form

χ(Q, z1, z2, ω) =

∫ ∞
0

dω′S̃(Q, z1, z2, ω
′)

×
(

1

ω − ω′ + iδ
− 1

ω + ω′ + iδ

)
, (4)

where δ is a positive infinitesimal. Here the spectrum
of electronic excitations partaking in the response is ob-
tained as

S̃(Q, z1, z2, ω) = −(1/π)Imχ(Q, z1, z2, |ω|)sign(ω), (5)

and fully characterizes the linear response of electron gas
in the slab calculated in the SC RPA. The components of
the spectrum (5) are sharp peaks (poles) signifying coher-
ent bulk, surface and multipole plasmon excitations and
a quasicontinuum of intraband electron-hole pair excita-
tions. We shall investigate their role in screening pro-
cesses separately for the quasiparticles excited to and
propagating in the pre-existent states on Ag(111) and
Cu(111) surfaces (i.e. the eigenstates of the initial Hamil-
tonian describing the system prior to the formation of
screening charge induced by the excited quasiparticles),
and then for the electrons excited into the intermediate
states of MPPE or OA emerging and evolving during the
screening processes (hereafter termed emergent states).
This is in contrast to the majority of earlier studies in
which only the pre-existent states are considered as inter-
mediate states.53,56,57 The parameters used in the present
calculation are listed in Table I.

Current slab model calculations were performed with
31 atomic layers. We first calculate the response function
χ0(Q, z, z′, ω) of noninteracting electrons in the eigen-

states 〈ρ, z|K, n〉 = exp(iKρ)ψn(z)/
√
L2 of the slab

potential27 using the expression

χ0(Q, z, z′, ω) =
2

L2

∑
n,n′

ψn(z)ψn′(z)ψn(z′)ψn′(z′)

×
∑
K

fKn − fK+Qn′

EKn − EK+Qn′ + ω + iδ
. (6)

Here L is the quantization length along the slab, K and n
are the 2D wavevector and the quantum number describ-
ing the motion of slab electrons in the directions parallel
and perpendicular to the surface, respectively, the sum
over K, n and n′ runs over the occupied and unoccupied
states, and fKn is the Fermi occupation factor. In nu-
merical evaluation of Eq. (6) we adopted the approach
proposed by Eguiluz58,59 and extended it to the case of
variable effective masses in Ref. [60]. In order to take
into account the screening effects related to the presence
of fully occupied d-valence energy bands we employ the
spd-model of Liebsch11,61,62 in which the d-polarizable
medium is described by a dielectric function extracted
from the available measured dielectric functions of Ag
and Cu.63,64 The effect of inclusion of the d-band polar-
ization on the surface response function is demonstrated
on the example of surface response function65 g(Q, ω)
whose imaginary part, thermed the loss function, reads

− 1

π
Im g(Q, ω) = − 1

π
Im

[
2π

Q

∫
dz1

∫
dz2e

Q(z1+z2)χ(Q, z1, z2, ω)

]
(7)

and directly measures the coupling of surface electronic
excitation spectrum (5) to external probes (see text af-
ter Eq. (29) in Sec. III B). Contour plots of (7) shown
in Figs. 2 and 3 clearly demonstrate that taking into

account only the sp-like states produces the surface loss
function with the surface plasmon peak located around
the energy h̄ωs = 6.7 eV on Ag(111) surface (Fig. 2(a))
and h̄ωs = 8.7 eV on Cu(111) surface (Fig. 3(a)), where
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ωs denotes the surface plasmon frequency for Q = 0.
However, inclusion of the valence d-electronic structure
into consideration shifts the surface plasmon energy on
Ag(111) downward to 3.7 eV (Fig. 2(b)), in close agree-
ment with experiments.67,68 On the other hand, the d-
electronic medium produces a notably more dramatic ef-
fect on the electronic excitation spectra of Cu(111) sur-
face. In this case, as seen in Fig. 3(b), the surface plas-
mon ceases to exist as a well defined coherent excitation.

III. SCREENING IN SURFACE EXCITATION
PROCESSES

A. Ultrafast screening of quasiparticles in
pre-existent states

In OA, 1PPE and the first stage of MPPE spectroscopy
of solids holes are created in pre-existent states. Hence, in
the studies of interactions of the hole charge density with
primary excited electrons it is convenient to solve first the
problem of hole motion in the pre-existent state basis [so
called Kohn-Luttinger Ansatz69(KLA)]. In the context of
present discussion this means to solve for the motion of a
suddenly created band state hole whose uncompensated
charge is then subjected to interaction with the electronic
response of the environment described by (2). This prob-
lem was solved in Ref. [41] by resorting to cumulant ap-
proach developed earlier36 to calculate the various prop-
agators or single particle amplitudes Gi(t) of electrons
and holes constituting the expressions for more complex
1PPE, MPPE and OA amplitudes.39–41,70,71 These prop-
agators provide relevant information on ultrafast dynam-
ics of quasiparticles at time t after their promotion into
the pre-existent states |i〉 in surface bands at the instant
t0.36–38 In the present slab model |i〉 = |K, n〉 denotes
the initial quasiparticle state in the n-th 2D band with
the momentum K and total energy Ei = EK,n. Taking
t0 = 0 we have in the shorthand notation

Gi(t) = G0
i (t) exp[Ci(t)], (8)

where G0
i (t) = exp(∓iEit)θ(t) is the single particle prop-

agator describing unperturbed motion of the electron
(sign −) and hole (sign +) injected into the formerly
unoccupied (occupied) band state |i〉 with unperturbed
energy Ei. The cumulant Ci(t) is given by

Ci(t) = −
∫ ∞
−∞

ρi(ν)
1− iνt− e−iνt

ν2
dν, (9)

where ρi(ν) is the cumulant joint spectral density of ex-
citations of the quasiparticle and the system response.41

ρi(ν) can to a good approximation be modelled by the

second order term ρ
(2)
i (ν) which leads to the quasiparticle

energy shifts and decay rates consistent with the image
potential and Fermi golden rule (FGR), respectively. For
calculational convenience we shall assume that ρi(ν) is
bounded from above and below, i.e. that all its moments

are finite. A detailed description of the calculation of

ρ
(2)
i (ν) = ρ

(2)
K,n(ν) from the quasiparticle energies EK,n

and the spectral density of the surface response function
(4) relevant to the present problem was presented in Sec.
III of Ref. [38] and Sec. 4 of Ref. [41].

To demonstrate the steady state limit of the quasipar-
ticle amplitude (8) we explore the long time stationary
behaviour of the partial derivative

∂Ci(t)

∂t
= i

∫ ∞
−∞

ρi(ν)
1− cos νt

ν
dν −

∫ ∞
−∞

ρi(ν)
sin νt

ν
dν.

(10)
The first integral on the RHS of (10) has the meaning
of quasiparticle energy shift at instant t and the second
one gives the rate of modulation of the quasiparticle am-
plitude. Invoking the standard representation of the δ-
function, limt→∞ sin νt/ν = πδ(ν), we get in the limit
t � η−1 where η is the minimum excitation energy of
ρi(ν)

∂Ci(t� η−1)

∂t
= −ivi − Γi. (11)

Here

vi = −
∫ ∞
−∞

ρi(ν)

ν
dν, (12)

is the relaxation shift of the level energy Ei, and

Γi = πρi(0) (13)

is the decay rate for the state |i〉. Hence, in the long time
steady state limit the quasiparticle amplitude (8) takes
the Markovian form

Gi(t� η−1) ∝ e∓i(Ei±vi)te−Γit. (14)

Two complementary quantities that conveniently illus-
trate temporal propagation of electrons (holes) promoted
into unoccupied (occupied) band states are the survival
probability Li(t) of the quasiparticle initial state |i〉, and
the phase φi(t) of its amplitude at the instant t. They are
obtained by taking the absolute square and the imaginary
part of the logarithm of the corresponding quasiparticle
propagator Gi(t) in the real time domain, respectively.41

In the notation |i〉 = |K, n〉 the quasiparticle survival
probability is given by

LK,n(t) = |GK,n(t)|2 , (15)

and the associated phase reads

φK,n(t) = ∓Im ln (iGK,n(t)) = EK,nt± ϕK,n(t). (16)

Hence, according to (10) and (16) the partial derivative

∂ϕK,n(t)

∂t
= −

∫ ∞
−∞

ρK,n(ν)
1− cos νt

ν
dν = vK,n(t),

(17)
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FIG. 4: (Color online) Survival probability L
K,SS(t) for a hole

after its promotion into the surface state band on Ag(111)
and Cu(111) with the initial state wavevector K = 0.01 a.u.
corresponding to initial εSS

K = 3 meV above the respective
band bottom. Also shown for comparison are the interpolated
Markovian decays of the SS-holes (dashed lines) described by
expression (20). Thick (thin) solid lines stand for the results
obtained with (without) inclusion of the d polarizable medium
in the response function evaluation. The values for the decay
rates ΓK obtained from the interpolation of Markovian de-
cay in the absence of d-polarizable continuum are in excelent
agreement with the ones computed in Table 3 of Ref. [55].

describes the relaxation of quasiparticle energy in the
course of time [cf. Eq. (10)].

In the case of a hole created in the occupied band state
|K, n〉 whose energy EK,n lies below EF , the second order
cumulant excitation density is given by

ρholeK,n(ν) =
∑
Q,n′

V 2
Q

∫ ∞
0

dω′S̃n,n′;n′,n(Q, ω′)

× δ(ν − (EK,n − EK+Q,n′ + ω′)). (18)

Here the summation runs over the occupied band states
|K + Q, n′〉, VQ = 2π/Q, and the matrix elements

S̃n,n′;n′,n(Q, ω′) of the imaginary part of the response
function (4) have been defined by Eq. (16) in Sec. II.A.
of Ref. [38]. The thus defined ρholeK,n(ν) is for fixed initial
EK,n bounded from below at νmin = EK,n−EF < 0, and
nonvanishing on the energy shell ν = 0 where it yields
the hole decay rate ΓK,n = πρholeK,n(0).

Temporal evolutions of the survival probability LK,n(t)
[Eq. (15)] and the transient phase derivative ∂ϕK,n(t)/∂t
[Eq. (17)] calculated using (18) and corresponding to a
hole created at the instant t0 = 0 in the SS-band on

FIG. 5: (Color online) Initial phase transients ∂ϕK(t)/∂t, Eq.
(17), for a hole promoted into the SS-band on Ag(111) and
Cu(111) with the initial state wavevector K = 0.01 a.u.

Ag(111) and Cu(111) surfaces are shown in Figs. 4 and
5, respectively. These plots illustrate distinct stages of
the dynamics of a hole promoted in a Q2D SS-band with
initial |K| > 0. The initial convexity of LK,n(t) is deter-
mined by the Zeno behaviour72–74

LK,n(t→ 0) = e−t
2/τ2

Z , (19)

where the inverse of Zeno time τZ is given by the ze-
roth moment of the cumulant spectral density41 τ−2

Z =∫∞
−∞ ρK,n(ν)dν. The initial quasiparticle evolution tak-

ing place within the time-energy uncertainty window
is characterized by the off-the-energy-shell transients
caused by the virtual high energy excitations (collective
and single pair) of the respective substrate. This gives
rise to a sharp drop of LK,n(t) due to the establishment
of the Debye-Waller factor41 and early oscillations with
the ∼femtosecond period. Attenuation of the oscillations
and their dephasing arises from the width of surface ex-
citation spectrum and to a much lesser extent from the
phase space segment of allowed quasiparticle recoil en-
ergies EK+Q,n′ −EK,n.38,39,41 Past the few femtosecond
long interval [i.e. t > 20 fs and t > 5 in the case of
Ag(111) and Cu(111), respectively] the energy conser-
vation sets in and gives rise to phase stabilization and
steady state quasiparticle decay due to the emission of
real low energy e-h excitations in the solid. Here the real
or on-the-energy-shell plasmon excitations are not pos-
sible because EF − EK,n < h̄ωs. In this intermediate
interval the decay of the initial state described by (15)
is Markovian. In accord with (14) it follows exponential
law governed by the FGR decay rate corrected (reduced)
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by the real part of the Debye-Waller exponent41 wK,SS,
viz.

LMar
K,SS(t) = e−2(ΓK,SSt+wK,SS). (20)

This limit is illustrated in Fig. 4 where its onset can be
clearly pinpointed. The already available databases of
calculated quasiparticle lifetimes55,75–78

τK,n =
h̄

2ΓK,n
(21)

(here we restored h̄ to facilitate comparisons with lit-
erature sources) refer to this intermediate steady state
regime of quasiparticle evolution.

Temporal behaviour of the derivatives of quasiparticle
phases illustrated in Fig. 5 exhibits early transients in
the same interval as the corresponding survival probabili-
ties. The phase stabilization or saturation coincides with
and signifies the onset of Markovian decay with lifetime
(21) of the quasiparticle (here of a hole) past which the
standard description of its amplitude in the form (14)
becomes applicable. In the asymptotic limit of very long
times the Markovian decay (20) is succeeded by the so-
called ”quasiparticle collapse” characterized by a much
slower power law decay and the loss of phase identity.41,72

B. Ultrafast screening of excitonic interactions

To proceed with the description of electron propaga-
tion in the intermediate states of OA and MPPE from
surface bands we note that upon photon induced electron
excitation from an occupied band state the creation of a
hole charge switches on an effective interaction potential
acting between the excited electron and the hole. This
potential consists of the bare Coulomb or direct poten-
tial V dire−h, and the time dependent polarization potential

Ṽ inde−h(t) induced by the substrate charge density fluctu-
ations which arise in response to the sudden creation of

the hole charge density. The sum of these two potentials

V exce−h(t) = V dire−h + Ṽ inde−h(t) (22)

gives the total time-dependent two-body screened exci-
tonic interaction that strongly affects relative motion of
the excited quasiparticles on the ultrashort time scale.
Since V dire−h is an instantaneous Coulomb potential which
is readily obtainable (cf. Sec. III C), the time depen-
dence of (22) arises solely from the induced potential

Ṽ inde−h(t) whose properties will be investigated next. We
again exploit the symmetry of the problem and work in
the mixed (Q, z) representation with the electron and
hole z-coordinates denoted by ze and zh, respectively (cf.

Fig. 4 in Ref. [47]). The induced e-h potential Ṽ inde−h(t)
is obtained from the induced electronic charge density
qind(Q, z2, t) which in the linear response theory is ob-
tained from

qind(Q, z2, t) =

∫
dz1

∫
dt1χ(Q, z2, z1, t− t1)

× V (Q, z1, zh, t1), (23)

where V (Q, z1, zh, t1) is the bare Coulomb potential at
the point z1 that is caused by the hole located at zh, and
the limits of integration over t1 appropariate to the tran-
sient response will now be specified. Within the KLA,
in which the hole motion is solved first, causality im-
poses the use of retarded electronic response function
χ(Q, z1, z2, t−t1) in the evaluation of the induced charge
(23) and the ensuing potential. Obeying the temporal
boundary conditions for the bare e-h Coulomb interac-
tion switched on with the creation of the pair at t1 = 0,
and making use of the FT of spectral representation (4)
to the time domain, the calculation of the induced po-
tential reduces to finding the convolution of the switched
on bare e-h potential with the response function χ in the
interaction interval 0 ≤ t1 ≤ t.79 This gives the reactive
(i.e. real or nondissipative) retarded potential acting on
the excited electron in the form

Ṽ inde−h(Q, ze, zh, t) = Θ(t)V 2
Q

∫
dz2

∫
dz1e

−Q|ze−z2|e−Q|z1−zh|
∫ ∞

0

dω′
2

ω′
S̃(Q, z1, z2, ω

′)(1− cosω′t)

= Θ(t)V 2
Q

∫
dz2

∫
dz1e

−Q|ze−z2|e−Q|z1−zh|
∫ ∞

0

dω′ÑQ(z1, z2, ω
′)(1− cosω′t), (24)

where for the sake of compactness of ensuing notation we
have introduced the spectral density

ÑQ(z1, z2, ω
′) = 2S̃(Q, z1, z2, ω

′)/ω′. (25)

Eliminating the absolute values in the exponentials by
introducing the appropriate lower and upper integration
boundaries of z1 and z2 we obtain
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Ṽ inde−h(Q, ze, zh, t) = Θ(t)V 2
Q

[
eQ(ze+zh)

∫ ∞
ze

dz2

∫ ∞
zh

dz1e
−Q(z2+z1) + e−Q(ze−zh)

∫ ze

−∞
dz2

∫ ∞
zh

dz1e
Q(z2−z1)

+ eQ(ze−zh)

∫ ∞
ze

dz2

∫ zh

−∞
dz1e

−Q(z2−z1) + e−Q(ze+zh)

∫ ze

−∞
dz2

∫ zh

−∞
dz1e

Q(z2+z1)

]
×
∫ ∞

0

dω′ÑQ(z1, z2, ω
′)(1− cosω′t). (26)

Here it should be noted that in the present slab model
the effective integration boundaries of z1 and z2 extend
only few atomic radii outside the slab surfaces beyond
which the electron density can be neglected relative to
the bulk value.

Several important general features of the dynamics of
screening of the suddenly turned on e-h interaction can be
readily deduced from expression (26). First, the induced
potential (26) starts from zero at t = 0 and for t → ∞
saturates at the asymptotic value determined by

Ṽ inde−h(Q, ze, zh,∞) = V 2
Q

∫
dz2e

−Q|ze−z2|
∫
dz1e

−Q|zh−z1|
∫ ∞

0

dω′ÑQ(z1, z2, ω
′). (27)

Second, the Fourier inversion of this expression into the
ρ-space yields the repulsive electron interaction with the
stationary electronic polarization cloud induced by the
hole. Third, any prominent peak of non-negligible weight
in the spectral density ÑQ(z1, z2, ω

′), and in particular of
collective excitations like the various forms of plasmons,
gives rise to attenuated oscillations of (26) around the
saturation value attained for t → ∞, irrespective of the
detailed structure of ÑQ(z1, z2, ω

′).

Next we explore the special case of electronic polariza-
tion induced interaction Ṽ inde−h(Q, ze, zh, t) in which ze and
zh lie in the exterior of the metal, i.e. outside the RHS
slab surface where the unperturbed electronic charge den-
sity is negligible. In this geometry only the last term in
the square bracket on the RHS of (26) survives due to the
effective integration boundaries which straddle the slab.
This can be written in a compact form

Ṽ inde−h(Q, ze > 0, zh > 0, t) = V 2
Qe
−Q(ze+zh)

∫
slab

dz2e
Qz2

∫
slab

dz1e
Qz1

∫ ∞
0

dω′ÑQ(z1, z2, ω
′)(1− cosω′t), (28)

which, as shown in the following, will yield the semi-
classical analog of the image potential. Noting that
VQ = 2π/Q it now turns out convenient to define in the
external space ze > 0 and zh > 0 the surface response
function5 in the form

RQ(ω) =
2π

Q

∫
slab

dz2e
Qz2

∫
slab

dz1e
Qz1χ(Q, z1, z2, ω

′),

(29)
which coincides with the response function65 g(Q, ω) in
(7) and has the Lehmann representation analogous to (4)

RQ(ω) =

∫ ∞
0

dω′SQ(ω′)

(
1

ω − ω′ + iδ
− 1

ω + ω′ + iδ

)
.

(30)

Here SQ(ω′) is obtained by using (4) and (25)

SQ(ω′) =
2π

Q

∫
slab

dz1e
Qz1

∫
slab

dz2e
Qz2 S̃(Q, z1, z2, ω

′)

=
ω′

2

2π

Q

∫
slab

dz2e
Qz2

∫
slab

dz1e
Qz1ÑQ(z1, z2, ω

′)

=
ω′

2
NQ(ω′) (31)

where in analogy with (25) and for later convenience we
have introduced the spectral density of surface projected
electronic excitations

NQ(ω′) =
2π

Q

∫
slab

dz2e
Qz2

∫
slab

dz1e
Qz1ÑQ(z1, z2, ω

′).

(32)
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Now, combining (28) and (32) we finally obtain for the
electron and hole located outside the slab

Ṽ inde−h(Q, ze, zh, t) = VQe
−Q(ze+zh)

×
∫ ∞

0

dω′NQ(ω′)(1− cosω′t).(33)

Using this expression we can define the transient factor

T (t) = lim
Q→0

∫ ∞
0

dω′NQ(ω′)(1−cosω′t)/

∫ ∞
0

dω′NQ(ω′),

(34)
which describes the dynamics of saturation of ultra-
fast screening process by way of the formation of the
dominant, long wavelength component of the station-
ary screening charge and the induced potential arising
thereof. Its temporal variation calculated using the elec-
tronic excitation spectra (31) for Cu and Ag surfaces
derived in Sec. II is illustrated in Fig. 6. Note here
a much faster saturation of the transient factor T (t),
and hence of the corresponding screening charge and in-
duced potential, on the Cu(111) surface relative to the
Ag(111) surface. This is due to the different structures
of NQ(ω′) = 2SQ(ω′)/ω′ which in the case of Cu is dom-
inated by a broad spectral continuum instead of a sharp
peak at the reduced surface plasmon frequency (cf. Fig.
3(b)). It should also be noted that the saturation of
transient factors obtained in the present work is some-
what slower than of those presented in Fig. 5 of Ref. [47]
and calculated using the semiempirical NQ(ω′). This is
so because the semiempirical ones include also the contri-
butions from higher energy interband transitions which
cause additional dephasing and hence faster attenuation
of coherent oscillations of T (t).

The zero and long time limits of the transient factors
shown in Fig. 6 are equal (i.e. 0 and 1, respectively) be-
cause they reflect the causality and saturation of screen-
ing of external charges outside metal surfaces, respec-
tively. The surface excitation spectra (31) and (32) which
obey the perfect screening sum rule5

lim
Q→0

∫ ∞
0

2

ω′
SQ(ω′)dω′ = lim

Q→0

∫ ∞
0

NQ(ω′)dω′ = 1 (35)

automatically yield the unitarity of the long time limit of
the numerator in (34). Since the property (35) has been
demonstrated numerically for a number of real metal sur-
faces by using the semi-empirical NQ(ω′) reconstructed
from optical and transport data (see Sec. III and Table

I in Ref. [82]), as well as in the present slab calcula-
tions, the unitarity of transient factors in Fig. 6 should
represent a general feature.

Due to the isotropy of the slab pseudopotential in
the planes parallel to the surface the dependence of the
electronic response and induced potential on the mo-
mentum Q is only through its magnitude Q = |Q|,
i.e. we have ÑQ(z1, z2, ω

′) = ÑQ(z1, z2, ω
′) and hence

Ṽ inde−h(Q, ze, zh, t) = Ṽ inde−h(Q, ze, zh, t). This property will
be also exploited in all the ensuing calculations. Then,

FIG. 6: (Color online) Top panel: transient factor T (t) de-
fined in Eq. (34) and determining the evolution of polariza-
tion induced component of e-h potential acting on the electron
upon its promotion in front of Ag(111) surface. The transient
oscillatory behaviour is caused by excitation of virtual surface
plasmon which is a well defined excitation in this system (cf.
Fig. 2 above and Fig. 1 of Ref. [80]). Bottom panel: same
for Cu(111) surface. Here the oscillation dephases and satu-
rates much faster because it is governed by a wide spectrum
of incoherent electronic excitations (cf. Fig. 3 above and Fig.
1 of Ref. [81]).

the expression for induced e-h potential in the direct
space is obtained by taking the 2D FT of (24) which
yields

Ṽ inde−h(ρ̄, ze, zh, t) =

∫ ∞
0

dQ
Q

2π

∫ 2π

0

dϕ

2π
eiQρ̄ cosϕṼ inde−h(Q, ze, zh, t) =

∫ ∞
0

dQ
Q

2π
J0(Qρ̄)Ṽ inde−h(Q, ze, zh, t). (36)

Here ρ̄ = ρe−ρh = ρ̄e−h, ρ̄ = |ρ̄| and the appearance of
Bessel function J0(Qρ̄) in the integrand on the RHS of

(36) follows from the isotropy of Ṽ inde−h(Q, ze, zh, t) which
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allows straightforward integration over the polar angle ϕ.

FIG. 7: 3D plot of the polarization induced e-h interaction
potential Ṽ ind

e−h(ρ̄ = 0, ze, zh, t) for Ag(111) surface calculated
from Eq. (36) of the main text using the sp-model, i.e. with-
out the d-renormalization of surface response described at the
end of Sec. II. The potential (in atomic units) is shown as a
function of ze and t, for the coordinate zh (yellow dot) fixed
at (a) 7.5, (b) − 1

2
, and (c) -10 interlayer spacings relative to

the first crystal plane of the slab located at z = 0. Short
red vertical lines denote the positions of (111) crystal planes
across half of the slab width.

Fulfilment of the sum rule (35) gives rise to universal
forms of the fully relaxed induced potentials acting be-
tween the probe charges located outside the surface. This
is readily demonstrated by inspecting the long time limit
of expression (33) obtained for ze > 0, zh > 0. The satu-
rated polarization or image induced interaction between

FIG. 8: Same as in Fig. 7 but for the Cu(111) surface. Note
that in both Figs. 7 and 8 the frequency of oscillation of the
potential Ṽ ind

e−h(ρ̄ = 0, ze, zh, t) is lower outside the slab.

the electron and hole charges takes in this case a simple
form

Ṽ inde−h(ρ̄, ze, zh,∞) =

∫ ∞
0

dQ
Q

2π
VQJ0(Qρ̄)e−Q(ze+zh)

×
∫ ∞

0

dω′NQ(ω′). (37)

To estimate the asymptotic form of (37) for the electron
and hole point charges located at (ρe, ze) and (ρh, zh) far
outside the surface one can use either the perfect screen-
ing sum rule (35) verified for real metals,82 or in the
case of free electron metal surfaces the model expression5
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FIG. 9: (Color online) 3D plot of Ṽ ind
e−h(ρ̄ = 0, ze, zh, t) for

Ag(111) surface calculated from Eq. (36) of the main text
using the spd-model, i.e. by including the d-renormalization
of the surface response described at the end of Sec. II. All
other symbols have the same meaning as in Fig. 7.

limQ→0 = NQ(ω′) = δ(ω′ − ωs) + O(Q). Thereby one
finds the following leading contribution to the saturated
induced polarization potential

Ṽ inde−h(ρ̄e−h, ze > 0, zh > 0, t→∞) =
e2√

ρ̄2
e−h + (ze + zh)2

.

(38)
Expression (38) is the classical result for the polar-

ization induced interaction between two point charges of
opposite sign placed in front of an ideal conducting sur-
face whose direct Coulomb interaction is given by (note

FIG. 10: Same as in Fig. 9 but for the Cu(111) surface.

change of signs)

V dire−h(ρ̄e−h, ze > 0, zh > 0) = − e2√
ρ̄2
e−h + (ze − zh)2

.

(39)
Due to the permutation symmetry of ze and zh in (37),
and consequently in (38), the latter expression can be
visualized as the electron interaction with the hole image,
or vice versa, the hole interaction with the image of the
electron, but should be counted only once in pairwise
summations of polarization interactions. The expansion
of the sum of (38) and (39) in 1/ze gives the classical limit
of residual e-h interaction after completion of screening.
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In the general case of a unit positive point charge lo-
cated at arbitrary position relative to the surface, all four
terms in the square bracket on the RHS of (26) must be
taken into account in the determination of induced po-
tential. As demonstrated in Appendix A this enables a
generalization of expressions (29) and (37).

To assist the interpretation of temporal features of
Ṽ inde−h(ρ̄ = 0, ze, zh, t), and thereby of the saturation of
screening as zh moves from the exterior to the inte-
rior of the slab we have first computed the correspond-
ing potentials in the bare sp-model that leads to the d-
unrenormalized surface plasmon dominated response and
loss functions shown in Figs. 2(a) and 3(a) for Ag(111)
and Cu(111) surfaces, respectively. The thus obtained

potentials Ṽ inde−h(ρ̄ = 0, ze, zh, t) as a function of ze and t,
with the coordinate zh of the perturbation source placed
at three representative points to illustrate the general
case (26) are shown in Figs. 7 and 8. Spacewise this
means (a) sufficiently outside the slab where the elec-
tron density is already negligible relative to the bulk,
(b) in the surface region where the electron density un-
dergoes strong variation, and (c) sufficiently inside the
slab where the bulk properties dominate. These figures
clearly demonstrate that in the simple sp-model for the
electronic response of the slabs the oscillatory behaviour
and attenuation of the induced polarization potential
Ṽ inde−h(ρ̄ = 0, ze, zh, t) for zh outside the slab surface [pan-
els (a)] are determined by the emission of virtual surface
plasmons and incoherent single particle excitations, re-
spectively. By contrast, for zh deep inside the slab [panels
(c)] the oscillatory behaviour is driven by the higher bulk
plasmon frequency. For zh in the surface region [panels
(b)] the situation is more complex in that the screening
of source perturbation is now affected by the coupling
to both surface and bulk plasmons and to single parti-
cle excitations. The splitting of surface plasmon modes
due to the finite slab thickness introduces additional in-
terferences and faster dephasing in the initial oscillatory
behaviour of dynamical screening of the source.

The above described clear-cut temporal behaviour of
the induced potential Ṽ inde−h(ρ̄ = 0, ze, zh, t) obtained
from the sp-model is lost upon the d-renormalization in
the spd-model. On Cu(111) surface d-renormalization
eliminates the discernable identity of surface plasmon
whereas on Ag(111) surface it brings the surface and
bulk plasmon frequencies so close to each other that the
resolution of their respective effects becomes very dif-
ficult. This is shown in Figs. 9 and 10 which show
the results of spd-model calculation for the variation of
Ṽ inde−h(ρ̄ = 0, ze, zh, t) as a function of ze and t for Ag(111)
and Cu(111) surfaces, respectively, for the same three
values of coordinates of the perturbation source zh as
in Figs. 7 and 8. All four figures 7, 8, 9 and 10 demon-
strate that the induced charge density calculated in either
model is in the cases (a) pinned to the surface region and
not to the perturbation source, in the cases (b) pinned
to the surface where also the source is located, and in
the cases (c) pinned to the source as is typical of bulk

screening. Thereby our results emphasize the difference
in the spatial distribution of the induced screening charge
relative to the perturbation source in the bulk and at the
surface of a metal. It should also be observed that the
temporal dependencies of induced potentials shown in
panels (a) and (b) of Figs. 9 and 10 bear general resem-
blance to the corresponding transient factors in Fig. 6
in that the oscillation patterns of the respective quan-
tities are very similar. However, the induced potentials
shown in Figs. 9(b) and 10(b) saturate faster than the
analogous transient factors. This is so because in the
calculation of (34) for zh > 0 and ze > 0 only a narrow
range of Q ∼ 0 components gives the dominant contri-
bution which saturates due to dephasing caused by the
width of spectral constituents of NQ→0(ω′). By contrast,
for zh at the surface a larger number of Q > 0 compo-
nents of the electronic response contribute to dephasing
of the integrand in (36) which, in turn, gives rise to faster

saturation of Ṽ inde−h(ρ̄ = 0, ze, zh > 0, t). This makes the
readily obtainable transient factor useful in the estimates
of the evolution of screening that is induced by the exte-
rior perturbation sources (Figs. 9a and 10a).

C. Transient excitons as primary emergent states

An important implication of the results of subsection
III B is that at a metal surface the initial dynamics of a
coherently excited e-h pair is strongly affected by the to-
tal excitonic potential V exce−h(t) defined in (22). At the in-

stant of primary excitation t = 0+ this potential is equal
to the bare Coulomb potential V dire−h whose screening by

the build up of V inde−h(t) can be estimated from the corre-
sponding transient factor (34). Hence, a prerequisite for
descriptions of the early propagation of optically excited
e-h pairs at surfaces is the assessment of the dynamics
of quasiparticles subjected to the excitonic interaction
V dire−h.

The treatment of excitonic interactions in optical exci-
tations of solids is a long standing problem83 which owing
to its many-body complexity42,50 has been studied within
many complementary theoretical approaches.45,46,84–112

At metal surfaces the experimentally detectable manifes-
tations of ultrafast dynamics of excitonic interactions be-
tween the photoexcited electrons and holes are expected
on the time scale of saturation of the screening charge
whose duration in a particular system can be estimated
from the corresponding transient factor (34).

The specificity of the present excitonic problem is the
process of optically induced electronic excitations from
the occupied states in SS-bands on Cu(111) and Ag(111)
surfaces47 as this requires a model description that suf-
ficiently accurately reproduces image charge aspects of
the initial state electronic structure. Hence, to assess
the energetics of electronic excitations from the SS-bands
we shall adopt the same self-consistent pseudopotential
model27 used in Sec. II in the slab calculations of the
electronic response of these surfaces. The pertinent pseu-
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dopotential is constructed so as to reproduce the SS-band
within the surface projected sp-band gap, which is pre-
requisite for the calculation of energy spectrum of the op-
tically excited electrons and holes bound in the primary
excitonic states by the initial unscreened electron-SS hole
Coulomb potential.47,69

z r

FIG. 11: (Color online) Side and top views of the three dimen-
sional contour plots illustrating the anisotropy of the modulus
of unscreened Coulomb potential exerted by the SS-hole on
excited electron in the case of Ag(111) and Cu(111) surfaces
(left and right panels, respectively). Positive direction of the
z-axis is towards the exterior of the metal and the coordi-
nate |ρ̄| is perpendicular to it and to the common vertical
axis. Light shaded sheets denote the first surface plane of the
crystal occupying the region of the viewer.

FIG. 12: (Color online) Energetics of primary excitonic and
fully relaxed IP-states on Cu(111) and Ag(111) surfaces. Dark
green shaded regions in the TE columns symbolize the quasi-
continuum of Rydberg-like excitonic states accumulating to-
wards the upper edge Usp of the surface projected bulk sp-
band gap (cf. Fig. 1(a)). Light shaded regions denote exten-
sion of the gap on the respective surface.

Relative motion of electrons and holes created in op-
tically induced interband transitions is generally gov-
erned by the many-particle excitonic interaction whose

irreducible part consists of the dynamically screened e-
h Coulomb attraction and its repulsive unscreened ex-
change counterpart. Coulomb attraction is the dominant
component of primary excitonic interactions.88,90,91 To
remain consistent with application of the slab pseudopo-
tential model and the linear response formalism of Sec. II
to the studies of excitonic effects induced by holes in SS-
bands we neglect in the following the exchange term from
the irreducible electron-hole interaction. This is consis-
tent with the KLA for the hole motion used below and
leads to the effective mass approximation (EMA) form
of the Schrödinger equation for excitons.85,86,88,93 In this
formulation the effects of crystal potential on the mo-
tion of excited electrons and holes with energies close to
the local band extrema are modeled through the effective
masses in the kinetic energy terms, and the dynamical
electron-SS hole interaction is given by the sum of the
bare Coulomb attraction and the induced potential (36).

At the instant t = 0 of electron-hole pair excita-
tion the induced potential is zero and hence the en-
ergy spectrum of primary states into which the electrons
can be excited consists of the excitonic levels derived
from the two-particle Schrödinger equation containing
the unscreened effective Coulomb potential of the pho-
toexcited hole charge density.45,47 In the present problem
of electron excitation from the SS-bands on Ag(111) and
Cu(111) surfaces this leads to the following form of the
total exciton wavefunction consistent with the KLA and
EMA47,69,85,86

ΨEMA =
∑
i,j

Fi,jψBi
ψSSj

. (40)

Here i runs over the quantum numbers at unoccupied
band minima Bi which can support excitons, the wave-
functions of pre-existent electron states at Bi are denoted
by ψBi

and of the j-th SS-hole state by ψSSj
. The 2D

spatial Fourier transforms of Fi,j describe relative e-h
motion in lateral coordinates ρ̄ = ρe − ρh under the ac-

tion of the effective potential V effe−h(ρ̄, ze) exerted by the

SS-hole.47 In this case the relevant energy zero for ex-
citonic bound state spectrum is the energy εBi of the
electron state at Bi. At the inner side of Cu(111) and
Ag(111) surfaces this occurs at the bottom Usp of the
unoccupied part the sp-band above the surface projected
band gap (see Table I), whereas at the outer side of the
surface it occurs at the vacuum level energy EV . Since
in the present slab model the localization of SS-hole is
largely within the inner part of the surface pseudopo-
tential (see Fig. 1 in Ref. [38] and Fig. 11 above) the
strongest hole interaction is expected with the electrons
in the states deriving from the gap edge Usp and leads to
the exciton energy spectrum with εB = Usp.

The magnitudes of discrete excitonic bound state en-
ergies below εB are reduced relative to the hydrogenic
ones for the same values of the effective e-h mass owing
to the finite extension of SS-hole charge density and its
anisotropy in the direction perpendicular to the surface
(see Fig. 11). The higher lying bound states constitute
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N(symmetry) Ag(111) Cu(111)

1(σ) ε1 = −2.6769 eV, ρ̄1 = 5.8787 a.u. ε1 = −3.1990 eV, ρ̄1 = 4.8436 a.u.

2(σ) ε2 = −1.7301 eV, ρ̄2 = 7.2745 a.u. ε2 = −1.9529 eV, ρ̄2 = 6.2513 a.u.

3(σ) ε3 = −1.1777 eV, ρ̄3 = 9.9740 a.u. ε3 = −1.2932 eV, ρ̄3 = 9.2151 a.u.

4(π) ε4 = −0.9886 eV, ρ̄4 = 16.1285 a.u. ε4 = −1.1260 eV, ρ̄4 = 13.9093 a.u.

5(σ) ε5 = −0.8777 eV, ρ̄5 = 13.0874 a.u. ε5 = −0.9641 eV, ρ̄5 = 12.1562 a.u.

6(σ) ε6 = −0.6759 eV, ρ̄6 = 24.4446 a.u. ε6 = −0.7753 eV, ρ̄6 = 21.8582 a.u.

7(π) ε7 = −0.6608 eV, ρ̄7 = 20.4261 a.u. ε7 = −0.7263 eV, ρ̄7 = 17.5144 a.u.

TABLE II: First few primary or unscreened excitonic bound state energies εN and effective radii ρ̄N at Ag(111) and Cu(111)
surfaces calculated using the KLA and effective mass approximation in the calculations of the SS-hole wavefunction and energy.
Exciton energies are measured from the local minimum εB of the sp-band above the surface projected band gap. The π-
symmetry states are doubly degenerate. For N → ∞ the corresponding excitonic state energies εN make a Rydberg-like or
Kepler-like quasicontinuum below εB .

a Rydberg- or Kepler-like quasicontinuum of states due
to the dominance of monopole term in the primary un-
screened e-h Coulomb potential. Subsequent evolution of
the induced e-h potential (36) leads to complete screen-
ing of the monopole term in the bare e-h Coulomb po-
tential so as that in the long time limit only a dipolar
contribution perpendicular to the surface may survive in
the total fully screened e-h interaction. The strength of
dipolar interaction is determined by the position of the
centroid of hole image charge relative to that of the hole
charge and is small in the case of SS-holes on Ag(111) and
Cu(111) surfaces. If such residual dipolar component of
the total e-h potential acted alone, it would produce a
much narrower and less dense spectrum than that of pri-
mary excitonic levels. In reality, however, this spectrum
is overrun by the spectrum of emergent electron image
potential Ṽ inde−e(ze, t) which, when fully developed, is dom-
inantly monopolar and hence only weakly perturbed by
the residual e-h potential (see Sec. III D).

The present computations of the energetics of primary
excitonic states on Ag(111) and Cu(111) surfaces proceed
by invoking the KLA to solve first the hole dynamics in
pre-existent SS-band states as described in Sec. III A.
In the next step EMA is employed to describe excited
electron dynamics in the states above Usp (cf. Sec. 2.3.
in Ref. [47]). This leads to the following Schrödinger
equation for the relative e-h motion in the component of
excitonic wavefunction (40) associated with the sp-band
gap[
−
h̄2∇2

ρ̄

2M
− h̄2

2me

∂2

∂z2
e

+ V dire−h(ρ̄, ze)

]
F (ρ̄, ze) = εF (ρ̄, ze).

(41)
This equation comprises the effective e-h mass M =
m∗em

∗
SS/(m

∗
e + m∗SS) and the effective e-h Coulomb po-

tential induced by the positive SS-hole charge density.
The values of electron effective masses m∗e and m∗SS in
lateral directions are taken the same as in the calcula-
tion of response function (2), see Table I. For Cu(111)
surface this gives MCu = 0.33, and for Ag(111) sur-
face MAg = 0.28. The effective direct electron-SS hole

Coulomb potential is obtained from

V dire−h(ρ̄, ze) = −e2

∫
dzh

|ψSS(zh)|2√
ρ̄2 + (ze − zh)2

, (42)

where ψSS(zh) is the SS-hole wavefunction defined in Sec.
II. Contour plots of the potentials (42) corresponding to
Ag(111) and Cu(111) surfaces are shown in Fig. 11. Due
to the rotational and reflection symmetry of the potential
(42) relative to the coordinate axis and the plane normal
to the surface the eigenfunctions FN (ρ̄, ze) of (41) exhibit
σ, π, · · · etc. type of symmetry and the corresponding
degeneracy. The eigenenergies and eigenfunctions were
computed using the grid Hamiltonian method113 com-
bined with the implicitly restarted Lanczos diagonaliza-
tion as implemented in the ARPACK code.114,115 A di-
rect product grid with dimension 75x75x95 in x, y and
z directions, and in the range between -39.2 Å and 39.2
Å was used. The thus computed values of several low-
est bound state energies εN measured relative to perti-
nent εB are listed in Table II and depicted in Fig. 12.
These bound state energies are in good semiquantitative
agreement with the results obtained for unscreened exci-
tons in bulk Cu with the hole charge density of similar
extension.45

The total exciton energy in the present effective mass-
two band model is expressed as

EP,N = εB +
P2

2(me +mSS)
+ εN − ESS , (43)

where P = Pe + Ph is the total 2D exciton momentum
parallel to the surface.116 In optical excitations P equals
the absorbed photon momentum and hence for all prac-
tical purposes can be set equal to zero. In this case the
excitonic energy levels cannot themselves introduce dis-
persion in the spectra of multiphoton induced excitations
proceeding via excitonic intermediate states.48

Making use of the solutions of Eq. (41) we can define
a measure of the lateral extension or effective radius of
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the primary surface exciton in the N -th excited state by

ρ̄N =

∫
ρ̄d2ρ̄

∫
dze|FN (ρ̄, ze)|2∫

d2ρ̄
∫
dze|FN (ρ̄, ze)|2

. (44)

The values of few lowest ρ̄N on Cu(111) and Ag(111) are
also listed in Table II. A completely analogous calcula-
tion of εN and ρ̄N can be performed in the case of primary
excitonic states associated with the vacuum level, i.e. for
εB = EV . An alternative but complementary measure of
spatial extension of bulk transient excitons is presented
in Fig. 6 of Ref. [112].

The time interval during which the excitonic energy
levels shown in Table II develop into those correspond-
ing to the fully screened or residual e-h potential can be
assessed from the transient factors (34) of respective sur-
faces. However, as pointed out above and further elab-
orated in the next subsection, a simultaneous process of
the formation of electron image potential proceeds at the
same pace. Hence, within the interval of variation of the
transient factor the excited electron dynamics is jointly
governed by the waning e-h potential (22) and the rising

electron image potential till the takeover by the latter
past the time of final saturation of screening. The emer-
gent quasiparticle spectrum undergoes a transformation
from the primary spectrum of excitonic levels reflecting
initial strongly correlated and coherent e-h states, to sec-
ondary spectra of largely uncorrelated and decohering
IP-electron and SS-hole states.38

D. Temporal evolution of electron image charge
and formation of image potential states

To obtain the potential arising from electron interac-
tion with its own induced polarization charge that for ex-
terior electrons has a classical analog of the image charge
we substitute zh = ze and ρ̄ = 0 in (27) and take into
account the minus sign and the factor 1

2 due to self-
interaction [the latter factor is automatically accounted
for in expressions (10)-(12)]. For arbitrary position of ze
this gives in the real space

Ṽ inde−e(ze, t) = −1

2

∫ ∞
0

dQ
Q

2π
V 2
Q

∫
dz2e

−Q|ze−z2|
∫
dz1e

−Q|ze−z1|
∫ ∞

0

dω′ÑQ(z1, z2, ω
′)(1− cosω′t). (45)

Note the connection between the temporal dependence
of induced self-interaction (45) and of the energy relax-
ation of quasiparticles injected into surface bands that
are given by the first term on the RHS of expression
(10). Spatial variation of the saturated form of the po-
tential (45) across the (111) surface of Cu and Ag slabs
is shown in Figs. 13 and 14, respectively. In the exte-

rior the potentials converge fast to the asymptotic form
of the image potetial discussed in the remainder of this
subsection.

The formation of standard image potential is retrieved
from (45) for ze outside the spillover of the electronic
charge density across the surface plane here placed at
z = 0. Making use of the definition (31) we have

Ṽ ime−e(ze > 0, t) = −1

2

∫ ∞
0

dQ
Q

2π
V 2
Qe
−2Qze

∫ ∞
0

dω′
∫
slab

dz2e
Qz2

∫
slab

dz1e
Qz1ÑQ(z1, z2, ω

′)(1− cosω′t)

= −1

2

∫ ∞
0

dQe−2Qze

∫ ∞
0

dω′NQ(1− cosω′t). (46)

Hence, for electrons excited into the region outside the
surface the pace of formation of the two screening poten-
tials, viz. the image potential (46) and the induced e-h
polarization potential (33) that screens the bare e-h exci-
tonic potential, is governed by the same transient factor
(34). This plausible but nontrivial finding is the central
result of the present work which enables us to consider
the waning of the excitonic potential and the rise of the
image potential as two simultaneous processes in which

the former gives way to the latter on the common time
scale. The transformation of the corresponding spectra
of bound states proceeds in the same interval.

Using (46) we obtain in the limit t→∞ the saturated
image potential

Ṽ ime−e(ze) = −1

2

∫ ∞
0

dQe−2Qze

∫ ∞
0

dω′NQ(ω′)

=
1

2

∫ ∞
0

dQe−2QzeRQ(0). (47)
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FIG. 13: (Color online) Saturated form of the polarization in-
duced potential (45) across the Ag(111) surface calculated in
the sp- (full black line) and spd-model (dashed red line). Out-
side the surface both potentials converge towards the asymp-
totic form of image potential (50) (dotted green line). Thin
vertical dashed lines denote the positions of (111) crystal
planes.

The reason for expressing the RHS of (47) in terms of
RQ(ω = 0) obtainable from (29) is to emphasize the es-
tablished static limit of saturated surface screening. The
advantage of more compact forms (46) and (47) relative
to the generating expression (45) is in that they can also
be calculated using the semi-empirical NQ(ω′) available
for a number of metal surfaces.82 Hence, the quantity

qim(Q,ω′) = NQ(ω′) (48)

represents the spectral and wavevector decomposition of
the image polarization charge induced in the slab by the
external point charge. Thereby NQ(ω′) provides a com-
plete information on the electronic polarization in re-
sponse to the application of external probe charge, inas-
much as does ÑQ(z1, z2, ω

′) in the case of arbitrary posi-
tion of the perturbing point charge relative to the surface.

Likewise in (38), the classical result for the asymptotic
form of electron image potential is obtained by making
use of the sum rule (35) in expression on the RHS of
(47), or in the case of free-electron metals by substituting
limQ→0NQ(ω′) = δ(ω′ − ωs) +O(Q) therein. Restoring
the electron charge e this gives

Ṽ ime−e(ze →∞) = − e2

4ze
. (49)

The leading correction to (49) is obtained by taking into
account the dispersion ωs = ωQ of surface plasmon pole

FIG. 14: Same as in Fig. 13 but for the Cu(111) surface.

(or the maximum) in NQ(ω′). This gives the reference
distance for the image potential with respect to the cen-
troid zim of the static induced surface screening charge11

Ṽ ime−e(ze � zim) = − e2

4(ze − zim)
. (50)

This form of image potential is in accord with the results
of Refs. [6,7,11] as well as with the numerical estimates
of the asymptotic form of (47) shown in Figs. 13 and 14.
Thereby our results for the self-consistent linear response
of sp, d-electrons in thick Ag(111) and Cu(111) slabs do
not point towards the controversy related to the form
of relaxed image potential raised in Ref. [117]. Inclu-
sion of (50) into the exterior asymptotic form of the slab
pseudopotential27 yields the energies of relaxed IP-states
shown in Fig. 12.

Within the linear response theory the total potential
acting on the electron past the instant t = 0 of its excita-
tion from a state in SS-band is composed of the direct in-
stantaneous Coulomb e-h potential and two polarization
induced potentials (36) and (45). The temporal depen-
dence of the sum of these three potentials for exterior ze
and zh (cf. Fig. 6 in Ref. [47]), which takes place on the
time scale of variation of the corresponding transient fac-
tor (34), gives rise to evolution of the emergent electron
states from the primary excitonic to the fully relaxed im-
age potential states with a much narrower spectrum of
the bound states. This global picture also persists in the
case of weak residual dipolar e-h interactions discussed in
the first paragraph of Sec. III C. The limits of the spec-
tra for t = 0 and t exceeding the screening saturation
time ts are shown in Fig. 12.
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The electronic eigenstates in the interval between t = 0
and t = ts span the adiabatic basis with rapidly varying
geometric and dynamic phases118,119 that in applications
should be computed for each instant of time. This is a
formidable task due to which such adiabatic states are
very impractical for concrete calculations. The alterna-
tive Landau-Zener approach120,121 in terms of the asymp-
totic quasi-stationary diabatic electronic states derived
from the time dependent excitonic and image potentials
turns out more convenient. Here the asymptotic eigen-
states correspond to those yielding the spectra of the
form depicted in Fig. 12, and the diabatic crossing of
the potentials takes place within the saturation interval
(0, ts) of the transient factor. This scenario of electronic
propagation from primary excitonic to relaxed image po-
tential states also allows the treatment of electron propa-
gation in emergent states using the formalism elaborated
in Ref. [41] for pre-existent states. This approach was
employed in Sec. S3 of Ref. [ 48] for description of the in-
termediate stages in 3PPE from the SS-band on Ag(111).
For more expanded description see Supplemental Mate-
rial [122].

IV. SUMMARY AND DISCUSSION

In this work we have formulated a theoretical frame-
work for the description of ultrafast electron dynamics
and screening that should prove useful in the interpre-
tations of time and energy resolved spectroscopic stud-
ies of surfaces of metals and degenerate semiconduc-
tors. Concrete application of the formalism was demon-
strated for Ag(111) and Cu(111) surfaces in order to pro-
vide conceptual and quantitative support to the interpre-
tation of recent time resolved multiphoton photoemis-
sion measurements15,48 which indicated the observability
of transient excitons on surfaces with sufficiently long
screening saturation time.48 To this end we have studied
several temporal stages of screening of quasiparticles and
quasiparticle pairs excited in surface bands in the course
of an MPPE experiment. Adopting the surface electronic
response formalism developed in Sec. II we have first
studied in Sec. III A the effects of screening on the ul-
tra fast dynamics of holes created by absorption of pump
photons in the occupied portions of pre-existent surface
state bands on Ag(111) and Cu(111). The results have
revealed that owing to large differences in the dynamics of
electronic response of these two surfaces the hole dynam-
ics in the respective SS-bands should also exhibit notable
differences which, in turn, should affect the primary steps
of ultrafast pump-probe experiments in the two cases. In
the next step we have investigated in Sec. III B the tem-
poral evolution of screening of the Coulomb interaction
acting between an electron and a hole photoexcited in the
surface region by a pump photon. Likewise in the case of
single quasiparticles, we have found that surface screen-
ing of bare e-h Coulomb interaction saturates within only
few (∼ 5) femtoseconds on Cu(111) surface, whereas on

Ag(111) this process takes much longer (∼ 15 − 20 fs).
To facilitate visualization of the screening dynamics at
dielectric surfaces we have introduced the notion of tran-
sient factor which quantitatively estimates the duration
of formation and saturation of the screening charge. Suf-
ficiently long saturation time on Ag(111) surface makes
possible the observation of binding of photoexcited e-h
pairs in transient surface excitons.47,48 Implications of
this result may be extended beyond the studied Ag(111)
surface to other systems exhibiting screening saturation
times of the order of tens or hundreds of femtoseconds
that can occur in low density impurity or photodoped
plasmas in semiconductors.16,123 Following this concept
we have calculated in Sec. III C the energy spectra of
coherent unscreend or primary excitonic states which in
the course of screening evolve into the energy spectrum
of incoherent IP-electron and SS-hole pairs. The latter
aspect was elaborated in Sec. III D where we have com-
plemented our studies with the assessment of dynamics of
formation of electron image charge and the correspond-
ing potential which supports the spectrum of emergent
IP-states on Cu(111) and Ag(111) surfaces. Here we es-
tablish the main result of our work that due to the general
temporal properties of screening at surfaces the waning
of the excitonic potential and the rise of the image po-
tential proceed on the common time scale governed by
the same transient factor.

The scenario in which the spectra of primary exci-
tonic states evolve into the spectra of emergent IP-states
on the time scale of the substrate specific transient fac-
tor underlies the interpretation of interferometric MPPE
measurements that have revealed the existence of tran-
sient excitons on metal surfaces (cf. Figs. 2, 4 and S2
in Ref. [48]). From the calculated evolution of the in-
duced potentials one can now contemplate experimental
situations and observables where the excitonic response
of metals might be observed. In linear spectroscopy with
light interacting with metals below the interband absorp-
tion threshold, our theory of the excitonic response pre-
dicts that no bound states can exist on time scales defined
either by screening or energy time uncertainty, where the
relevant energy is detuned from an energy conserving in-
terband transition. The transient polarization will decay
by the coherent e-h recombination to produce the coher-
ent replica of the incoming field, i.e., the reflected field,
unless it is resonant with an energy conserving emergent
state, such as the image potential state.

In a nonlinear experiment, the metallic surface can be
investigated during the different time scales of the cor-
responding transient factor. Any metal with a typical
metallic density of electrons will exhibit sub-femtosecond
screening transients such as shown for Ag(111) and
Cu(111) surfaces in Fig. 6, where the screening charge
density reaches the asymptotic value over a sequence
of overshooting and undershooting cycles. Given the
< 100 as pulse durations from state-of-the-art lasers, one
can anticipate that screening transients of excitonic wave
packets, where the system evolves from and oscillates be-
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tween bound to over screened excitonic states might be
observable as an oscillation in photoemission energy spec-
trum at the frequencies of the transient factor. Such ex-
periments remain a challenge to attosecond spectroscopy.
Even in the case where the oscillations of the transient
factor are not resolved, it is evident that the screening
dynamics can be observed in femtosecond multidimen-
sional multiphoton photoemission spectroscopy, as was
recently demonstrated for the Ag(111) surface.48 There
the exciton is revealed through its dispersionless energy-
momentum distribution in photoemission spectra at the
two-photon resonance from SS to the emergent IP sate.
This observation can be rationalized by the oscillation of
the transient factor about the saturation value on 10-20
fs time scale, which apparently preserves the electron-
hole correlation even though on the average the Coulomb
potential is fully screened. The signature of the correla-
tion appears in the momentum space as a nondispersive
spectrum rather than in the energy space as a residual
binding energy with respect to the reference energy Usp.

The present theoretical framework illuminates that the
screening time scale is not just determined by the plasma
frequency, as one can read in any solid state physics text-

book, but also by the plasma dephasing which leads to
the establishment of steady screening charge. We note
that the transient screening dynamics described in the
preceding sections are universal in any condensed mat-
ter system, whether or not bound excitons exist. In any
solid state system there will exist a transient regime asso-
ciated with the retarded material response function. The
metallic free electron densities make experimental mea-
surement of the transient screening response challenging,
but the transient regime is readily accessible in degen-
erate impurity and photodoped semiconductors.16 Thus
we believe the theoretical ideas presented in this work are
readily testable by the appropriate choice of experimental
techniques and materials.

Appendix A: Generalization of Eq. (29)

The long time or saturation limit of expression (37) can
be generalized to the case of arbitrary positions of ze and
zh. Making use of (27) we may write for the saturated
induced potential

Ṽ inde−h(Q, ze, zh, t→∞) = VQe
−Q(ze+zh)

[∫
dz2e

−Q(|ze−z2|−ze)

∫
dz1e

−Q(|zh−z1|−zh)

∫ ∞
0

dω′
2π

Q
ÑQ(z1, z2, ω

′)

]
.(A1)

In the limit ze � z2 and zh � z1 this expression reduces
to expression (37), as it should. Hence, the double spatial
integral in the square bracket on the RHS of (A1) can be
considered as the generalization of the static limit of (30)

for arbitrary positions of ze and zh. This enables us to
define its dynamic counterpart in the following equivalent
forms

R̃Q(ω) =
2π

Q

∫
dz2e

−Q(|ze−z2|−ze)

∫
dz1e

−Q(|zh−z1|−zh)

∫ ∞
0

dω′S̃Q(z1, z2, ω
′)

(
1

ω − ω′ + iδ
− 1

ω + ω′ + iδ

)
=

2π

Q

∫
dz2e

−Q(|ze−z2|−ze)

∫
dz1e

−Q(|zh−z1|−zh)χ(Q, z1, z2, ω
′)

=
2π

Q

∫
dz2e

−Q(|ze−z2|−ze)

∫
dz1e

−Q(|zh−z1|−zh)

∫ ∞
0

dω′ÑQ(z1, z2, ω
′)

ω′2

ω2 − ω′2 + iδ
. (A2)

For ze = zh this expression is continuous across the sur-
face and hence can be tested against the sum rules1 like-
wise its exterior limit RQ(ω). The perfect screening sum
rule is obtained in the limit ω → 0, and the f-sum rule
as the coefficient of 1/ω2 in the expansion of (A2) in the
limit ω →∞.
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