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In magnetically-doped quantum dots changing the carrier occupancy, from open to closed shells,
leads to qualitatively different forms of carrier-mediated magnetic ordering. While it is common to
study such nanoscale magnets within a mean field approximation, excluding the spin fluctuations
can mask important phenomena and lead to spurious thermodynamic phase transitions in small
magnetic systems. By employing coarse-grained, variational, and Monte Carlo methods on singly
and doubly occupied quantum dots to include spin fluctuations, we evaluate the relevance of the
mean field description and distinguish different finite-size scaling in nanoscale magnets.

PACS numbers: 75.50.Pp, 73.21.La, 75.75.Lf, 85.75.−d

I. INTRODUCTION

Nanoscale magnets are fascinating systems displaying
phenomena at the boundary between classical and quan-
tum physics. They reveal important implications for
fundamental phenomena, such as macroscopic quantum
tunneling,1–3 magnetic polaron formation,4,5 tunable
magnetism,6–8 and strongly-correlated states,9 as well as
potential applications in information storage and process-
ing, arising from the superparamagnetic limit,10 mag-
netic hardening induced by nonmagnetic molecules,11

spin-lasers,12,13 and implementations of qubits.14,15

Despite the significant differences between nanoscale
magnets and their bulk counterparts, a mean-field de-
scription that could be suitable for bulk magnets in the
thermodynamic limit, remains also widely used in de-
scribing magnetic ordering in nanostructures. Unfortu-
nately, the appealing simplicity of the mean-field approx-
imation (MFA) can often mask important phenomena.
Neglecting thermodynamic spin fluctuations can lead to
spurious thermodynamic phase transitions in small mag-
netic systems. Does that imply that the MFA cannot de-
scribe nanomagnets, or that there are situations in which
MFA could yield valuable and unexplored insights?

In this work we show that the applicability of the MFA
varies between different nanomagnets which also display
different finite-size scaling and lead to distinct thermo-
dynamic limits. We focus on magnetically-doped semi-
conductor quantum dots (QDs) with the localized impu-
rity spins typically, provided by Mn ions.4,5,16–42 These
systems are multi-carrier generalizations of the magnetic
polaron formation43–51 that can be viewed as a cloud of
localized impurity spins, aligned through exchange inter-
action with a confined carrier spin. The characteristic
signatures of magnetic polarons is the presence of high-
temperature tails in the root mean square magnetization,
rather than an abrupt vanishing of magnetization at the
Curie temperature, TC , expected for bulk magnets.52

To qualitatively distinguish magnetic ordering in dif-
ferent nanomagnets, such as epitaxially-grown or col-
loidal QDs,5,22–30 we introduce a simple description in
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FIG. 1. (Color online) Qualitative behavior of magnetic or-
dering in nanoscale systems. An example of a system that
(a) does not and (b) does display a phase transition. The free
energy, Eq. (1), is shown as a function of the order parameter
at various temperatures applicable to both (a) and (b). (c)
The temperature evolution of the order parameter for the free
energy described in (a) and (b). (d) For high temperature,
there are two qualitatively different finite-size scalings for the
normalized order parameter which also extrapolate to distinct
thermodynamic limits (circles).

which the relevant free energy functional44,53 is reduced
to a MFA free energy, F , given as a function of the order
parameter X , and the absolute temperature, T ,

F (X,T ) = g0(T ) + g1(T )X +
α(T − TC)

2
X2 +

g4(T )

4
X4.

(1)
where the expansion coefficients, g0, g1, α, and g4 are
functions of T . The quadratic and quartic terms in X
describe the entropy of the magnetic ions. Compared to
the conventional Ginzburg-Landau form,52 it is surpris-
ing to see in Eq. (1) the linear term in X in the absence
of an applied magnetic field, we describe the origin of this
term in Sec. III.
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As shown in Fig. 1 (solid lines), the presence of a lin-
ear contribution in the order parameter, g1 6= 0, has a
striking consequence. For all relevant T ,54 the free en-
ergy minimum is attained for a nonvanishing order pa-
rameter [Fig. 1(a)], implying the absence of a spurious
phase transition. The magnetic order remains finite for
all T [Fig. 1(c)]. In contrast, for g1 = 0 (broken lines)
Figs. 1(b) and (c) reveal a behavior typically associated
with bulk ferromagnets displaying a phase transition for
T > 0. Surprisingly, this simple MFA description pro-
vides two qualitatively different finite-size scaling with
number of spins (magnetic ions) in Fig. 1(d) which we
later show accurately reflects the behavior of two classes
of nanoscale magnets by considering a more rigorous ap-
proach including spin fluctuations.

After this introduction, in Sec. II we provide an
overview of the employed theoretical methods and discuss
the importance of the correct choice of the order param-
eter. We then focus on the two classes of nanomagnets
and the simplest magnetic QD embodiment: (i) a single
occupancy, implying the finite carrier spin configuration
of an open shell in Sec. III, and (ii) a double occupancy,
corresponding to the vanishing carrier spin configuration
of a closed shell in Sec. IV. We explain how these two
classes of nanomagnets are already qualitatively different
at the MF level corresponding to (i) g1 6= 0 and (ii) g1 = 0
behavior, in Fig. 1 and how they can be viewed as rep-
resenting magnetic polarons4,5,16,34,35,55–57 and magnetic
bipolarons,9,58–60 respectively. We conclude our presen-
tation with the implications for the relevance of MFA to
nanomagnets and discuss outstanding questions.

II. THEORETICAL OVERVIEW

Magnetically-doped QDs are a useful model system to
study magnetic ordering in nanostructures. Even with
very different growth techniques (top-town or bottom-
up), such as epitaxially grown QDs or solution-processed
colloidal QDs, there are striking similarities in the mani-
festations of their nanoscale magnetism, as well as in the
limitations of their theoretical description. We illustrate
different implications of magnetic ordering by focusing on
(II,Mn)VI QDs, depicted in Fig. 2. These systems dis-
play carrier-mediated magnetism, extensively studied in
bulk dilute magnetic semiconductors. Since Mn2+ is iso-
valent with group II ions, carriers must be created inde-
pendently; for example, excitation of electron-hole pairs
by interband absorption of light [Fig. 2(a)]. By changing
the intensity of light can thus change the QD occupancy
to realize both open- and closed-shell QDs. A realiza-
tion of multiple occupancy in QDs is observed in various
experiments.62–68

From the band alignment of conduction and valence
bands in Fig. 2(b), the ordering of Mn spins located in the
QD region is dominated by the holes, characterized by
the Mn-hole exchange coupling β. The electrons have a
negligible influence on magnetic ordering. They are spa-

FIG. 2. (Color online) (a) A scheme of QDs grown on a
two-dimensional wetting layer (WL) in which electron-hole
pairs are created by inter-band absorption of light. Holes are
subsequently captured in the QD. Type-II conduction/valence
band (CB/VB) profile61 of a II-VI QD doped with Mn spins.34

ε and ECV are the confinement and bandgap energies.

tially removed from Mn and typically have ∼ 5-6 times
smaller exchange coupling with Mn than holes.47

We first recall the MFA as known from bulk systems,
but due to its simplicity it is often used in nanomag-
nets where its validity is questionable. A conventional
mean-field theory is illustrated in Fig. 3, where the most
probable state of the system is obtained by minimiz-
ing the free energy as a function of the order parame-
ter. For nanoscale systems, one needs to be careful with
the choice of an order parameter. This often overlooked
consideration, has striking implications, as depicted in
Fig. 3(a) and (b), which we further explain on the ex-
amples of magnetic polarons (MPs) and magnetic bipo-
larons (MBPs), discussed in Secs. III and IV. A common
choice of magnetization ξ as the order parameter, shown
in Fig. 3(a) leads to spurious thermodynamic phase tran-
sition in nanoscale magnets. In contrast, if an “observ-
able” quantity, such as the exchange energy X , is chosen
as the order parameter, the phase transition can be re-
moved. This is shown in Fig. 3(b), where there is always
a minimum in the free energy at all T . Based on the
choice of the order parameter we can then recover either
the g1 = 0 or the g1 6= 0 behavior of the free energy
depicted in Figs. 1(a) and (b).
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FIG. 3. (Color online) (a) The free energy as a function of
magnetization, ξ, reveals a minimum at low-T and vanishes
at high-T . MFA will give a second-order phase transition. (b)
Corrected free energy of a nanoscale magnet as a function of
“observable” exchange energy, X, giving a finite value to the
order for any finite T .

Some qualitative trends in magnetic QDs can be ob-
tained from the MFA developed for bulk dilute mag-
netic semiconductors. The exchange coupling of a car-
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rier (hole) and magnetic impurity (Mn) spins, s and S,
respectively, can be expressed in terms of two effective
magnetic fields. The resulting self-consistent equations
for the average spin (along the direction of the applied
field or spontaneous Mn magnetization) are different de-
pending on whether the carriers have nondegenerate or
degenerate distribution.69,70 We will later discuss how
these two bulk cases have similarities with the MFA ap-
plied to MPs and MBPs.

For nondegenerate carriers, the self-consistent equa-
tions are,70

〈sz〉 = sBs

(

βa30ni

kBT
〈Sz〉

)

, (2)

〈Sz〉 = SBS

(

βa30nc

kBT
〈sz〉

)

, (3)

where a30 is the unit cell volume, nc and ni are the carrier
and magnetic impurity densities, respectively; kB is the
Boltzmann constant, and BJ(x) is the Brillouin function,

BJ(x) =
2J + 1

2J
coth

(

2J + 1

2J
x

)

− 1

2J
coth

( x

2J

)

. (4)

In the high-T limit of a small ratio of the effective mag-
netic and thermal energies, the expansion in Eq. (3),

BJ (x) ≈ J + 1

3J
x + O(x3) x ≪ 1, (5)

yields a vanishing magnetic response at a critical tem-
perature,

kBTC =
1

3
βa30

√
ninc

√

S(S + 1)s(s + 1). (6)

For the degenerate case, the carrier spin is given by

〈sz〉 =
s

2nc

∫

dεf(ε)
[

D(ε + sβa30ni〈Sz〉)

− D(ε− sβa30ni〈Sz〉)
]

. (7)

where D(ε) is the density of hole states. In the high-T
limit, the integrand in Eq. (7) can be expanded, using
Eq. (3), and Eq. (5), to give the critical temperature

kBTC =
1

3
(βa30)2niS(S + 1)s2D(µ), (8)

where µ is the chemical potential. Interestingly, the dif-
ference between the linear and quadratic β-dependence
of the TC in MFA for the two bulk dilute magnetic semi-
conductors in Eq. (6) and (8) is also obtained using the
MFA for MPs and MBPs, respectively.

At low-T , where spin fluctuations are small, MFA
can accurately describe the thermodynamics of a finite-
size system. However, a careful treatment is needed
for a higher T , where large spin fluctuations could play
the dominant role in the thermodynamics of magnetic
QDs.55,71

Unlike many studies of magnetic QDs that do not go
beyond mean field theory,8,60,72–74 we will utilize two
methods which include spin fluctuations. The first is
a coarse-grained approach9 in which we discretize the
QD space into a number of cells, Nc with Nk being the
number of Mn spins belonging to each grid point where
∑Nk

j=1 Sjz is the projection of the total spin onto the z-

axis of the Mn contained at the kth grid point. Within
a given cell the wave function is slowly varying allowing
one to neglect the spatial dependence of the carrier and
spin density. The full partition function is obtained by
summing over all configurations of the normalized mag-
netization in a given cell.

The second method is to perform Monte Carlo simu-
lations. Unlike the coarse-grained method, Mn can be
positioned at many sites allowing for spatial variation
in the carrier spin density. The Monte Carlo simulation
seeks approximate solutions to the Schrödinger equation,
for the Hamiltonian Ĥ , at a fixed T , for a finite orthonor-
mal basis |Φ〉 at a given Mn spin {Sz} configuration. The
calculation entails randomly generating a Mn configura-
tion at a given T and producing a matrix representation
of Ĥ({Sz}) in a finite basis and solving the eigenvalue
problem. A metropolis algorithm is used to obtain the
most probable Mn configuration at a fixed T .75

Our model to study magnetic ordering in open- and
closed-shell systems is motivated by the Mn-doped QD
with type-II band alignment in Fig. 2, was shown ex-
perimentally to support robust MPs.34 We use the to-
tal QD Hamiltonian, Ĥ = Ĥc + Ĥex, with typical two-
dimensional (2D) nonmagnetic (carrier) and magnetic
(Mn-hole exchange) parts, where

Ĥc =

Nh
∑

i=1

[

− ~
2

2m∗
∇2

i +
1

2
m∗ω2r2i

]

+ UNh
, (9)

~ is the Planck’s constant there are Nh holes at the posi-
tion ri and m∗ is their effective mass. A harmonic x− y
confinement of strength ω is much weaker than the con-
finement along the growth (z) direction, implying effec-
tively 2D system. UNh

is the charging energy. The p− d
exchange interaction between spins of Mn and confined
holes has the Ising form17,76–79 because of the strong z-
axis anisotropy, arising from spin-orbit interaction in the
2D QDs with energetically favorable heavy holes,

Ĥex = −β

3

Nh
∑

i=1

NMn
∑

j=1

ŝziŜzjδ(ri −Rj), (10)

where there are NMn Mn spins at the position Rj. Here,
ŝz is the heavy-hole (pseudo)spin operator with projec-

tions sz = ±3/2, while Ŝz is the operator of the z-
projection of the Mn-spin S = 5/2. Our theory does not
include antiferromagnetic interactions between neighbor-
ing Mn ions, which is relevant for QD’s doped with large
Mn concentrations.80

Since Ĥex does not contain spin-flip processes, the to-
tal wave function is a product of the hole and Mn-spin
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parts.45 The partition function of the system can be cal-
culated using a Gibbs canonical distribution,

Z = TrSjz ,szie
−Ĥ/kBT , (11)

which even for a single hole has a prohibitive complexity
to be solved exactly. To calculate Z, in a typical QD
with NMn ∼ 100 − 1000 and S=5/2 for Mn spin, one
would need to solve 6NMn replicas of the hole Schrödinger
equation.

To overcome this computational complexity and gain
insight in magnetic ordering of open and closed-shell QDs
we first use the MFA. We next consider a coarse-grained
approach of discretizing the QD space to include spin
fluctuations and examine the limitations of the MFA. We
investigate the thermodynamics of the MP and the MBP
formation and explore the finite-size effects by varying
the number of magnetic impurity spins. We further cor-
roborate our results and the influence of spin fluctuations
using Monte Carlo simulations.

III. MAGNETIC POLARONS (MPs)

Early studies of MPs considered bulk magnetic semi-
conductors where the localized carrier spin was provided
by the donor or acceptor.48,49 For such bound magnetic
polarons a finite extent of the carrier wave function leads
to the alignment of only a small number of a nearby spins
of magnetic impurities having many similarities with
MPs in magnetic QDs. While problems of a conventional
MFA in describing experiments on bound magnetic po-
larons have been explained over thirty years ago,44 (spu-
rious critical behavior and thermodynamic phase transi-
tions in very small magnetic systems was removed after
including spin fluctuations) such pitfalls continued to be
repeated in describing magnetic QDs.

We begin by considering a singly occupied QD [Nh = 1,
UNh

= 0, recall Eqs. (9) and (10)], the simplest real-
ization of an open-shell QD,81 and study the thermody-
namics of the MP. We build the partition function by
constructing a canonical Gibbs distribution, Eq. (11).
The distribution function, ΩS(Nk, ξk), that describes the
number of configurations of free spins in a given cell ex-
pressed in terms of the microscopic parameter, ξk (which
can be viewed as a normalized magnetization),

ΩS(Nk, ξk) =
∑

{Sjz}

δ



ξk − 1

NkS

Nk
∑

j=1

Sjz



 , (12)

where (recall Sec. II)
∑Nk

j=1 Sjz is the projection of the
total Mn spin onto the z-axis, and the argument of the
δ-function defines the normalization of ξ while the δ-
function is the distribution of Mn spins in a cell. We
find ΩS(Nk, ξk) ∝ exp[−GS(ξk)/kBT ] (see Appendix A
for details) with

GS(ξk) = kBTNk

[

ξkB
−1
S (ξk) − lnZS

(

B−1
S (ξk)

)]

,
(13)

being the free energy for non-interacting spins, where
ZS(x) = sinh [(1 + 1/2S)x] / sinh [x/2S], B−1

S (y) is the
inverse of the Brillouin function y = BS(x).82

FIG. 4. (Color online) (a) A magnetic QD doped with ran-
dom paramagnetic Mn ions (green arrow) with one carrier
spin density (red arrow). (b) The system lowers its energy
through the exchange interaction and results in an antiferro-
magnetic alignment between the hole spin and the Mn spins
producing the MP. (c) The doubly degenerate QD energy level
(1) splits with formation of the MP (2). The difference be-
tween the nonmagnetic QD energy and the ground state en-
ergy is the average exchange energy, EMP.

A simple manifestation of a magnetic ordering in an
open-shell QD occupied by a single carrier is the MP for-
mation depicted in Fig. 4. Through exchange interactions
between the carrier and Mn spins, once random param-
agnetic Mn ions [Fig. 4(a)] acquire their spin alignment
[Fig. 4(b)] (antiferromagetically coupled to a hole spin)
and reduce the total energy of the carrier-Mn system. As
a result of the hole-Mn exchange term in Eq. (10), the
doubly degenerate heavy-hole energy level is split into
two nondegenerate energy levels, as shown in Fig. 4(c).
This corresponds to a red shift of the interband transi-
tion energy as a function of time, which is observed in
time-resolved photoluminescence experiments.4,5,34,35

In discrete space, for a given configuration of Mn spins,
{ξ}, the two energy eigenvalues of Eq. (10) are, E± =
±∆MP/2, with spin-splitting energy

∆MP =
2β

3
S
∑

k

NkρMP(Rk)ξk, (14)

where,

ρMP(Rk) = 3|φ(Rk)|2/2, (15)

is the heavy hole spin density at the k’th cell, expressed
in terms of the corresponding wave function φ.

A MFA result for the spin-splitting energy ∆MF
MP, is ob-

tained by inter-relating the carrier and Mn spin densities
〈sz〉 and 〈ξk〉, respectively, in analogy of Eqs. (2) and (3),

〈sz〉 =
3

2
tanh

(

3

2

∑

k

β|φ(Rk)|2
3kBT

NkS〈ξk〉
)

, (16)
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and

〈ξk〉 = BS

(

S
β|φ(Rk)|2

3kBT
〈sz〉

)

. (17)

Substituting Eq. (16) and (17) into Eq. (14) gives

∆MF
MP

2
=

β

3
S
∑

k

NkρMP(Rk)BS

(

βSρMP(Rk)

3kBT
tanh

[

∆MF
MP

2kBT

])

.

(18)
In the unsaturated limit, ∆MF

MP/2kBT ≪ 1, Eq. (18) gives
a vanishing ∆MF

MP at a critical temperature,

kBT
MF
C,MP =

β

3

(

S(S + 1)

3

∑

k

Nkρ
2
MP(Rk)

)1/2

. (19)

The MP energy, EMP, is defined as the expectation value
of Eq. (10). The MFA expression is

EMF
MP = −∆MF

MP

2
tanh

(

∆MF
MP

2kBT

)

. (20)

Having derived a MF theory description for the MP,
one can make a connection between the MP and to that
of a bulk nondegenerate magnetic semiconductors. Com-
paring Eqs. (19) and (6), we see in both cases that the
critical temperature has a linear dependence on β. In a
nondegenerate bulk semiconductor the concentration of
donor/acceptor atoms is so small that the Pauli exclusion
principle is ineffective and does not alter the carrier spin
distribution which is described by the Boltzmann statis-
tics. The magnetic impurity spins tend to align with one
carrier spin and form a bound magnetic polaron.48 The
carrier spin in a nondegenerate magnetic semiconductor
does not interact with other carriers spins. Thus, like the
carrier in a magnetic QD, the carrier spins are free spins
and will tend to align the spins of magnetic impurities.

Next we turn our analysis to the MP energy. Mo-
tivated by typical QD parameters,71 the blue/dashed
line in Fig. 5 shows the MF behavior of the MP energy
Eq. (20) as a function of T . For the chosen parameters,
MF predicts a second order phase transition at charac-
teristic temperature TMF

C,MP = 29 K. The phase transition
occurs at a kBT comparable to the exchange splitting of
hole levels. At this temperature both hole states of op-
posite spin are approaching each other with equal proba-
bility. Consequently, yielding vanishing average MF spin
density and average exchange energy at a finite T .

MFA neglects the possibility for the system to devi-
ate from the minimum configuration, {ξMF

k }, leading to
phase transitions not allowed in nanoscale systems. To
demonstrate the removal of the phase transition, we use
the full partition function for the MP by summing over
all configurations of {ξk}.44 The partition function is

ZMP =
∑

σ=±1

∫

exp

(

σ∆MP[ξ]

2kBT

) Nc
∏

k=1

ΩS(Nk, ξk)dNcξ,

(21)

FIG. 5. (Color online) A mean field solution for MP
blue/dashed curve and the result obtained through the fluctu-
ation approach red/solid. For simplicity, we approximate the
hole wave function as uniform throughout the QD volume V ,
φ(r) = 1/

√
V .83 The parameters are N0β = −1.05 eV, the

cation density, N0 = 4/a3

0 with a0 ≃ 6.1 Å, V = πr2hz,
r = 5 nm, hz = 2.5 nm, NMn = 90.

with the spin index σ = ±1 for the heavy-hole spin sz =
3
2σ. Since the distribution ΩS(Nk, ξk) is an even function
of ξk, the integrals for σ = ±1 yield the same result and

ZMP = 2

∫

exp

(

∆MP[ξ]

2kBT

) Nc
∏

k=1

ΩS(Nk, ξk)dNcξ. (22)

Here the summation of σ = ±1 is done exactly, without
neglecting the statistical correlation between σ and {ξk}
as in the MFA. Now, using the steepest descent method
as above, we have

ZMP = 2

Nc
∏

k=1

ZS

(

βSρMP(Rk)

3kBT

)Nk

. (23)

The average exchange energy can be evaluated from
EMP = −kBTβd(lnZMP)/dβ as

EMP = −β

3
S
∑

k

NkρMP(Rk)BS

(

βSρMP(Rk)

3kBT

)

, (24)

where the corresponding results from Eq. (24) include
the fluctuations of Mn spin and are compared in Fig. 5
(red/solid) with the MFA results (blue/dashed). In many
colloidal QDs the number of magnetic impurities is much
smaller than used in Fig. 5 (NNm = 90), enhancing the
importance of the fluctuations and the corresponding dif-
ference from the MFA solution.

The MP shows different behaviors in the high- and
low-T limits

EMP ∝







−β for T → 0

−β2/kBT for βSρMP(Rk)/kBT ≪ 1,
(25)

which correspond to saturated and unsaturated limits of
magnetization, respectively. As shown in Fig. 5, EMP
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has the 1/T behavior for a wide range of temperatures.
This can be understood as follows. As depicted in Fig. 6,
a single carrier with uncompensated spin couples to a
sum of many Mn spins. Therefore the carrier aligns with
the majority of Mn spin, and a flip of an individual Mn
spin would not affect the carrier spin, and consequently
other Mn spins. For this reason, the Mn spins are in
effect weakly interacting which results in a 1/T Curie-
like temperature dependence of EMP.

FIG. 6. (Color online) Illustration of the finite-size effect for
the MP (a) Spin density (blue/dashed) for fully aligned Mn
spins (green). (b) A flipped Mn spin does not effect the carrier
spin density (red/solid).

We now show that the MP does not display a finite-size
effect, when in a fixed QD volume we change the num-
ber of Mn spins. Using the full MP partition function
and the resulting Eq. (23), in Fig. 7(a) we show EMP(T ),
normalized with respect to its fully saturated value for
various number of Mn. Figure 7(b) shows the normal-
ized EMP plotted at fixed T for various number of Mn
ions. The normalized EMP remains constant. The finite
size-effect was accurately predicted by the MFA. At the
saturated and unsaturated limit, EMF

MP ∝ NMn. In Ap-
pendix B we show how EMP will depend on a different
choice of a carrier wave function.

To summarize, we interpret the previous calculations
in terms of the Ginzburg-Landau approach of phase tran-
sitions. While the approach is not reliable due to the
nanoscale size of our system, we may gain important
insights. Typically the partition function is described
by a functional integral over the magnetization ξ [see
Eq. (21)]. In the low-T limit (or |∆MP|/2kBT ≫ 1) with
e∆MP/2kBT + e−∆MP/2kBT ≈ e|∆MP|/2kBT in Eq. (21), one
can write the free energy

FMP(ξ) ≈ −g1|ξ| − kBTS(ξ), (26)

with the entropy S(ξ) even in ξ. FMP(ξ) is depicted in
Fig. 3(a). However, the finite potential barrier separat-
ing the degenerate minima at ±ξmin does not prevent the
thermal fluctuations between the local minima. There-
fore the correct solution 〈ξ〉 = 0 is not predicted by the
MFA to FMP(ξ).

We consider the Ginzburg-Landau approach defined
with a different variable, the observable quantity of the
exchange energy X = Eex = σ∆MP/2 [see Eq. (14)] with
the carrier spin index σ = ±1. The linear dependence in

ξ originates from the finite carrier spin of the open shell.
Since the carrier spin does not contribute to the entropy,
the entropy in X is directly related to S(ξ), and we derive
the free energy in the order parameter X = Eex as

FMP(X) ≈ X − TS(X), (27)

as depicted in Fig. 3(b). Again, the entropy S(X) is
an even function of X and Eq. (1) results for the mag-
netic polaron. Unlike FMP(ξ), FMP(X) possesses only
one global minimum at a negative finite X and 〈X〉 < 0
at all T , and the mean-field interpretation of Eq. (27)
gives a qualitatively correct prediction. The thermody-
namic solution of a finite 〈X〉 manifests itself in the finite-
scale independence in 〈X〉/NMn in Fig. 1(d).
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FIG. 7. (Color online) (a) The MP average exchange energy
normalized by its T = 0 K value for 10 Mn (red/solid) and
20 Mn (black/dashed) as function of T . (b) Normalized MP
average exchange energy as a function of the total number of
Mn at fixed T .

IV. MAGNETIC BIPOLARONS (MBPs)

We next turn to a magnetic QD containing two holes
[Nh = 2, U2 = U , Eqs. (9) and (10)]. Closed-shell
fermionic systems, such as noble gases, are known for
their stability and the total spin-zero ground state, mak-
ing them magnetically inert. Thus it would seem that
this simple example of a two-hole closed-shell QD doped
with Mn would not allow magnetic ordering. However,
the Mn doping does alter the magnetic properties of
closed-shell QDs. The corresponding ground state, which
is neither a singlet nor a triplet, allows ordering of Mn
spins, owing to the spontaneously broken time-reversal
symmetry.58

To lower the hole-Mn system energy through exchange
interaction, there needs to be a nonvanishing hole spin
density. During the MBP formation, an initially random
Mn spin orientation [Fig. 8(a)], in the presence of two
holes acquires a spin alignment [Fig. 8(b)]. The emer-
gence of a nonvanishing local hole spin density, while the



7

total hole spin density remains zero, is characteristic for
a spin pseudosinglet,9,58 which can be understood from
a simple perturbation picture. The exchange interaction
admixes higher (single particle) orbitals to the ground-
state s orbital. Specifically, as shown in the Fig. 8(c),
the mixing of s and px orbitals leads to the spin-Wigner
molecule,9 a spin-analog of the Wigner molecule.84–89 In
contrast to the Wigner molecule, where the spatial carrier
separation originates from the Coulomb repulsion,86 here
the dominant contribution of such separation is typically
the carrier-Mn exchange energy.

FIG. 8. (Color online) (a) A magnetic QD doped with ran-
dom paramagnetic Mn ions spins (green arrows). (b) The sys-
tem lowers its energy through the exchange interaction lead-
ing to a nonvanishing spin density and formation of the MBP.
Red arrows and lines in (a) and (b) show how the two-carrier
spin density changes due to the presence Mn. (c) The doubly
occupied QD energy level (1) lowers its energy through the
formation of the MBP (2). The difference between the non-
magnetic QD energy and the MBP ground state energy is the
average exchange energy Eex.

The corresponding pseudosinglet wave function58 at
each snapshot of Mn configuration, {ξk}, is

φPS(r1, r2) =
N√

2
[u(r1)d(r2) |↑; ↓〉 − u(r2)d(r1) |↓; ↑〉] ,

(28)
where N = 1/(1 + ε2x) is the normalization constant,
u(r, {ξk}) = s(r) + εx({ξk})px(r), d(r, {ξk}) = s(r) −
εx({ξk})px(r), and εx({ξk}) is a mixing (variational) pa-
rameter that depends on {ξk}. In choosing our varia-
tional wave function we neglect overlaps between like-
orbitals, (s− s and px − px), which results in the loss of
fluctuations in the total magnetization at the site of Mn.
These fluctuations are small in the MBP regime.

The variational energy E(εx) is

E =
Es + ε2xEp

1 + ε2x
+ U − β

3

NMn
∑

j=1

ρMBP(Rj , εx)Sj,z , (29)

where the first term is the sum of the kinetic and po-
tential energy, the second term is the Coulomb energy,

taken to be constant, and the third term is the average
exchange energy between the MBP spin density,

ρMBP(Rj , εx) =
6εx

1 + ε2x
s(Rj)px(Rj), (30)

at the site of Mn. For a nonmagnetic system, the two-
particle energy for the ground state is Es = 2~ω and for
the p-state is Ep = 4~ω. To get close to the eigenstate of
the system, we seek the εx that minimizes Eq. (29)

εx,min =
∆MBP

Eps/2 +
√

E2
ps/4 + ∆2

MBP

, (31)

and minimized energy,

Emin =
1

2

(

Es + Ep −
√

E2
ps + 4∆2

MBP

)

+ U, (32)

where Eps = Ep − Es is the energy difference between
the s and px orbital, and the spin splitting due to orbital
polarization,

∆MBP = β

NMn
∑

j=1

s(Rj)px(Rj)Sj,z = Eps

NC
∑

k=1

χkξk, (33)

with a dimensionless magnetic susceptibility like term

χk =
SNkβs(Rk)px(Rk)

Eps
. (34)

To obtain the full partition function we need to sum
over all configurations of ξk. Since we are in the kBT ≪
Eps regime, we consider only the spin “singlet” ground
state and neglect the possibility of a triplet state.90 The
partition function is

ZMBP =

∫

e−Emin/kBT
Nc
∏

k=1

ΩS(Nk, ξk)dNcξ. (35)

For simplicity, to evaluate Eq. (35), we use a two site
model by placing Nk Mn at two opposite sites equally
spaced from the origin along the x-axis. The sites are
chosen such that s(R1)px(R1) = −s(R2)px(R2), where
R1 and R2 are the position of the Mn ions at site 1 and
site 2, respectively. For this two site problem, Eq. (33)
reduces to ∆MBP = Epsχξ−, where

ξ− = ξ2 − ξ1, (36)

and χ = |χ1| = |χ2|, N1 = N2 = NMn/2.
To investigate the MBP as a function of T , we begin by

using the MFA. It can be shown that the minimum of the
free energy, FMBP(ξ−) = Emin(ξ1, ξ2) +GS(ξ1) +GS(ξ2),
lies on the ξ1 = −ξ2 line. The free energy becomes

FMBP(ξ−) = Emin(ξ−) + 2GS(ξ−/2). (37)
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Minimization of the MBP free energy, Eq. (37), with re-
spect to ξ− gives a self-consistent equation for ∆MF

MBP,

∆MF
MBP

2
= EpsχBS





4χ∆MF
MBP

NMnkBT
√

E2
ps + 4(∆MF

MBP)2



 ,

(38)
where ∆MF

MBP = Epsχξ
MF
− . In the unsaturated limit,

∆MF
MBP/kBT ≪ 1, Eq. (38) gives a vanishing ∆MF

MBP at
a critical temperature,

kBT
MF
C,MBP =

8S(S + 1)χ2Eps

3NMn
∝ β2. (39)

Unlike the MP, Eq. (19), the MF critical temperature
for MBP is quadratic in β, through χ2, a result similar
to that of degenerate holes in bulk DMS, Eq. (8).

FIG. 9. (Color online) Illustration of the finite-size effect for
the MBP (a) Spin density (blue/dashed) for fully aligned Mn
spins (green). (b) A flipped Mn spin changes the carriers spin
density (red/solid).

We see that ρMBP(εx) in Eq. (30) is coupled linearly to
the magnetic ordering of the Mn spins via Eqs. (31) and
(33), a result that is analogous to Pauli paramagnetism
where the magnetization of a free electron gas is propor-
tional to the strength of an external magnetic field. Thus,
any small change in the Mn configuration will result in
a linear response in the distribution of the carriers’ spin
density. The strength of the response is determined by a
Pauli-like susceptibly term given by Eq. (34). Figure 9(a)
shows that one Mn spin “sees” the carrier orbital spin
while one carrier spin “sees” all Mn collectively. Since
the height of the spin density is determined by εx, which
is dependent on the configuration of Mn spins, if one Mn
spin changes, Fig. 9(b), the exchange field arising from
the Mn field is strong that the carrier responds to the
change. Therefore, inverting one Mn spin, Fig. 9(b), will
change the amplitude of the spin density. Through the
exchange interaction between the holes’ spin density and
Mn spins, all other Mn will respond to the changing spin
density. Thus, the Mn are indirectly interacting with one
another through the hole.

The average exchange energy for the MBP is obtained
the same way as the MP, using the solutions of Eq. (38)

to give

EMF
ex =

−(∆MF
MBP)2

√

E2
ps/4 + (∆MF

MBP)2
. (40)

The green/dashed line in Fig. 10(a) shows the T -
dependence of Eq. (40), while Fig. 10(b) shows the mean
field behavior of the averaged product of the normal-
ized magnetization at the two sites, 〈m2m1〉. There is
an antiferromagnetic correlation between the product of
normalized magnetization at the two sites. As a conse-
quence of thermal spin fluctuations, the average exchange
energy and the magnitude of 〈m2m1〉 decreases and with
increasing T eventually vanishing when the MFA for
the specific parameter set yields a vanishing carrier spin
density resulting in a second order phase transition at
TMF
C,MBP = 1.5 K.
Exact integration of the MBP partition function

Eq. (35), which correctly includes spin fluctuations, is
needed to remove the phase transitions predicted by MF
theory. The average exchange energy is obtained through

Eex =
1

ZMBP

∫

dξ1

∫

dξ2ΩS(N1, ξ1)ΩS(N2, ξ2)

×
[

β
∂Emin(ξ1, ξ2)

∂β

]

e−Emin(ξ1,ξ2)/kBT , (41)

A T -dependence of this average exchange energy is
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FIG. 10. (Color online) (a) T -dependence of the average
exchange energy and the removal of the phase transition
for the two site model of the MBP, [Eq. (40)] with a non-
fluctuating carrier spin density (green/dashed) and a fluctu-
ating spin density (red/solid) [Eq. (41)]. (b) T -dependence
of the product of magnetization of each site, 〈m2m1〉, for a
fluctuating spin density (red/solid) and nonfluctuating spin
density (green/dashed). The parameters are hz = 2.5 nm,
~ω = 30 meV, m∗

h = 0.21, N0β = −1.05 eV, U = 30 meV,
R1,2 = ±2 nm and NMn = 10.

shown by the red/solid lines in Fig. 10(a). With the
inclusion of spin fluctuations, the phase transition is re-
moved resulting in a finite Eex at T > TC . The product
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of the normalized magnetization of each site was calcu-
lated numerically to demonstrate the antiferromagnetic
correlation between the Mn spins at the two sites.

Monte Carlo simulations (see appendix C for details)
verify the theoretical prediction for the MBP. s − p lev-
els coupled via Mn spins are directly diagonalized and
the variational assumption, Eq. (28), was not used. Mn
ions (5 per site) were placed 2 nm from the center of
the QD along the x-axis. We include s, px and py or-
bitals in the simulation. The Coulomb energy, as before,
is a constant. The blue dots in Fig. 10(a) shows the T -
dependence of the average exchange energy and the prod-
uct of the magnetization per site is shown in Fig. 10(b).
There is an excellent agreement between the fluctuation
approach and Monte Carlo simulations. Furthermore,
the antiferromagnetic correlation between the two sites
demonstrates the formation of the MBP.

As we did for the MP, we investigate two limiting cases
for Eex. In the saturated regime, the Mn are maximally
aligned at each site with their spin pointing in opposite
directions with |ξ1 − ξ2| → 2. In this limit, the MF
expression, Eq. (40), is valid. In the opposite unsatu-
rated high-T limit, e−Emin(ξ1,ξ2)/kBT ≈ 1 can be taken in
Eq. (41). Finally, we obtain the limiting behavior of Eex

within the regime χ ≪ 1,

Eex ≈







−6 S
S+1NMnT

MF
C,MBP ∝ (NMnβ)2 for T → 0

−TMF
C,MBP ∝ NMnβ

2 for T → ∞
(42)

This shows that, unlike the MP, the coupling dependence
is always in β2. This is due to the fact that the carrier
spin density is polarized from zero by the coupling to Mn
spins, unlike the uncompensated carrier spin in the MP.

The MBP displays a finite-size effect different from
the MP. We plot the T -dependence of the average ex-
change energy, Eq. (41), normalized by its low-T value
in Fig. 11(a) with a varying number of Mn in a given
cell. As the number of Mn increases, the normalized Eex

fluctuation tail decays toward the MF solution. This is
demonstrated in Fig. 11(b) at a fixed ratio of T/NMn.
As the number of Mn ion spins increases toward the
thermodynamic limit, the normalized exchange energy
decays. This size dependence is expected from the MF
result where a phase transition to zero exchange energy
occurs. The 1/NMn dependence in Eex reflects the ther-
modynamic limit towards the vanishing order parameter.

To summarize, like in the MP case, the MFA can be
used to understand the statistical properties of the MBP.
Applying the variational treatment to the carrier spins,
we express the exchange energy as Eex = −a(ξ1 − ξ2)2

with the Mn spins ξ1,2 at position 1 and 2. This quadratic
dependence (ξ1 − ξ2)2 originates from the carrier spin
being linearly polarized out of the spin-singlet in closed-
shell systems. With the variable X ≡ ξ1 − ξ2, the free
energy becomes

FMBP(ξ1, ξ2) ≈ −aX2 − TS(ξ1, ξ2). (43)
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FIG. 11. (Color online) The finite-size effect in a doubly oc-
cupied QD. (a) T -dependence of the normalized MBP average
exchange energy for 10 Mn (red/solid), 20 Mn (black/dashed)
and 40 Mn (blue/dash-dotted), thus 5, 10, and 20 Mn per site,
respectively. Mean-field solution with 10 Mn (black/dotted)
and 40 Mn (green/dashed). (b) The normalized mean-field
solution with varying number of Mn for a fixed T/NMn.

Confining the discussions to unpolarized states (ξ1 +
ξ2 = 0), the entropy becomes an even function of X and
Eq. (1) results with g1 = 0 [see Fig. 1(b)]. We note that,
in contrast to the Eq. 1, here the first X2 term in the
free energy is not of an entropic origin. In a finite sys-
tem 〈X〉 = 0 and the exchange energy Eex = −a〈X2〉
remains finite. While the MFA incorrectly predicts a
phase transition to Eex = 0 beyond a phase transition
temperature, it correctly justifies the finite-size scaling
limit Eex/NMn → 0 as NMn → ∞ as shown in Fig. 1(d),
in a sharp contrast to the MP case. The open or closed-
shell electronic structures leads to fundamentally differ-
ent statistical properties in the quantum dot magnetism.

V. CONCLUSIONS

Many of our findings for magnetic polarons and bipo-
larons can be also applied to higher carrier occupancy
of quantum dots where it is important to distinguish
if they form open- or closed-shell systems which leads
to a qualitatively different classes of magnetic ordering.
Performing a thermodynamic analysis in these nanoscale
magnets, we reveal the limitations of a mean-field ap-
proximation and the necessity for a more accurate theo-
retical framework that would correctly include spin fluc-
tuations. Our results show that a careful choice of the
order parameter in the mean-field approximation (using
the exchange energy, rather than magnetization) removes
spurious phase transitions for magnetic polarons, but not
for magnetic bipolarons. In the later case, the phase tran-
sitions are removed by including spin fluctuations within
the coarse-grained method and Monte Carlo simulations.

The conventional mean-field theory, known from bulk



10

systems with nondegenerate or degenerate carrier den-
sity, reveals important differences between the magnetic
polarons and bipolarons. Surprisingly, we can introduce
a very simple mean-field form of a free energy to ac-
curately describe qualitatively different finite-size effects
and distinct thermodynamic limits in magnetic polarons
and bipolarons with the change of the number of mag-
netic impurity spins. These findings remain unchanged
once we carefully include spin fluctuations, further jus-
tifying our simple description and a pictorial difference
between the finite-size effects in magnetic polarons and
bipolarons, Figs. 6 and 9, respectively.

Similar to our prediction for an unexpected thermally-
enhanced magnetic ordering in quantum dots,71 a judi-
cious use of the mean-field approximation and awareness
of its artifacts could provide important insights in unex-
plored aspects of nanoscale magnets. For example, we
expect that the mean-field description of the different
finite-size scaling in magnetic order discussed for mag-
netic polaron and bipolaron will also apply to other open-
and closed shell quantum dots with higher carrier occu-
pancy. A mean-field calculation of the critical tempera-
ture could also reveal a different power-law dependence in
the exchange coupling constant for the exchange energy
of open- and closed-shell systems.

In contrast to magnetic polarons, much less is known
about magnetism in closed-shell systems, often simply
implying that the magnetic ordering is completely ab-
sent. Therefore, to test our predictions for magnetic
bipolarons it would be important to focus on the ex-
perimental realization of multiple carrier occupancy in
quantum dots. The simple creation of excitons is not
sufficient. A simultaneous presence of single electron
and hole effectively just renormalizes the exchange cou-
pling with magnetic impurities of magnetic polarons.43

Instead, photoexcitiation, using chemical and electro-
static doping,91 should create a pair of holes or electrons.

Another possibility would be to fabricate quantum
dots from novel Mn-doped II-II-V dilute magnetic semi-
conductors. These systems provide an independent
charge and spin doping and would therefore be suitable to
test formation of nanoscale magnetism for a wide range
of parameters.92–94 They share with (II,Mn)VIs an iso-
valent character of Mn-doping, removing the solubility
constraint of (III,Mn)Vs an obstacle for fabricating mag-
netic quantum dots.40 Unlike (II,Mn)VI, Mn-doped II-II-
V systems can separately attain different carrier densities
through independent charge doping and thus readily al-
ter the strength of the Mn-carrier exchange coupling.
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Appendix A: Mn Distribution Function

We discretize the QD space with Nk magnetic mo-
ments in a given cell. The distribution function is
found by summing over all configurations of the Mn
in a given cell and is determined by Eq. (12). Us-
ing the integral representation of the δ-function, δ(x) =
(1/2π)

∫∞

−∞
dλe−iλx, the partition function is

ΩS(Nk, ξk) =
NkS

2π

∑

{Sjz}

∫ ∞

−∞

dλe
−iλ

(

NkSξk−
∑Nk

j=1
Sjz

)

(A1)
Introducing a complex variable h = iλS, Eq. (A1) be-
comes

ΩS(Nk, ξk) =
Nk

2πi

∫ i∞

−i∞

eNk(lnZS(h)−hξk)dh, (A2)

where ZS(x) = sinh [(1 + 1/2S)x] / sinh [x/2S]. The in-
tegrand in Eq. (A2 ) is sharply peaked (Gaussian-like),
therefore we can approximate Eq. (A2) by performing
the method of steepest descent. We deform the contour
in the complex plane to pass through a saddle point in
the direction of steepest descent. By Taylor expansion of
the function in the exponent of Eq. (A2) and performing
a Gaussian integral over h we obtain

ΩS(Nk, ξk) =

√

Nk

2πχ(hk)
e−GS(ξk,T )/kBT , (A3)

where χ(h) = ∂2 lnZS(h)/∂h2 and GS(ξk, T ) is the
Gibbs free energy, recall Eq. (13), obtained through a
Legendre transformation.70

Appendix B: Magnetic Polaron Renormalization

Since the MP is not influenced by the finite-size effect
(recall Figs. 6 and 7), we can employ a variational ap-
proach to study the influence of the wave function renor-
malization on the MP properties in a QD. Starting from
the MP partition function in Eq. (23), we approximate
the MP wave function by a single s-orbital of a 2D har-
monic oscillator, constant over the the QD height, hz,

φ(r) = 1/(
√

hzπLMP)e−(x2+y2)/2L2

MP . (B1)

Using a variational approach44,45 we determine the
width, LMP, that minimizes the total free energy func-
tional, FMP. The MP free energy functional is given by

FMP =
~ω

2

(

L2
0

L2
MP

+
L2
MP

L2
0

)

− kBT ln 2

− kBT

NMn
∑

j=1

ln

[

ZS

(

βSρMP(Rj)

3kBT

)]

, (B2)
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where the first two terms are the sum of the kinetic and
potential energy with L0 =

√

~/m∗ω, the third term is
from the hole spin degeneracy, and the final term is due to
the exchange interaction of the hole spin density ρMP(r)
at the site of Mn spins, Rj . As an approximation, we
consider a homogeneous distribution of Mn, and trans-
form

∑

j → N0xMn

∫

d3R (the continuous limit) where
xMn is the Mn fraction per cation and N0 is the density
of cation sites. The average exchange interaction for the
MP, EMP, can be derived to obtain

EMP = −∆max

3

∫

d3RρMP(R)BS

(

βSρMP(R)

3kBT

)

, (B3)

where ∆max = xMn|N0β|S. EMP is found by numeri-
cally minimizing Eq. (B2) to obtain the most probable
width, LMP. This width determines ρMP by combining
Eqs. (B1) and (15) and yields EMP from Eq. (B3).

It is instructive to now compare how various forms
of the carrier wave function affect the T -dependence of
the EMP, shown in Fig. 12(a). We choose xMn = 2.6%,
hz = 2.5 nm, ~ω = 30 meV, m∗

h = 0.21, L0 = 3.5 nm–
the characteristic width in the absence of Mn spins, and
N0β = −1.05 eV, which within the classical radius of
this harmonic confinement yields NMn = 90, as in Fig. 5.
From Fig. 12(a), where we compare our results for the
variationally obtained LMP(T ) with the wave function of
a fixed width at LMP(T ) ≡ L0, we see that the wave
function renormalization have a very small influence on
EMP(T ). In fact, both of them are very similar to the
variational EMP(T ) for a constant wave function in Fig. 5.
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FIG. 12. (Color online) (a) T -dependence of the MP en-
ergy [Eq. (B3)] with the variationally-obtained (“renormal-
ized”) (red/solid) and the fixed wave function for a harmonic
QD confinement without Mn spins. (b) The corresponding
T -dependence of the most probable width for a renormal-
ized wave function, LMP (red/solid) and fixed wave function
(blue/dashed), LMP ≡ L0, from Eq. (B1). (c) T -dependence
of the LMP from a variational method (red/solid) and Monte
Carlo simulations (blue/dotted).

From Fig. 12(b) we see that the wave function renor-
malization itself is a small effect. The red/solid curve
shows how the wave function width, normalized to the

nonmagnetic width, L0, varies with T . As the T in-
creases from T = 0 K, the Mn spins coupled to the tail
of the wave function are more prone to thermal excita-
tion. The wave function shrinks to attain a more energet-
ically favorable configuration by increasing the exchange
energy gain from the polarized Mn spins near the cen-
ter of the QD. Eventually, thermal excitation overcomes
the magnetic energy, and the system relaxes continuously
to a nonmagnetic state resulting in LMP = L0 at large
T , as there is no energy gain from the wave function
renormalization. From the variational approach we see
an additional MP localization: LMP ≤ L0, while the non-
monotonic LMP(T ) implies also a nonmonotonic effective
exchange field43 due to the MP formation.

To further verify the renormalization effect of the MP
wave function, we implement Monte Carlo simulations,
removing the need of a variational calculations of the
wave function. To approximate the MP wave function we
include s, p, and d orbitals in our simulation and allow for
mixing of these orbitals. In Fig. 12(c) we see that both
variational (red/solid) and Monte Carlo (blue/dotted) re-
sults agree well with each other and shown again a non-
monotonic LMP(T ), noted also in Fig. 12(b). The slightly
smaller wave function renormalization in Fig. 12(c), as
compared to that in Fig. 12(b), is a consequence of fewer
Mn spins in the middle region of the QD.

Appendix C: Monte Carlo Simulations

Monte Carlo simulations were used to approximate so-
lutions to the Schrödinger equation

Ĥ({S}) |Φ〉 = E({S}) |Φ〉 , (C1)

for a fixed finite orthonormal basis |Φ〉 at a given Mn spin
({S}) configuration. The calculation entails guessing a
Mn configuration at a given T , producing a matrix rep-
resentation of Ĥ({S}) in a finite basis, and solving the
eigenvalue problem.

The calculation begins by defining a 2D harmonic QD
and solve for single heavy hole QD levels and eigenfunc-
tions without any Mn atoms. We truncate the states up
to the first N -orbitals. We obtain N noninteracting wave
functions φ0

nσ(r) at energy E0
n with σ =↑, ↓. For a given

configuration of NMn Mn spins, {Sz1, Sz2, ..., SzNMn
}, we

construct a (2N) × (2N) matrix,

Ĥ =
∑

nσ

E0
n |φ0

nσ〉 〈φ0
nσ | +

∑

nn′,σ

gnn′σ({Sz}) |φ0
n′σ〉 〈φ0

nσ | .

(C2)
The interaction constant g is

gnn′σ({Sz}) =
β

3

NMn
∑

j=1

[φ0
n′σ(Rj)]

∗ (sz,σSzj)φ
0
nσ(Rj),

(C3)
where sz is the spin of the carrier and Rj is the posi-
tion of the Mn ion. We diagonalize the single heavy hole
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Hamiltonian at a snapshot of {Sz} and obtain eigenvalues
Ei({Sz}) and eigenvectors ci,nσ({Sz}). We then propose
a different Mn-configuration, {S′

z1, S
′
z2, ..., S

′
zNMn

}, diag-

onalize Ĥ({S′
z}) and obtain new eigenvalues E′

i({S′
z}).

∗ Present address: Quantum Artificial Intelligence Labora-
tory, NASA Ames Research Center, Mail Stop 269-1, Mof-
fett Field, CA 94035
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38  L. K lopotowski,  L. Cywiński, M. Szymura, V. Voliotis, R.
Grousson, P. Wojnar, K. Fronc, T. Kazimierczuk, A. Gol-
nik, G. Karczewski, and T. Wojtowicz, Phys. Rev. B 87,
245316 (2013).

39 W. Pacuski,T. Jakubczyk, C. Kruse, J. Kobak, T. Kaz-
imierczuk, M. Goryca, A. Golnik, P. Kossacki, M. Wiater,
P. Wojnar, G. Karczewski, T. Wojtowicz, and D. Hommel,
Cryst. Growth Des. 14, 998 (2014).

40 A. Kudelski, A. Lematre, A. Miard, P. Voisin, T. C. M.
Graham, R. J. Warburton, and O. Krebs, Phys. Rev. Lett.
99, 247209 (2007)

41 J. van Bree, P. M. Koenraad, and J. Fernandez-Rossier,
Phys. Rev. B 78, 165414 (2008).

42 A. O. Govorov, Phys. Rev. B 70, 035321 (2004).
43 D. R. Yakovlev and W.Ossau, in Introduction to the

Physics of Diluted Magnetic Semiconductors edited by J.



13

Kossut and J. A. Gaj (Springer, Berlin, 2010).
44 T. Dietl and J. Spa lek, Phys. Rev. Lett. 48, 355 (1982);

T. Dietl and J. Spa lek, Phys. Rev. B 28, 1548 (1983).
45 P. A. Wolff, in Semiconductors and Semimetals edited by

J. K. Furdyna and J. Kossut (Academic Press, San Diego
1988), Vol. 25.

46 A. C. Durst, R. N. Bhatt, and P. A. Wolff, Phys. Rev. B
65, 235205 (2002).

47 J. K. Furdyna, J. Appl. Phys. 64 R29 (1988).
48 E. L. Nagaev, Physics of Magnetic Semiconductors (MIR

Publishers, Moscow 1983).
49 T. Kasuya and A. Yanase, Rev. Mod. Phys. 40, 684 (1968).
50 T. Dietl, P. Peyla, W. Grieshaber, and Y. Merle d’
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