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We introduce a novel structural modeling technique: Force Enhanced Structural Refinement
(FESR). The technique incorporates interatomic forces in Reverse Monte Carlo (RMC) simulations
for structural refinement by fitting experimental diffraction data using the conventional RMC algo-
rithm, and minimizes the total-energy and forces from an interatomic potential. We illustrate the
usefulness of the approach by studying a-SiO2 and a-Si. The structural and electronic properties of
the FESR models agree well with experimental neutron and x-ray diffraction data, and the results
obtained from previous molecular-dynamics simulations of a-SiO2 and a-Si. We have shown that the
method is more efficient than the conventional molecular-dynamics simulations via ‘melt-quench’.
The computational time in FESR has been observed to scale quadratically with the number of
atoms.

I. INTRODUCTION

An ideal approach to computational modeling of complex amorphous materials should incorporate the state-of-the-
art total-energy and force methods and the judicious application of a priori information–experimental data pertaining
to the material. When these schemes are suitably merged, the resulting structural models should reflect our full state
of knowledge about the material. Conventional molecular-dynamics (MD) simulations of amorphous materials suffer
from several difficulties. Most serious of all is the high computational cost associated with simulating large models
using quantum-mechanical methods, such as ab initio molecular dynamics (AIMD) based on the density-functional
theory. Further, for amorphous solids with weak or no glassy behavior (e.g. a-Si and a-Ge), AIMD performs poorly
that requires development of new approaches to address these materials. Similarly, computational approaches that
attempt to construct structural models of amorphous solids by inverting experimental data, along with the local
chemical and geometrical ordering of the networks, often fail. Such inverse approaches crucially rely not only on the
quality and availability of experimental information but also on the ability of the approaches to effectively include
a priori information in simulations. An archetypal example is the Reverse Monte Carlo (RMC) method1,2, which
constructs a three-dimensional model of a material by inverting experimental diffraction data. While RMC is very
simple to implement and has been used to model a variety of disordered solids3–5 (e.g. glasses, liquids, polymers,
etc.) in the past, the very scalar nature of diffraction data dictates that the method cannot be used to uniquely
determine the structure of amorphous solids using diffraction data only. This has led to the development of a number
of hybrid approaches that successfully couple a total-energy functional (quantum-mechanical or otherwise) with a

priori information. To this end, the purpose of this paper is to present a hybrid approach that effectively imposes a
priori information on a simulation process.
Logically, one should include as much a priori information as possible from experimental data, as well as from

chemical and geometrical knowledge of the material, to produce structures consistent with experiments6. Com-
pelling ‘uniformity’ as a constraint, for the refinement of the atomistic-scale structures, was adopted by Goodwin
and coworkers in their INVERT technique7. A liquid-quench procedure, combined with a hybrid Reverse Monte
Carlo (HRMC) approach, which incorporates both experimental and energy-based constraints has been employed by
Opletal and coworkers in their study of amorphous carbon8. A similar approach via HRMC with bonded and non-
bonded forces was used by Gereben and Pusztai to study liquid dimethyl trisulfide9. Likewise, by refining the initial
interatomic empirical potential-energy function and fitting the input experimental structure-factor data, empirical
potential structure refinement (EPSR) has been quite successful in predicting liquid structures10. An alternative
approach, experimentally constrained molecular relaxations (ECMR), which incorporates experimental information
in first-principles modeling of materials in a ‘self-consistent’ manner was discussed in11. The approach presented in
this paper provides an alternative scheme to develop a self-consistent implementation of the ECMR with a minimal
computational overhead. Recently, a means for including electronic a priori information has also appeared12.
In this paper, we report a novel structural modeling technique: Force Enhanced Structural Refinement (FESR).

To test the effectiveness of this approach, we have conducted structural modeling of a-SiO2 and a-Si. Our method
uses RMC to fit the input experimental data and parsimoniously employs interatomic forces obtained from (classical)
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total-energy functionals to restrict the search in the energetically-favorable region of the configuration space in a self-
consistent manner. Unlike other hybrid approaches8,9, where the total-energy of the system is coupled to RMC for
accepting and rejecting atomic moves, the movement of the atoms in FESR, due to interatomic forces, is independent
of the RMC moves. This enhances the efficiency of the method by reducing the total computational cost associated
with force calls. The computational efficiency of the technique has been studied by comparing the number of force
calls with other MD approaches.
The rest of this paper is organized as follows. In section II, we describe the basics of the FESR method and its

implementation. Section III discusses the results for a-SiO2 and a-Si. In section IV, we present the conclusions of our
work.

II. METHODOLOGY: BASICS OF FESR AND ITS IMPLEMENTATION

A review of Reverse Monte Carlo (RMC)1,3,4,8,11 and the related methods suggests that diffraction data alone is
insufficient to determine the structure of complex amorphous solids. This is particularly so for amorphous semi-
conductors, where the presence of directional bonding cannot be inferred directly from one-dimensional diffraction
data only. While the inclusion of structural constraints proves to be particularly useful in RMC simulations13, they
do introduce additional complexities in the search space. For multi-component systems, this can be a serious im-
pediment and, in some cases, may render the problem intractable even with gradient information. The choice of
appropriate constraints itself can be highly nontrivial. Owing to the hierarchical nature of the geometrical/structural
constraints in complex disordered systems, it is generally beneficial to include lower-order constraints first, which are
followed by higher-order constraints of increasing complexity and information content. However, the presence of too
many constraints can be detrimental to a problem due to the competition between the constraints. Such competing
constraints can adversely affect the efficiency of a search procedure by introducing complex rugged structure in the
multi-dimensional configuration space, which makes it difficult for the optimizer to evolve and, thus, to determine the
optimal solution space for structural determination. Further, the correct structural solutions often crucially depend on
the strength of the constraints (i.e. weight factors), which are generally obtained heuristically after several trial runs
in optimizations based on stochastic search algorithms. Thus, the determination of structure of complex disordered
solids from a set of experimental data and structural/geometrical constraints continues to pose a challenging problem
in condensed-matter sciences.
In the present approach, we intend to avoid some of these difficulties by introducing the following steps: i) optimiza-

tion of a total-energy and penalty functionals in separate subspace; ii) inclusion of gradient information to optimize
the total-energy functional; iii) incorporation of special atomic displacements to enhance the convergence of total
energy during subspace optimization by moving a set of atoms associated with strained local configurations. Step I
essentially eliminates the need for weight factors that are necessary for optimization of an augmented ‘effective energy’
functional. Instead, subspace optimizations proceed in tandem with each other and, thereby, establish a ‘coupling’
between steps I and II. Unfavorable configurations, which are generated in step I, are either corrected or rejected in
step II and vice versa. We emphasize that the approach is highly flexible; the exact implementation of the method
can vary and may depend on the degree of accuracy and the efficiency one needs to achieve in optimizing models with
several hundreds atoms. While a number of sophisticated algorithms can be employed for subspace optimizations
(such as deterministic conjugate-gradient14 type approaches to stochastic exchange-replica Monte Carlo15 and evolu-
tionary search procedures16), for the sake of simplicity and exploring the efficacy of this approach at its basic level, we
confine ourselves to the steepest-descent method and Reverse Monte Carlo approach for optimizing the total energy
and experimental structure-factor data, respectively. We show that even at this elementary level of implementation,
the method is profitable and holds the promise for further development using the state-of-the-art multi-objective op-
timization (MOO) techniques developed in recent years. Thus, in the FESR approach, the statement of the problem
can be written as:

min
{q}

P ({q}), P ≡ χ2 ⊗ Φ, (1)

where Φ, χ2, and {q} stand for a total-energy functional, a penalty function involving experimental structure factor,
and 3N-dimensional configurational coordinates, respectively. Following McGreevy and others1,5, we can write,

χ2 =
∑

i

[

FE(ki)− FC(ki)

σ(ki)

]2

, (2)

where FE/C(ki) is the experimental/computational structure factor, and σ(ki) is the error associated with the exper-
imental data for wave vector ki.
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To illustrate our method, we have chosen two canonical examples of amorphous systems: amorphous silica (a-
SiO2) and amorphous silicon (a-Si). The former is a classic glass-former, and can be readily obtained by quenching
molten models at high temperature. The latter is preferably modeled via event-based approaches, such as Winer-
Wooten-Weire (WWW)17 and activation-relaxation techniques18. Both systems have been studied extensively in the
literature, which provides a wealth of information for comparing experimental data with computational results for
various physical quantities. Here, we choose to employ the environment-dependent interatomic potential (EDIP)
by Justo et al. 19 for modeling a-Si. For a-SiO2, we choose the potential proposed by Beest et al. (BKS) and their
parameters20. The functional form of the BKS potential is given by,

φiα,jβ =
QαQβ

riα,jβ
+Aαβ exp(−Bαβ riα,jβ)−

Cαβ

r6iα,jβ
, (3)

where φiα,jβ is the interaction energy between two atoms of species α and β at sites i and j, respectively. The
parameters Q, A, B and C depend on atomic species and can be found in 21.
The presence of the electrostatic interaction in Eq. 3 stipulates that the Ewald summation 22 should be used in the

calculation of the total energy and forces. However, as shown by Wolf et al. 23 in a recent communication, a pairwise
sum can be constructed in real space by ensuring charge neutrality of the system such that the sum produces results
very similar to that obtained from the Ewald summation. We have adopted this real-space approach to calculate
the total energy and forces via Wolf’s summation. Following these authors, the expression for the electrostatic force
between two species α and β at sites i and j can be written as:

F iα,jβ = QαQβ

{

erfc(κriα,jβ)

r2iα,jβ
+

2κ

π1/2

exp(−κ2r2iα,jβ)

riα,jβ

−
erfc(κRc)

R2
c

−
2κ

π1/2

exp(−κ2R2
c)

Rc

}

, for riα,jβ ≤ Rc.

(4)

The damping coefficient (κ) and the cutoff radius (Rc) play an important role in the calculation by including contri-
butions from the reciprocal and real spaces. Since these parameters are not independent of each other, care must be
taken to choose an appropriate set of values for accurate calculations of total energy and forces. Following Fennell
and Gezelter24, we have used a value of 0.2 and 9 Å for κ and Rc, respectively.
Figure 1 presents a schematic diagram of the FESR method showing the principal steps of our calculations. Starting

with an initial random configuration C1, the method proceeds via χ2 minimization to generate a new configuration
C2 by enforcing experimental structure factor using conventional Reverse Monte Carlo (RMC) simulations. The
output from this step is then fed to the next step for optimization of total energy via a gradient-descent approach.
The structure of the resulting configuration C3 is then examined for continuation or termination. This self-consistent
iterative scheme continues until the convergence criteria for each subspace optimization are met or a maximum number
of iteration is reached. The total-energy optimization and the χ2-fitting of the structure factor constitute the principal
components of the method, and are indicated in Fig. 1 by the loop: 2 → 3 → 4 → 2. In the next section, we apply
this method to a-SiO2 and a-Si, and discuss the results in details.

III. RESULTS AND DISCUSSION

A. Amorphous silica (a-SiO2)

In this subsection, we present results for a-SiO2 from FESR simulations. To this end, we use total neutron static
structure factor from6 which is then coupled with the total-energy BKS functional to generate a-SiO2 models consisting
of 192, 648, 1020 and 1536 atoms. Starting with a random configuration with an experimental density of 2.20 g cm−3

for a-SiO2, the structure factor of the model is fitted with the corresponding experimental data via RMC simulations.
After 100 successful RMC moves, the total energy and forces on the atoms are calculated (using a single force call)
and the atoms are displaced along the direction of forces. This 2-step process is then repeated until the convergence
criteria for χ2 and the total energy are satisfied. Analysis of χ2 and total energy suggest that approximately 3× 104

force calls are sufficient for FESR to converge to a reasonable accuracy of δχ2 ≈ 10−4 and δF≈ 0.02 eV/Å for system
sizes we have studied so far.
To estimate the overall computational cost of the method, we have calculated the total CPU time for several system

sizes, and compared the results with those obtained from classical and ab initio MD simulations reported in25,26. In
Fig.2, we have plotted the CPU time for N = 192, 648, 1020 and 1536 atoms. While both RMC and force calculations
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can be implemented in an order-N manner (see note38), we made no attempts to obtain such improved scaling at this
time in an effort to examine the usefulness of this approach in this exploratory study. Thus, the CPU time for a run
has been observed to scale quadratically with the system size. This is indicated in Fig. 2 by a least-square fit of the
data using a quadratic polynomial. Despite this quadratic scaling of CPU time, a notable feature of the method is
the parsimonious use of gradient information for structural optimization. FESR makes significantly fewer force calls
than conventional classical/ab initio MD or other gradient-based methods. A comparison of the number of force calls
relaxation between FESR and melt-quench MD (classical and ab initio)25,26 can be found in Table I.
The partial pair-correlations data for the FESR models are shown in Table II. The peak positions and bond lengths

are comparable with the results from other MD models and experiments. The average coordination numbers of Si
and O for the model with 1536 atoms are found to be 3.98 and 1.99, respectively. The presence of a few 3-fold (3.2
%) and 5-fold (0.45 %) silicon and isolated (2.7 %) oxygen atoms can be attributed to the BKS potential that lacks
the three-body term20. None of the FESR models shows any chemical disorder or heteropolar bonding.
The total structure factor S(k) is compared to the neutron diffraction experiments from Ref.6, and is shown in

Fig. 4. The origin of the peaks in S(k) can be inferred from partial structure factors. The second peak in Fig. 4 arises
from Si–Si and O–O correlations with a partial cancellation from the Si–O anti-correlations. The third and fourth
peaks receive contributions of Si–Si, Si–O and O–O correlations. The first peak for both the models is small compared
to the experiment which can be attributed to finite-size effects in the intermediate range order 27.
In Fig. 5, we have shown the variation of the cost function (χ2) and BKS energy per atom during FESR simulations.

The horizontal line in the plot corresponds to the BKS energy for a 648-atom model obtained from the decorate-
and-relax approach described elsewhere29. The BKS energy, for both 1536- and 648-atom models, is close to -19.15
eV/atom, which is comparable to -19.18 eV/atom from the corresponding DR model. The use of atomic forces or
gradient information improves the quality of structure.
The bond-angle distributions for the model with 1536 atoms are plotted in Fig. 6. The distribution of ∠O-Si-O

shows that the silicon-centered O-Si-O angles are tetrahedral in character with an average value of 109.5◦ and a full
width (at half maximum) of 15.6◦. These values are consistent with the experimental data reported by Mozzi and
Warren30. The corresponding values for ∠Si-O-Si are found to be 154.3◦ and 27.8◦, respectively. The average value
of ∠Si-O-S is about 6.4% higher than the experimental value of 144◦, and the value obtained from other theoretical
models25,27. This deviation, however, is not surprising, and is generally attributed to the lack of 3-body interaction in
the BKS potential31. Since Si-O-S angles involve two neighboring tetrahedra connected via a bridging oxygen atom
at a common vertex, it is difficult for the BKS potential to produce this delicate geometrical arrangement accurately
via 2-body interactions only. A full comparison of FESR results with experimental data and other theoretical models
are provided in Table III.
Table IV presents the number of irreducible ring statistics for the models with 192, 648, and 1536 atoms using

the I.S.A.A.C.S program 32. The presence of only even-member rings implies the absence of chemical disorder in the
network.
The structures obtained from FESR have been relaxed using the density-functional code (VASP) using a local-

density approximation (LDA) and the LDA energies have been found to be comparable with those obtained from
the DR model29. The electronic density of states (EDOS) for a 192-atom a-SiO2 is shown in Fig.7. The EDOS is
comparable with the results obtained by Sarnthein and co-workers26 and hence with the X-ray photoemission spectra
(XPS)33 in the sense that the states are well reproduced. There are three distinct regions of occupied states. The
states about -18 eV are oxygen 2s states, while the one between -10 eV and -4 eV are the bonding states between Si
sp3 hybrids and O 2p orbitals. The highest occupied states in valence band about -4 eV are the O 2p states and the
lowest unoccupied states of conduction band comprise of anti-bonding states. However, the band gap of 3.96 eV is
underestimated compared to 4.8 eV of that obtained from MD calculation26 and the experimental value of 9.0 eV34.
This is to be expected from LDA DFT calculations.
Finally, to verify the reproducibility of the method, we have generated 20 configurations of 192- and 648-atom

models, and 10 configurations of 1020- and 1536-atom models from different random starting configurations. Approx-
imately, 90% of final configurations have been observed to have almost identical structural and electronic properties.
The configuration fluctuations of various physical observables are found to be within the statistical limits, which
ensure the reproducibility and consistency of the FESR method.

B. Modeling amorphous silicon (a-Si)

We have also employed FESR to model structure of a-Si starting from a random configuration with 216 atoms. The
results of our calculations are plotted in Figs. 8-12. Figure 8 shows the structure factor obtained from a 216-atom
FESR model of a-Si along with the experimental X-ray diffraction data from 35. It is evident from Fig. 8 that the
structure factor agrees very well with the experimental data except for a few points near the first peak. This is also
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reflected in the correlation data in real space in Fig. 9, where the pair-correlation function of the FESR model is
compared with the same from a WWW model.
The cost function χ2 and the total EDIP energy is shown in Fig. 10. The energy is compared to the 216-atom a-Si

WWW model which is 4.199 eV (shown by dashed line). This shows that in FESR, the energy is minimized together
with the structural refinement.
The bond-angle distribution is shown in Fig.11a where the tetrahedral geometry is retained compared to the WWW

model of identical number of atoms. The corresponding bond-angle distribution using RMC is shown in Fig.11b where
the peaks are highly underestimated and the distribution is broad without tetrahedral peak. We relaxed the structure
obtained from FESR using VASP and found the energy minimum to be -5.18 eV/atom compared to -5.23 eV/atom
of the VASP relaxed WWW model. This shows that the LDA energies are comparable. In Fig.12, the electronic
density of states for the FESR model is compared with the same from a VASP-relaxed WWW model. The Fermi
energies are shown by the vertical dashed lines. As compared to RMC and constrained RMC2, the EDOS is in better
agreement with optical measurements. The FESR model exhibits the presence of several defect states within the gap,
which mostly arise from coordination defects. This is expected in view of the fact that approximately 10% of total
Si atoms have a coordination number, which is different from 4. This coordination number is better compared to
the constrained RMC (88%)2 and MD Quench from melt using EDIP and Tersoff potentials36,37. The EDIP for Si
overestimates the five-fold bond in Si which is evident in our FESR calculation with almost 8% 5-fold Si present in
the network36. These floating bonds, clutter the gap and form defects states that closes the gap. The presence of
these defect states, and the use of the LDA that is known to underestimate the optical gap, explains the small gap in
the electronic density of states.

IV. CONCLUSIONS

In this paper, we have studied a new approach–Force Enhanced Structural Refinement (FESR)–to model complex
amorphous solids by combining experimental structure factor with periodic usages of gradient information from a
total-energy functional. The approach consists of employing experimental scattering data to generate an ensemble
of possible structural solutions via Reverse Monte Carlo simulations, which is followed by further refinement of the
RMC solutions using gradient information from a total-energy functional. Since conventional RMC cannot describe
a 3-dimensional structure uniquely, and its constrained counterpart with additional structural information often
transforms the original unconstrained problem to a difficult multi-objective optimization program, the emphasis on
the present approach has been to develop a method that retains the simplicity of RMC and yet overcomes the
problem of non-uniqueness in structural determination via the economical use of a total-energy functional and forces.
The approach can be viewed as a ‘predictor-corrector’ method for structural refinement. Atomistic configurations
predicted by RMC are corrected at regular interval via the optimal usage of gradient information or forces from
a total-energy functional. This enables FESR to track solutions in the manifold of the solution space that jointly
satisfies experimental structure-factor data and the total energy of the system. In this exploratory study, we have
demonstrated using two archetypal examples of amorphous solids (a-Si and a-SiO2) that the method performs on a
par with the traditional MD simulations or other gradient-based relaxation approaches even at an elementary level of
its implementation.
We have successfully implemented FESR to model a-SiO2 and a-Si. Structural and electronic properties of the

FESR models are produced as accurately as possible within the limit of the potentials and experimental input data.
The structural properties of FESR models have been examined by analyzing the pair-correlation data, bond-angle
distributions, ring statistics and the distribution of the tetrahedral building blocks of the underlying network structure
of a-SiO2 and a-Si. Electronic properties of the models are also studied primarily by calculating the electronic
density of states within the density-functional framework using the plane-wave based VASP code using a local-density
approximation. A comparison of FESR results with those obtained from ab initio and classical simulations25,26 are
also discussed.
We conclude this section with the following observations. First, the method can be improved further by using

efficient algorithms for both RMC and total-energy calculations. The former can be readily implemented using an
O(n) algorithm. Similarly, by using more sophisticated algorithms for the minimization of total energy, it is possible to
accelerate the convergence of total energy and forces during FESR simulations. Second, the very economical nature of
the use of gradient information (or forces) suggests that the method would be particularly useful when employed with
ab initio total-energy functionals. Since ab initio calculations of total energy and forces for complex disordered solids
(with system size) are almost always proportional to O(n3), an implementation of FESR within ab initio packages
will provide an effective tool for total-energy relaxations. Last but not least, we anticipate, it would be possible to
develop a more effective coupling scheme between the solution space (defined by a set of experimental data) and the
configuration space (of a total-energy functional) such that a mechanism can be built into FESR to avoid solutions
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associated with unphysical or poor structures. In a future communication, we will address some of these issues.
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FIG. 1: A schematic diagram of the FESR method. The principal computing loop is highlighted in grey.
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FIG. 2: (Color online) Scaling of total CPU time (red circles) vs. system size in FESR simulations. A least-square fit of the
data with a quadratic polynomial is shown as a blue curve.
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simulations. Experimental data from6 are shown as solid circles.
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FIG. 5: (Color online) Total energy (of a-SiO2) and the cost function χ2 vs. RMC steps during FESR simulations. The
horizontal line corresponds to the energy of a DR model using the BKS potential for comparison.
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FIG. 6: (Color online) Bond-angle distributions of a 1536-atom model of a-SiO2 from FESR calculations. The average and
width of the distributions are listed in Table III.
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FIG. 7: (Color online) Electronic density of states (EDOS) for a 192-atom model of a-SiO2 obtained from FESR simulations.
The corresponding result from a DR model is included for a comparison. Fermi levels are indicated as vertical lines at 2.4 eV
(DR) and 3.4 eV (FESR).
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FIG. 8: (Color online) A comparison of FESR structure factor for a 216-atom model of a-Si with the experimental data from
Ref. 35.
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FIG. 9: (Color online) Pair-correlation data (blue) for a 216-atom model of a-Si obtained from FESR. The corresponding data
(red) for a WWW model is also presented here for a comparison.
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FIG. 10: (Color online) The variation of χ2 and EDIP energy during FESR simulations. The dashed line is the EDIP energy
for a WWW model with an identical size and the number density.
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FIG. 11: (Color online) (a) The bond-angle distribution for a 216-atom model of a-Si using FESR (solid line) and a WWW
model (dashed line). (b) The bond-angle distribution for a 216-atom ‘a-Si model’ from RMC simulations using experimental
structure factor only. The approximate semi-circular distribution is a characteristic feature of unconstrained RMC.
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FIG. 12: (Color online) Density of electronic states of a-Si using VASP from FESR (blue) and WWW (red) models. The
corresponding Fermi levels are indicated as vertical lines at 6.1 eV (FESR) and 5.7 eV (WWW).
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Tables
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TABLE I: Number of force calls and average CPU time in FESR compared with classical and quantumMelt-Quench method25,26.

192-
atom

648-
atom

1020-
atom

1536-
atom

CPMD
(Ref25)

Classical
MD
(Ref26)

Number
of
force
calls

3× 104 3× 104 3× 104 3× 104 27× 104 6× 104

CPU
time
(hours)

0.47 1.26 2.64 5.52
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TABLE II: Peak positions of FESR model compared with other MD models and experiments (Expt.).

Peak position (Å)
atom-atom FESR MD (Ref25) Expt.(Ref28)
Si-Si 3.15 3.10
Si-O 1.62 1.62 1.610± 0.050
O-O 2.64 2.64 2.632± 0.089
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TABLE III: Bond-angle distributions from FESR, MD and DR models.

Bond Angle (deg)
FESR MD

(25)
Expt.
(30)

DR (6

O-Si-O 109.5
(15.6)

109.6
(10)

109.5 109.5
(9)

Si-O-Si 154.3
(27.8)

142.0
(25)

144
(38)

140
(25)
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TABLE IV: Ring statistics of a-SiO2 from FESR models.

Ring size
(n)

4 6 8 10 12 14 16 18

192-atom 0 7 9 26 17 28 16 12
648-atom 5 12 36 57 80 109 53 42
1536-
atom

6 24 108 167 195 215 148 96
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