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Abstract

We investigate the dynamically polarized nuclear-spin system in Fe/n-GaAs heterostructures

using the response of the electron-spin system to nuclear magnetic resonance (NMR) in lateral spin-

valve devices. The hyperfine interaction is known to act more strongly on donor-bound electron

states than on those in the conduction band. We provide a quantitative model of the temperature

dependence of the occupation of donor sites. With this model we calculate the ratios of the

hyperfine and quadrupolar nuclear relaxation rates of each isotope. For all temperatures measured,

quadrupolar relaxation limits the spatial extent of nuclear spin-polarization to within a Bohr radius

of the donor sites and is directly responsible for the isotope dependence of the measured NMR signal

amplitude. The hyperfine interaction is also responsible for the 2 kHz Knight shift of the nuclear

resonance frequency that is measured as a function of the electron spin accumulation. The Knight

shift is shown to provide a measurement of the electron spin-polarization that agrees qualitatively

with standard spin transport measurements.
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I. INTRODUCTION

Hyperfine interactions profoundly influence electron-spin dynamics in n-GaAs at temper-

atures below 100 K.1–4 The strong influence is a direct result of the low channel doping of

between 2 - 10×1016 cm−3, which is typically used to maximize the electron spin lifetime.3–7

This doping range is only slightly above the metal-insulator transition of GaAs, and so the

system is best described with a combination of localized and itinerant electronic states.8,9

The wavefunctions of localized electrons have a dramatically enhanced overlap with nearby

nuclei, greatly increasing the efficiency of dynamic nuclear polarization by the contact hyper-

fine interaction.10,11 The action of the spin-polarized nuclear system on the electron system

is equivalent to an effective magnetic field that is often larger than the applied field.12

In this paper, we report on measurements of nuclear magnetic resonance (NMR) by

probing the response of the electronic spin accumulation to this effective field. A typical

means of modulating the electron spin accumulation is by dephasing the spins with an

applied magnetic field, which is known as the Hanle effect. The presence of the effective

nuclear magnetic field can partially cancel the applied field and restore (in part) the electron

spin polarization. In this experiment, we extend the earlier work of Ref. 3 by using NMR

to probe the detailed dynamics of the coupled electron-nuclear spin system, allowing for

the extraction of information about the occupancy of donor sites by spin-polarized electrons

and their coupling to the nuclear spins of the different isotopes. When the nuclear spin-

polarization is destroyed by NMR, the electronic spin accumulation changes in the presence

of the new effective magnetic field. Therefore to detect NMR, we monitor the polarization

of the electronic spin system as a function of the frequency of the applied ac magnetic field.

We show that quadrupolar relaxation of the nuclear spin allows a nonzero nuclear spin

polarization to exist only very near donor sites and that this spatial dependence explains the

order of magnitude difference in the NMR signal magnitude as a function of isotope. The

presence of spin-polarized electrons acts through the hyperfine interaction as an effective

magnetic field affecting the nuclei near these donor sites. If the occupation fraction of

donor sites is known, the electronic field near donor sites can be calculated for a given spin

accumulation. We provide a quantitative estimate for the occupation fraction on the basis

of resistivity measurements. Using this model, we show that the magnitude of the electronic

spin polarization can be determined using the Knight shift.
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Figure 1 shows a schematic of a typical lateral spin-valve device. From bottom to top,

the epitaxial Fe/n-GaAs (100) heterostructures consist of a GaAs buffer layer followed by a

Si-doped 2.5 µm thick channel (n ∼ 3−8×1016 cm−3), a 15 nm n→ n+ transition layer over

which the Si-doping is increased to 5×1018 cm−3, followed by a 15 nm thick n+ (5×1018 cm−3)

layer.13 The Fe layer is 5 nm thick and is grown at a nominal substrate temperature of

0◦ C.6,7,14 The structures are capped with thin layers of Al and Au. The heterostructures

are fabricated using standard photolithography and semiconductor processing techniques

into lateral spin-valves with injection and detection contacts (5 µm × 50 µm), labeled b and

c respectively, separated by 10 µm. The heavily doped interfacial regions form Schottky

tunnel barriers. A spin-polarized current is created at the injection contact (b) when the

Fe/GaAs interface is biased. This spin current leads to a non-equilibrium spin accumulation

S in the channel, where

S =
1

2

n↑ − n↓

n↑ + n↓

, (1)

and n↑(↓) is the concentration of electrons with spin up(down). The spin accumulation is

established in the channel by the combined effects of drift, diffusion, relaxation and preces-

sion. The presence of the spin accumulation in the channel is detected as a change in voltage

relative to a remote contact d, at either the injection contact itself in a three-terminal con-

figuration ∆Vbd,
3,6,15 or at a nonlocal detection contact ∆Vcd (connection not shown).7,16 In

either case, the spin accumulation can be detected by dephasing the spins in the channel

using the Hanle effect with an applied magnetic field perpendicular to the magnetization of

the contacts.

Figure 2(a) shows the change in three-terminal voltage ∆Vbd as a function of the applied

field B. When the field is oriented at an oblique angle θ = 15◦ from the sample normal as

depicted in Fig. 1, two peaks are discernible in the Hanle signal as a function of the applied

field. The peak at non-zero field (≈ 375 Oe in Fig. 2) is a result of the cancellation of

the applied field by the effective nuclear field.1,17 To measure NMR, an ac magnetic field

is applied using a few-turn coil placed above the sample as shown in Fig. 1. The nuclear

field is reduced when the frequency of the ac field matches the nuclear resonance condition

να = γαBa, where γ
α is the nuclear gyromagnetic ratio for the nuclear isotope α, and Ba

is the magnitude of the applied field. The slope of the spin signal at a fixed applied field

∂∆V
∂B

determines the sensitivity to a change in nuclear field. For example in Fig. 2(a), the

slope is negative and large at 500 Oe. Figure 2(b) shows the change in the electron spin
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Figure 1. (Color online) Schematic of a lateral spin valve device. A spin accumulation S is generated

in the GaAs channel in a three-terminal configuration and detected as a change in voltage ∆Vbd.

The coil placed over the device is used as a source of ac magnetic field for the NMR measurements.

The nuclear spin I is coupled to S through the hyperfine interaction, as represented by the two

arrows.

signal Vbd as a function of the ac frequency with the static field fixed at 500 Oe; the decrease

in the spin signal at the resonance has an amplitude Aα for each isotope α. Note that the

measured amplitude at the resonance of α = 71Ga is an order of magnitude larger than

at the resonance of 75As. Similar differences in the relative magnitudes of NMR signals

from different isotopes have been observed at temperatures above 50 K in other dynamically

polarized samples doped between 2 and 10×1016 cm−3 as well as in Al1−yGayAs systems.3,18

In the following sections we show that the observed isotope dependence of the magnitude

of the NMR signal arises from the fact that the hyperfine and quadrupolar nuclear-spin

relaxation rates are of comparable magnitude. In Section II we review the model of a

coupled electron-nuclear spin system. In Section III we demonstrate a simple means of

determining the temperature dependence of the donor occupation fraction, which determines

the efficiency of DNP, from charge transport. In Section IV we show that the temperature

dependence of the measured NMR signal can be reproduced with a quantitative model

accounting for the spatial distribution of spin-polarized nuclei. The different NMR signals

for each isotope are shown to be a result of a different effective volume of spin-polarized

nuclei around donors. In Section V we show that it is possible to measure the Knight shift

of the nuclear resonance frequency by using spin transport. We use the Knight shift to
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extract an alternative measurement of the spin-polarization of the electron system.

II. THE COUPLED ELECTRON-NUCLEAR SPIN SYSTEM

Just above the metal-insulator transition, the bottom of the GaAs conduction band can

be described as a combination of localized (impurity) and itinerant states. Electron-electron
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Figure 2. (a) The change in the three-terminal Hanle voltage ∆Vbd as a function of magnetic field

(open circles) for Fe/n-GaAs (5 × 1016 cm−3). A fit to the corresponding spin diffusion model

including the nuclear field as described in Ref. 3 is shown as a solid curve. The slope of the spin

signal at large field ∂∆Vbd/∂B determines the sensitivity of the electronic spin accumulation to

NMR. (b) The change in the electronic spin signal Vbd at 500 Oe as a function of the frequency

of the AC magnetic field. Three NMR peaks are observed corresponding to the three isotopes of

GaAs. The magnitude of the NMR signal A is observed to be an order of magnitude larger for

71Ga than for 75As.
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interactions effectively maintain the same average spin polarization between these states.19

The electrons in localized states interact strongly with the lattice nuclei via the contact

hyperfine interaction

H =
8π

3
geµBγNI · S |ψe|

2 , (2)

where µB is the Bohr magneton, ge is the free electron g-factor, γN is the nuclear gyromag-

netic ratio, I and S are the nuclear and electronic spin operators respectively, and ψe is

the electronic wavefunction evaluated at a nuclear site. For the purposes of our model, we

assume the localized wavefunction is that of a hydrogenic donor-bound electron

ψe =
1

√

πa3o
e−r/ao (3)

with an effective Bohr radius ao = 10 nm.20 Assuming a hydrogenic wavefunction, Paget

et al.1 recast the hyperfine interaction in terms of two effective magnetic fields: the Knight

field, an effective electronic field acting on the nuclei that depends on the distance from the

donor:

Be = ΓbeSe
−2r/ao , (4)

and the Overhauser field, an effective nuclear field acting on the electrons that is the weighted

sum of all the nuclei in the electron’s Bohr radius:

BN = fbNI. (5)

The strength of the electronic and nuclear fields be and bN have been calculated for GaAs

to be1,17

be = −170 G and bN = −53 kG. (6)

The occupation factor Γ and leakage factor f take into account that Be and BN are smaller

than their maximum values. Γ represents the fraction of donors that are occupied by an

electron. Only these donors can contribute to Be. The Overhauser field BN is reduced from

its maximum possible value by the leakage factor f , which takes into account relaxation of

the nuclear system by all other channels besides the hyperfine interaction.

The leakage factor can be easily motivated by considering the following rate equation for

a nuclei with spin I = 3/2 :11

dI

dt
=

4

3
I(I + 1)

S

TH
−

I

TH
−

I

T ∗
1

, (7)
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where the first term represents the polarization of nuclei by spin-polarized electrons, and the

second and third terms represent hyperfine relaxation with a rate T−1
H and all other nuclear

spin relaxation mechanisms at a rate T ∗−1
1 respectively. In the steady-state limit (dI/dt = 0),

the average nuclear spin I is proportional to the average electron spin polarization S and

the ratio of the pumping rate T−1
H due to hyperfine coupling to the total nuclear relaxation

rate T−1
1 = T−1

H + T ∗−1
1 :

I =
4

3
I(I + 1)ST−1

H /(T−1
H + T ∗−1). (8)

The leakage factor f is ratio of the hyperfine to total relaxation rate and can be written as

f =
T ∗
1

TH + T ∗
1

, (9)

so that

I = f
4

3
I(I + 1)S. (10)

When the hyperfine relaxation time TH is small, f is unity and the nuclear spin polarization

is maximized. If, however, other channels for nuclear spin relaxation besides hyperfine

coupling are present, then f < 1 and the polarization is reduced from its ideal value.

The fields Γbe and fbN can be determined from our data by modeling the coupled electron-

nuclear spin dynamics.1,3 In these models the average Overhauser field is1,21

~BN = fbN
4

3
(I + 1)

( ~B + Γbe~S) · ~S

( ~B + Γbe~S)2 +B2
o

( ~B + Γbe~S), (11)

where on average the nuclear spins are oriented along the vector sum of the applied field ~B

and electronic field Γbe~S. The dipolar field (sometimes called the local field) is described

with a phenomenological constant Bo.
1,11,22 Chan et al.3 determined the electronic and nu-

clear fields as well as Bo in an Fe/n-GaAs device with channel doping of 5×1016 cm−3 by

numerically solving the drift-diffusion equations for the electronic spin accumulation self-

consistently in the presence of the nuclear field given in Eq. 11 and fitting to Hanle curves

measured in an oblique magnetic field. They determined the nuclear fields to be

Γbe = −50G and fbN = −15 kG (12)

at 60 K as well as measuring the effective dipolar field to be Bo = 50 G. Comparing to the

theoretically calculated values, the implied occupation factor was Γ = 0.3. In the following

section we show that this value agrees with estimates determined from charge transport.
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III. OCCUPATION FRACTION

As discussed in the previous section, the fractional occupation Γ of the localized states

is a parameter which can be measured by modeling the coupled electronic and nuclear

spin dynamics. In this section we provide a means of extracting Γ from a model of the

electrical resistivity that takes into account the conduction and impurity bands. This model

is independent of spin transport measurements and can be used to predict the value of the

nuclear hyperfine relaxation rate as well as the Knight field.

Figure 3(a) shows the resistivity as a function of temperature for a sample doped at

5×1016 cm−3. At 300 K, all of the donors are ionized and the resistivity can be treated as

being metallic: ρf = ρI + ρOP = ρI + cT 3/2, where ρI takes into account ionized impurity

scattering in the degenerate limit, and the term with a pre-factor c takes into account the

phonon contribution to the resistivity.23–25 A curve representing ρf is shown in Fig. 3(a) as a

solid black line. As the temperature is lowered, the resistivity drops until electrons become

localized by occupying states in the impurity band, at which point the resistivity increases

dramatically. We attribute the increase in resistivity to a combination of the decrease in the

number of itinerant electrons as they freeze out into localized sites as well as a decreased

electron mobility in the localized impurity band. Using Matthiessen’s rule we model the

resistivity

ρ =
m

ne2τ
=
m

e2

(

1

nd − nLΓ(T )

)

(

τ−1
I + τ−1

OP + τ−1
IB

)

, (13)

where the three scattering rates are due to ionized impurity scattering, optical phonon

scattering, and scattering in the impurity band (neutral impurity scattering), and the density

of carriers is reduced from the donor density nd by the number density nLΓ(T ) of occupied

isolated donors. Equation 13 can be recast in terms of resistivities:

ρ(T ) =
1

1− nLΓ(T )
nd

[

ρf (T ) + ρIB
nLΓ(T )

nd

]

, (14)

where ρIB is the impurity band resistivity in the limit in which all donors are neutralized.

The actual impurity band contribution to the resistivity at any temperature is ρIB multiplied

by the fraction Γ(T )nL/nd of singly occupied (neutral) and isolated donors. ρIB has been

investigated in several semiconductor systems including Ge,26–28 and GaAs.29,30 Our system

corresponds to the intermediate doping range in which conduction occurs in the upper-

Hubbard or D− band. This band is composed of donor sites occupied by 2 electrons (D−
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states).20 Based on the increase in resistance at low temperatures in previously studied Ge

and GaAs samples,28,29 as well as simple models of an electron scattering off of neutral

donors,31–34 the resistivity ρIB due to localized impurity states is estimated to be 5-10 times

larger than that in the conduction band at low temperatures. We have found that using

values of ρIB between 5ρI and 10ρI only varies the final value of Γ in the analysis below by

less than 20%. For the data shown in Fig. 3(a), we use an intermediate value

ρIB = 7.5ρI = 100mΩcm (15)

to determine the contribution ρIB of the localized impurity states to the resistivity. Eq. 14

can then be solved for the occupation factor

Γ(T ) =
nd

nL

[

ρ(T )− ρf (T )

ρ(T ) + ρIB

]

. (16)

Assuming a given value of ρIB, the only other unknown parameter in Eq. 16 required in

order to determine Γ(T ) is the number of localized states nL, which can be estimated from

simple statistics. We consider a donor site to be localized if the closest neighboring donor is

further away than a critical distance rc. The number of localized sites is given by the Hertz

distribution:35

nL = nd

∞
∫

rc

dr
3

ad

(

r

ad

)2

e−(r/ad)
3

, (17)

where ad is the average distance between donor sites ad =
(

4πnd

3

)−1/3
. The number of

localized states can be estimated experimentally as a function of doping. Figure 3(b) shows

the value nL/nd for samples doped between 3 − 8 × 1016 cm−3, estimated by assuming the

occupation factor Γ is unity in the limit of zero temperature. These data can be fit with Eq.

17, and a single value of rc = 18 nm is found to reproduce nL/nd over this doping range.

The estimated critical radius rc is approximately twice the Bohr radius ao = 10 nm, which

suggests that the localized states considered here can still be treated as hydrogenic donors.

The solid curve in Fig. 4 shows the occupation factor Γ as a function of temperature calcu-

lated from the resistivity as described above. The points represent the occupation factor as

a function of temperature taken from the measurements of Ref. 14, where Γbe is determined

from spin transport by fitting the coupled electron-nuclear spin system in the same way as

described by Chan et al.3 In this case, the occupation factor is calculated by assuming that

the majority of the Knight field arises from Ga nuclei. In the next section we validate this
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Figure 3. (Color online) (a) The resistivity ρ (open symbols) of the GaAs channel as a function

of temperature for a sample with nd= 5×1016 cm−3 (open circles). A fit to the contribution ρf ,

which includes phonon and ionized impurity scattering, is shown as the black line. The difference

ρ(T ) − ρf (T ) can be used to calculate the occupation fraction of donors Γ(T ) as described in the

text. (b) The fraction of localized states nL/nd (symbols) as a function of doping concentration

nd, assuming that Γ(T = 0) = 1 as described in the text. The red solid line is a fit based on the

Hertz distribution with a critical radius rc = 18 nm (see text).

assumption by showing that spin-polarized As nuclei account for only 1% of the total Over-

hauser field at 60K. The two measurements of Γ agree to within experimental uncertainties.

This result shows that the electronic field comes from localized electronic states distinct

from the conduction band. It also provides a simpler means of estimating the hyperfine

relaxation rate rather than modeling the electron spin dynamics at each temperature.
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Figure 4. (Color online) The occupation fraction Γ of donors as a function of temperature. As

discussed in the text, the occupation fraction can be determined by modeling spin-transport in the

presence of nuclear spins (symbols), or can it can be determined from the resistivity by using Eq.

16 (solid curve).

IV. THE NUCLEAR LEAKAGE FACTOR

The data of Fig. 2 show an order of magnitude difference in the magnitude of the

measured NMR signals of 71Ga and of 75As at 60 K. We now show that this difference arises

from a combination of the spatial dependence of the hyperfine relaxation rate and the strong

isotope dependence of nuclear quadrupolar relaxation rate. In this model, the leakage factor

becomes a function of position. The hyperfine relaxation rate can be estimated as

1

T α
H

= τcΓ(T )(b
α
e γ

α
N)

2e−4r/ao , (18)

where τc is the correlation time of the hyperfine interaction, bαe is the electronic field act-

ing on the nuclear isotope α, and γαN is the nuclear gyromagnetic ratio for that isotope.1

Physically, τc is the time scale over which the hyperfine field fluctuates due to the relaxation

and subsequent repolarization of the spin-polarized electron bound to the donor. When the

repolarization process is efficient, as we expect for electrical spin injection, we expect τc to

be of the same order as the spin relaxation time τs. Essentially, Eq. 18 describes a relax-

ation process in which the nuclear polarization is dephased by precession in the fluctuating

hyperfine field, which has a root mean-square value of bαe e
−2r/a0 . As in a motional narrowing

process, a shorter correlation time (more rapid fluctuation), results in a smaller relaxation
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rate. The hyperfine relaxation rate becomes exponentially smaller for nuclei further from

the donor site.

It has been shown that in undoped GaAs, where hyperfine coupling is irrelevant, that

Raman-like scattering of phonons dominates nuclear spin relaxation at temperatures above

30 K.36 We therefore equate T ∗−1
1 , the nuclear relaxation rate due to non-hyperfine processes,

with the quadrupolar relaxation rate T−1
Q in our calculation of the leakage factor (Eq. 9).

The electric quadrupole moment of the nuclei couples to the phonons via the electric field

gradient induced by these scattering events. The quadrupolar Hamiltonian is non-spin-

conserving, resulting in a decrease in the average nuclear spin as phonons are excited. The

resulting quadrupolar relaxation rate is given as36

1

T α
Q

= κ(QαT )2, (19)

where κ is is a parameter which takes into account the coupling between phonons and the

nuclei, Qα is the quadrupole moment, and T is the temperature. The parameter κ is expected

to be independent of doping and of nuclear isotope and is treated as a fitting parameter.

The values of the nuclear quadrupolar moments for the isotopes in GaAs are,37

Q75As = 314mb, (20)

Q69Ga = 171mb, (21)

Q71Ga = 107mb, (22)

where 1 mb= 10−31 m−2. At fixed temperature, the quadrupolar relaxation rate for 75As

should therefore be 9 times larger than for 71Ga.

In our system, the hyperfine and quadrupolar relaxation mechanisms are similar in mag-

nitude near donor sites. We consider the case of nuclei around a donor occupied by single

spin-polarized electron. The leakage factor is

fα(r) =
T α
Q

T α
Q + T α

H

=
1

1 + κ
τc
(QαT )2 /Γ(T ) (bαe γ

α
N)

2 e−4r/ao
, (23)

which is explicitly isotope and position dependent. The leakage factor f is maximized near

the donor where the hyperfine coupling is strongest, and f = 0 as r → ∞. Therefore the

nuclear field is only large in the region around donor sites where the hyperfine interaction

dominates.
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Figure 5. (Color online) The ratio of the leakage factor f of 75As (red line) and 69Ga (black line)

to that of 71Ga as a function of temperature. As discussed in the text, the ratio of the leakage

factors is predicted to be the same as the ratio Aα/A71Ga of the magnitude of the NMR signals

(symbols). By using the value κ/τc = 20 Hz2

mb2K2 in the calculation of the quadrupolar radius (Eq.

25) the measured NMR signal magnitudes are reproduced for all temperatures.

We model the spatial extent of the polarized nuclear spins by defining an effective

quadrupolar radius rQ at which the two relaxation rates T−1
H and T−1

Q are equal:38

rQ = −
ao
4
ln





κ

τcΓ(T )

(

QαT

γαNb
α
e

)2


 . (24)

For r > rQ, the hyperfine relaxation rate decreases exponentially, and to a good approxima-

tion the leakage factor can be assumed to be zero. The effective leakage factor is therefore

given by the weighted average

fα =
4

a3o

∞
∫

0

r2dr fα(r)e−2r/ao ≃
4

a3o

rQ
∫

0

r2dr fα(r)e−2r/ao . (25)

The value of the NMR signal Aα is proportional to the following quantities: the sensi-

tivity of the spin signal with respect to the applied field dV
dB

, the induced change in nuclear

polarization, and the isotope dependent leakage factor fα. This yields the following relation:

Aα ∝
dV

dB
fαbN∆I. (26)

Therefore the ratio of measured resonance signals of any two isotopes at any temperature

should be equal to the ratio of their leakage factors. Figure 5 shows the ratio of the magnitude
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of the NMR signal of 75As and 69Ga to that of 71Ga as a function of temperature. The

lines are the calculated ratios of the leakage factor taken from our model as a function of

temperature. We are able to model the complete temperature dependence by assuming the

ratio κ/τc is constant. We have repeated this analysis on several samples in the doping range

of 2 - 8× 1016cm−3 and found in all cases that

κ/τc = 20± 2
Hz2

mb2K2 (27)

reproduces the temperature dependence of the NMR signals. This result agrees with our

previous assumption that quadrupolar relaxation in samples doped just above the metal-

insulator transition is independent of doping. It also shows that quadrupolar relaxation

essentially localizes the nuclear polarization within a Bohr radius of each donor site. The

order of magnitude difference in the measured electronic response to NMR among different

isotopes is a direct result of the spatial extent of this nuclear polarization. We emphasize

that the strong coupling between electron and nuclear spins implies that the strong spa-

tial inhomogeneity in the nuclear polarization should impact electron spin transport and

dynamics.

V. KNIGHT SHIFT

Because the hyperfine field exists only around an occupied donor, the argument of the

previous section implies that the nuclear polarization is largest around donors. The spatial

average of this field for all three isotopes determines the average hyperfine field experienced

by the electrons. The fact that this field decreases rapidly with increasing temperature is

due to the T 2 dependence in Eq. 19. In comparison, Γ(T ), which governs the hyperfine

relaxation rate, depends more weakly on temperature over the range of this experiment

(< 60 K). At higher temperatures, Γ(T ) decreases exponentially, leading to an even stronger

temperature dependence of the hyperfine field. We now shift our focus to the measurement

of the electronic field acting on the nuclei by measuring the Knight shift of the resonance

frequency as a function of the electronic spin accumulation.

Resonance occurs at the nuclear Larmor frequency να = γαNBtot, where the total field ~Btot

is the vector sum of the applied field ~Ba and the much smaller Knight field ~Bα
e (S) acting

on isotope α due to the electronic spin polarization S. Note that ~Be is parallel to ~S. In the
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limit where the Knight field is much smaller than the applied field, the nuclear resonance

frequency takes the form

να = γαN

∣

∣

∣

~Ba + ~Bα
e (S)

∣

∣

∣ ≈ γαNBa + γαNB
α
e (S) sin θ +O(

B2
e

2Ba
), (28)

where θ is the oblique angle of the applied field indicated in Fig. 1. The Knight shift is

hence determined by the component of ~S parallel to ~Ba. At a fixed applied field, the Knight

shift of the resonance frequency ∆να is directly proportional to spin polarization via the

electronic field Bα
e (r):

∆να = γαNΓ(T )〈B
α
e (r)〉S sin θ (29)

where 〈B(
er)〉 is the electronic field averaged over the envelope of the donor-bound electron

wave-function. We assume that the polarized nuclei are confined to a sphere of radius rQ

around the donor, where rQ is the quadrupolar radius, so that

〈Bα
e (r)〉 = bαe

∫ rQ
0 r2e−2r/a0dr
∫ rQ
0 r2dr

, (30)

where, as found in Ref. 1,

bAs
e = −220G, bGa

e = −130G. (31)

At 60 K, the average electronic fields using the quadrupole radii calculated from Eq. 24 are

-194 G for 75As and -83 G for 69Ga.

Equation 29 predicts the Knight shift of the resonance frequency to be approximately

twice as large for 75As than for 69Ga: ∆ν
75As ≈ 2 kHz for 60 K and θ = 30◦. A high precision

measurement of the resonance frequency is therefore required to observe the Knight shift.

Figure 6 shows the change in the electron spin accumulation as a function of frequency

taken using a very slow frequency sweep rate (14 Hz/s) to ensure that the nuclear system

remains in steady state. Each resonance has three peaks as a result of a crystal strain

field interacting with the quadrupole moment of an isotope with spin I = 3/2.11,39 We have

verified for each isotope and for several angles that the satellite peaks have a difference in

frequency ∆νQ relative to the central peak that is in agreement with the standard formula

for quadrupolar splitting in an single uniaxial electric field gradient Vzz oriented along the

direction perpendicular to the Fe/GaAs interface:

h∆ναQ =
eVzzQ

α

4I(2I − 1)

3 cos2 θ − 1

2

[

3m2
z − I(I + 1)

]

, (32)
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Figure 6. (Color online) The change in the spin-signal ∆Vbd as a function of the ac magnetic field

frequency for (a) 75As, (b) 69Ga, and (c) 71Ga. The static field is 490 Oe. A detailed frequency scan

reveals a triple peak structure of each isotope, which is attributed to strain induced quadrupolar

splitting of the nuclear Zeeman transitions. Fits assuming three Lorentzians are shown as solid

lines for each isotope. The measured splittings of the side peaks from the central peak (∆νQ) are

the quadrupolar splitting in a uniaxial electric field gradient.

where Qα is the electric quadrupole moment of isotope α, mz is the magnetic quantum

number, and I = 3/2 is the nuclear spin.40 Fits of the resonance curves assuming a triple

Lorentzian model are shown as solid lines in Fig. 6. The Knight shift is determined from the

frequency of the central peak measured as a function of the bias current, which determines

the electron spin polarization.

The Knight shift is measured at an angle of θ = 30◦. This nearly doubles the frequency

shift relative to the data in Fig. 6. Figure 7 shows the resonance frequency taken from

fits of NMR curves of 75As and 69Ga as a function of the electron spin S measured by

spin transport. The Knight shift was not measured for 71Ga because at high angles ∆ν71Ga
Q

becomes smaller than the NMR line width, making an accurate fit of the resonance frequency

impossible.

In an all-electrical spin transport experiment, the spin polarization is directly proportional

to the magnitude of the non-local spin signal ∆Vcd :

S =
e∆Vcd
η

g(ǫf)

n
, (33)

where η is the spin detection efficiency of the Fe/GaAs interface at zero bias and g(ǫf)/n

is the density of states at the Fermi level normalized by the carrier density in the GaAs
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Figure 7. (Color online) Isotope dependent Knight shift (symbols) as a function of the spin accu-

mulation calculated from spin transport. The dashed lines are linear fits of the data. Using the

occupation factor calculated from the resistivity, the Knight shift is calculated exactly using Eq.

29, and the result is shown for each isotope using the solid lines.

channel.2,16,41 For Fe/GaAs interfaces the detection efficiency has been measured to be η ≈

0.2 in spin-LED’s.42 The lines shown in Fig. 7 are the expected Knight shifts determined

from Eq. 29, with the non-local electron spin polarization determined from Eq. 33 and

extrapolating the measured polarization back to the injector.

As can be seen in Fig. 7, the absolute magnitudes of the Knight shifts predicted by

Eq. 29 are larger than the experimental values by a factor of ≈ 3. The measured ratio

∆ν(75As)/∆ν(69Ga) of the shifts is approximately 2.4 in experiment, while the expected ratio

is 1.7. Given the limitations of the experiment, we do not believe that these discrepancies

are that significant. The absolute electron spin polarization S is impacted by uncertainties

in η as well as the fact that the density-of-states used in applying Eq. 33 is assumed to be

that of an ordinary parabolic conduction band with an effective mass m∗ = 0.07me. We

estimate that systematic errors in S are of the order of 50%. In any case, the maximum

value of S inferred from Eq. 33 is ≈ 0.2, which corresponds to a polarization P ≈ 0.4, which

we consider an upper bound given the the known spin polarization of iron. Any reduction

in S would improve the agreement in Fig. 7, and we conclude that the value extracted from

transport is probably too large by a factor of approximately two. As expected, the Knight

shift for 69Ga is smaller than for 75As. The ratio of the shifts for the two isotopes is very
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sensitive to the values of the quadrupole radii rQ calculated from Eq. 24, which was based on

several assumptions. This would easily account for the discrepancy in the observed ratio. In

summary, we consider the qualitative agreement in Fig. 7, including the sign of the Knight

shift, the linearity with S, and the relative magnitudes of the shifts for the two isotopes, to

be satisfactory.

VI. SUMMARY

We have provided a quantitative description of NMR in Fe/n-GaAs lateral spin valve

devices by exploiting the strong hyperfine coupling at these dopings. We have shown that

the occupation fraction Γ of donors can be estimated from charge transport. The competition

between hyperfine coupling and the quadrupolar nuclear relaxation rate leads to a spatially

inhomogeneous nuclear polarization that is strongest near donors. The magnitude of the

NMR signal of each isotope is directly proportional to the effective volume of polarized

nuclear spins around donor sites. We also showed that within this volume the nuclei are

directly affected by the presence of the Knight field. Finally, we measured the Knight

shifts of the nuclear resonance frequencies as a function of the spin-accumulation. Using

the calculated occupation factor, we show that the Knight shift is proportional the spin

accumulation as measured by spin transport.
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Rev. Lett. 102, 036601 (2009).

16 G. Salis, A. Fuhrer, R. R. Schlittler, L. Gross, and S. F. Alvarado, Phys. Rev. B 81, 205323

(2010).

17 F. Meier and B. Zakharchenya, eds., Optical Orientation, Modern Problems in Condensed Mat-

ter Sciences, Vol. 8 (North Holland, New York, 1984).

18 P. Van Dorpe, W. Van Roy, J. De Boeck, and G. Borghs, Phys. Rev. B 72, 035315 (2005).

19 D. Paget, Phys. Rev. B 24, 3776 (1981).

20 B. Shklovskii and A. Efros, Electronic Properties of Doped Semiconductors (Springer, 1984).

21 M. Dyakonov and V. Perel’, Zh. Eskp. Teor. Fiz. 65, 362 (1973).

22 D. Gammon, A. L. Efros, T. A. Kennedy, M. Rosen, D. S. Katzer, D. Park, S. W. Brown, V. L.

Korenev, and I. A. Merkulov, Phys. Rev. Lett. 86, 5176 (2001).

23 D. M. Szmyd, M. C. Hanna, and A. Majerfeld, Journal of Applied Physics 68, 2376 (1990).

24 C. Jacoboni, Theory of Electronic Transport in Semiconductors (Springer, 2010).

25 D. Lancefield, A. R. Adams, and M. A. Fisher, J. Appl. Phys. 62, 2342 (1987).

26 H. Fritzsche, Phys. Rev. 99, 406 (1955).

27 H. Nishimura, Phys. Rev. 138, A815 (1965).

19



28 E. A. Davis and W. D. Compton, Phys. Rev. 140, A2183 (1965).

29 D. A. Woodbury and J. S. Blakemore, Phys. Rev. B 8, 3803 (1973).

30 N. Agrinskaya, V. Kozub, and D. Poloskin, Semiconductors 44, 472 (2010).

31 C. Erginsoy, Phys. Rev. 79, 1013 (1950).

32 A. Honig, Phys. Rev. Lett. 17, 186 (1966).

33 R. Maxwell and A. Honig, Phys. Rev. Lett. 17, 188 (1966).

34 M. Kozhevnikov, B. M. Ashkinadze, E. Cohen, and A. Ron, Phys. Rev. B 52, 17165 (1995).

35 P. Hertz, Math. Ann. 67, 387 (1909).

36 J. A. McNeil and W. G. Clark, Phys. Rev. B 13, 4705 (1976).

37 D. P. Lide, ed., CRC Handbook of Chemistry and Physics, 81st ed. (CRC PRESS, 2000).

38 D. Paget, T. Amand, and J.-P. Korb, Phys. Rev. B 77, 245201 (2008).

39 D. J. Guerrier and R. T. Harley, Appl. Phys. Lett. 70, 1739 (1997).

40 C. P. Slichter, Principles of magnetic resonance (Harper & Row, New York, 1963).

41 Q. O. Hu, E. S. Garlid, P. A. Crowell, and C. J. Palmstrøm, Phys. Rev. B 84, 085306 (2011).

42 C. Adelmann, X. Lou, J. Strand, C. J. Palmstrøm, and P. A. Crowell, Phys. Rev. B 71, 121301

(2005).

20


