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Abstract

We re-examine the experimental results for the magnetic response function χ′′(q, E, T ), for q around the

anti-ferromagnetic vectors Q, in the quantum-critical region, obtained by inelastic neutron scattering, on

an Fe-based superconductor, and on a heavy Fermion compound. The motivation is to compare the results

with a recent theory, which shows that the fluctuations in a generic anti-ferromagnetic model for itinerant

fermions map to those in the universality class of the dissipative quantum-XY model. The quantum-critical

fluctuations in this model, in a range of parameters, are given by the correlations of spatial and of temporal

topological defects. The theory predicts a χ′′(q, E, T ) (i) which is a separable function of (q−Q) and

of (E,T ), (ii) at criticality, the energy dependent part is ∝ tanh(E/2T ) below a cut-off energy, (iii) the

correlation time departs from its infinite value at criticality on the disordered side by an essential singularity,

and (iv) the correlation length depends logarithmically on the correlation time, so that the dynamical critical

exponent z is ∞ . The limited existing experimental results are found to be consistent with the first two

unusual predictions from which the linear dependence of the resistivity on T and the T lnT dependence of

the entropy also follow. More experiments are suggested, especially to test the theory of variations on the

correlation time and length on the departure from criticality.
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I. INTRODUCTION

Soon after the discovery that in the normal metallic region for dopings near those for the

high superconducting transitions in cuprates have transport and thermodynamic properties1 un-

like those expected of a Fermi-liquid, it was discovered that the heavy-Fermion compounds, for

compositions near where their anti-ferromagnetic (AFM) transition temperatures TN → 0, also

have similar anomalies2. For example, in both cases the resistivity has a temperature dependence

proportional to T at low temperatures and the entropy or thermopower (entropy per carrier) has

a contribution proportional to T lnT . More recently, the AFM quantum-critical region in the Fe

based superconductors also show the same anomalies in the resistivity and the thermo-power (see,

e.g., Refs.3 and 4).

The theoretical study of quantum-criticality in AFM’s began long before these experiments

came along, starting with the work of Moriya, and Hertz and others5–8. These are extensions of

the theory of classical dynamical critical phenomena9 to the quantum-regime and may be called

renormalized spin-wave theories. Since the above experiments, an enormous amount of theoretical

work in further developing theories based on similar ideas has been done7. The results from such

theories appear to correspond to experiments in AFM’s in which the fluctuations are 3-dimensional

(3d)10,11 but not for those in which they are two-dimensional (2d). In the past few years, S-S. Lee

and collaborators12 have shown that such theories are not controlled in 2d. This has been followed

by significant theoretical work which seeks to approach the actual 2d problem by expanding about

limits12–14 in which the theory is controlled, for example about a Fermi-surface in 3d while the

spin-fluctuations are 2d. Another set of ideas for the heavy-fermion problem relies on the fact that

an isolated Kondo impurity in a metal has singular properties near the criticality of the host15

and by the approximation that the heavy-fermion metal may be regarded as a self-consistent

set of periodic Kondo impurities using methods such as the Dynamical mean-Field Theory. Yet

another seeks to understand the results within the renormalized spin-wave framework by invoking

a phenomenological renormalization of the spatial correlation length16. More exotic ideas have also

been proposed17.

A radically different solution to the 2d AFM problem has recently been proposed18. It starts

by showing that the model for criticality of itinerant AFM’s is the dissipative XY model (with

appropriate lattice anisotropy). This is true for the AFM with planar order, either about a com-

mensurate or incommensurate wave vector, or Ising order about an incommensurate wave vector.

The quantum-dissipative XY model19 in 2d in such a region has been transformed20 to a model
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in which the critical properties (on the disordered side) are determined by topological excitations

- 2d vortices as in the classical 2d-XY model and a new variety of topological excitations, called

warps which are instantons of bound monopole-anti-monopoles with net charge 0. Two dimension-

less parameters specify a line along which the quantum-critical point occurs in the model, which

may be taken to be
√
KKτ and α. K is the Josephson coupling energy of the phase variables,

K−1τ is the magnitude of the kinetic energy parameter, and α is a dimensionless parameter for the

dissipation due to decay of phase fluctuations21,22. The quantum-criticality in this space, from the

disordered state to the ordered state, appears in quantum Monte-Carlo calculations to have either

a dynamical critical exponent z = 1 or z =∞, depending on the critical value of the parameters23.

Only the z = ∞ case, which occupies the bulk of the parameter space in the
√
KKτ − α plane

is summarized below, as this alone provides results in correspondence which bear relation to the

theory.

A stringent test of the theory requires measurements of the absolute magnitude of χ′′(q, E, T )

in the fluctuation regime over a range of q and spanning frequencies from well above to well

below T . The thermodynamic and transport properties can usually be derived from χ′′(q, E, T ).

The purpose of this paper is to present the limited available existing quantitative experimental

results for this function, which are available in the range of q, E, and T to compare and check for

correspondence with the predictions of the theory.

II. CORRELATION FUNCTIONS

The correlations of the dissipative quantum 2d-XY model have been recently investigated

in analytical calculations20. These have been checked and extended by quantum Monte-Carlo

calculations22. These calculations confirm that the transitions are driven by vortex and/or warp

binding and not by (renormalized) spin-waves which only serve to generate effective interactions

among the topological charges. The calculated correlation functions as a function of distance r

and imaginary time τ on the disordered side by

χ(r, τ) ≈ χ0
1

τ
e−
√
τ/ξτ ln

(rc
r

)
e−r/ξreiQ.r, (1)

ξτ = |τc| e
√

pc
pc−p ; ξr/rc ≈ ln(ξτ/|τc|). (2)

Here τ is the imaginary time, periodic in 1/(kBT ) (kB = 1 in this paper), which has a lower cut-off

|τc| ≈ (KKτ )−1/2 and rc is the short distance spatial cut-off, of the order of a lattice spacing. p is

the parameter which tunes the transition by tuning KKτ or α, and pc is the critical value of p at
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which the transition occurs at T → 0. χ0 together with the high frequency cut-off serves to give

the integrated magnetic fluctuations through the sum-rule on them.

To compare with experiments, it is necessary to Fourier transform the correlation function to

momentum (q) and frequency (E) variables. The Fourier transform to frequency space can be

reduced to an integral which can only be evaluated numerically. The results and the fits to it to a

functional form for the imaginary part are given in Ref. (22). We quote this result:

χ′′(q, E, T ) = −χ0 tanh

(
E

2T

)
1

|q−Q|2 + κ2q
F`
(
T

κE

)
Fu
(
E

Ec

)
, (3)

F`
(
T
κE

)
serves as an infra-red cut-off function due to deviations from criticality, where κE ≡ ξ−1τ ,

replaces T as the infrared energy scale for critical fluctuations. Note that ξ−1τ increases extremely

slowly, as an essential singularity (see Eq. (2)) from 0 on deviation from criticality. F
(
T
κE

)
→ 1

at criticality when κE → 0, so that the response is simply proportional to tanh(E/2T ) with an

ultra-violet cut-off at Ec ≡ |τc|−1. For finite κE , a fit to the numerical results gives,

F`
(
T

κE

)
≈ 1(

1 +
√
κE/2πT

)2 , for E/T � 1; (4)

≈ 1

4

(
1 + 3e−

√
κE/T

)
for Ec/T � E/T � 1.

κq = ξ−1r . Fu (E/Ec) serves as an ultraviolet cutoff function Fu(0) = 1,Fu(∞) = 0. In experiments,

the ultra-violet cut-off scale may come from physics not in the effective low-energy model, as for

example the Fermi-energy, if it is smaller than |τc|−1. We will be confronted with this situation

below in the measurements in the heavy-fermion compound CeCu6−xAux.

The most striking result in Eq. (3) is that χ′′(q, E, T ) is a separable function of (E, T ) and of q.

Other remarkable results are that the dimensionless characteristic correlation wave-vector depends

logarithmically on the characteristic correlation frequency. This means that the dynamical critical

exponent is z = ∞. Also, Eq. (1) for ξτ gives that the deviation of the characteristic correlation

frequency with departure from criticality is determined by an essential singularity from its value 0

at criticality. In other words, the cross-over from what is usually called the quantum-fluctuation

regime, where the fluctuation scale is T to the truly quantum-regime, where the fluctuations are

determined by (p− pc)/pc is extremely slow.

The frequency and temperature dependence of these fluctuations at criticality is the same as that

proposed phenomenologically24 to give the marginal Fermi-liquid of fermions in the cuprates. The

result for the spatial correlation length are quite different and remove the un-appetizing feature of

the phenomenology that the spatial correlation length was independent of deviation from criticality.
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However, the single particle self-energy due to scattering from the fluctuations given by Eq. (3)

is also proportional to max(ω, T ) and independent of momentum in the quantum-critical regime,

T/κE & 1 (see supp. sec, in Ref. [18]). The references for a derivation of the resistivity propotional

to T and entropy (thermopower) proportional to T lnT are also given there. A microscopic origin20,

quite different from AFM, has been found for criticality in the relevant range of cuprates, whose

fluctuations also map to the 2d-XY model.

The most stringent test of the theory is through the measurement of χ(q, E, T ), from which most

other properties can be derived. These are very difficult measurements which also require large

crystals. We compare here the results with the existing measurements in a Fe-based compound

BaFe1.85Co0.15As2, and a heavy-Fermion compound CeCu6−xAux. These are the only measure-

ments that we are aware of which are done in the frequency, momentum and temperature region

of interest to test theories of AFM quantum-criticality. We will also recall some old results in a

cuprate compound near the low doping where its AFM transition temperature appears → 0 but in

which, due to the disorder, a spin-glass type phase sets in at a finite temperature.

III. χ′′(q, E, T ) IN BaFe1.85Co0.15As2

BaFe1.85Co0.15As2 has a putative Antiferromagnetic quantum critical point of the planar variety

very close to the above composition, as we will show from the measurement of the spatial correlation

length25. The fluctuations in the range of frequencies and temperature measured are about Q =

(1/2, 1/2, 1) and equivalent points. The compound is strongly two-dimensional and the fluctuations

are studied only in the (h, k)- plane. The superconducting transition temperature of 25 K cuts off

the low frequency part of the critical fluctuations and gives a peak in the frequency dependence at

near twice the superconducting gap, about 10 meV, and half-width of peak is about 4 meV. The

q-dependence has been measured26 at three different frequencies, 3, 9.5 and 16 meV and at two

different temperatures, one at 4 K, well below the superconducting transition temperature, and the

other at 60 K. The frequency dependence at the critical vector for many frequencies from about 0.5

meV to 60 meV has been measured at these two temperatures and at 280 K. We have to discard

the 4 K data below about 15 meV, because of the superconductivity induced low energy features

below about twice the superconducting gap, as further discussed in the caption to Fig. (2). A

great virtue of the measurements is that the absolute intensity of the magnetic scattering has been

measured. We therefore need to normalize all the data presented only once for all frequencies and

momenta.
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We present the data for the q-dependence at the various indicated frequencies and temperatures

in Fig. (1). As shown, the distribution in q about the maximum fits a Lorentzian, with a width

κq ≈ 0.04± 0.007 r.l.u., which is frequency and temperature independent to within the error bars,

in the range (a factor of 5 in frequency and 15 in temperature) that it has been measured. This

is consistent with the theoretical result that the q and the E, T -dependence are separable. (The

discarded data at 4 K for frequencies below twice the superconducting gap shows a 20% smaller

κq.)
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FIG. 1. χ′′(q, E, T ) as functions of |q − Q| at various fixed temperatures and energies. Here, the q-scan

is along (q, q, 1) and Q = (0.5, 0.5, 1). A linear in q background has been subtracted as given in the

supplementary section of Ref. [26] to get χ”. The dashed curve is a Lorentzian 1/[(|q −Q|/κq)2 + 1] with

κq=0.04 r.l.u.

Taking the measured large upper cut-off27 of the fluctuations in this compound of about 200

meV, and using the measured κq ≈ 0.04rlu, Eq. (1) gives κE � 4K, the lowest temperature mea-

sured. Therefore, we should compare the frequency dependence with the form expected at critical-

ity, i.e. ∝ tanh(E/2T ). Fig. (2) shows the absolute measurement of χ′′(Q, E, T )/χ′′(Q, E/T � 1)

at the peak of its momentum-dependence at 60 K and 280 K for all values of energy measured.

Also shown is the function tanh(E/2T ). In an inset we include the data at 4 K also. Above the

superconductivity induced reduction followed by the bump, it also joins on to the data at 60 K

and 280 K data in absolute value. This means that once we fix the magnitude χ0 of Eq. (3), all
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FIG. 2. χ′′(Q, E, T ) as functions of E/(2T ) with Q=(0.5,0.5,1) at T=60K and 280K for BaFe1.85Co0.15As2.

The data is taken from Ref. [26]. The inset shows the same data on a log-log scale, so as to also include the

T = 4K data (well below the superconducting transition temperature), showing that for E & 20 meV and

up to 50 meV, the data is quantitatively is the same at the higher temperatures for E/2T � 1, as given by

the theory.

the frequency and temperature dependent data is consistent with the form tanh(E/2T ).

Two of the principal predictions of the theory are therefore shown to be obeyed. We urge

measurements at various other compositions to test the dependence of the correlation lengths on

deviations from criticality as well as more detailed E and T measurements.

IV. χ′′(Q, E, T) IN CeCu6−xAux

In CeCu6−xAux, Ising long range AFM order occurs for x > xc = 0.1 at an incommensurate

vector Q0 ≈ (0.6, 0, 0.3)28 up to x = 0.3. The magnetic moments are aligned in the c-direction28.

At the critical concentration xc the AFM fluctuations are strongest at (0.6, 0, 0.3) but also at a wave

vector (0.8, 0, 0)29,30, which only develops short range order for higher x = 0.228. Similar response

χ′′(q, E, T ) for both Q vectors (and equivalent positions) were observed in the measured neutron

scattering function for x ≈ xc along rods in reciprocal space30,31 from Q1 = (0.8, 0, 0) towards

Q0 = (0.6, 0,±0.3) as sketched in Fig.(3a). This is consistent with two-dimensional magnetic
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correlations in real space, perpendicular to the rods, along the b-axis and in the (ac)-plane, as

illustrated schematically in Fig. (3b) for one example. The neutron scattering data presented

here was collected from different spectrometers29,31 and calibrated using the incoherent nuclear

scattering from the sample.

b

a

c

ξ
ac

ξ
b

(b)

CeCu
5.9
Au

0.1

Q
0
=(0.6,0,0.3)

Q
1
=(0.8,0,0)

Q
2
=(1.2,0,0)

Q
3
=(1.4,0,0.3)

b*

c*

a*

(a)

FIG. 3. (a) The critical wave vectors Q of CeCu5.9Au0.1, shown in reciprocal lattice. The experimental

q-scan trajectories around Q1 and Q3 are also shown. (b) The plane of 2d fluctuations is shown in real

space. Perpendicular to this plane, χ′′(q, E, T ) is nearly independent of q, testifying the 2d nature of the

fluctuation. Note that the plane of critical fluctuations is not a simple crystallographic plane.

We first consider the q-dependence of the measured susceptibility29 χ′′(q, E, T ) with the fre-

quency and the temperature fixed near two ordering wavevectors Q1=(0.8,0,0) and Q3=(1.4,0,0.3).

The q-scan directions are also shown in Fig. 3: along b-axis for Q1, and along a trajectory in (ac)-

plane for Q3. We normalize the results for different frequencies and temperature to their peak

value at q = Q. Such normalized plots as a function of the deviation of q from Q1 are shown in

Fig. (4a). A simple Lorentzian, as in Eq. (3) fits the data, with a width κq ≈ 0.13Å−1, which is

independent of temperature or frequency in the range measured and within the error bars of the

data. This independence is a test of the separability of the q and E-dependence of the fluctua-

tions. In Fig. (4b), we show measurements near Q3 at different temperatures31, which have much

larger error bar (due to the low transfer energy). The best fit to the data shows the same width,

independent of frequency and temperature as in Fig. (4a).

We now turn to the frequency and temperature dependence at q = Q1,3 as well as Q2=(1.2,0,0).

From κq ≈ 0.13 Å−1, we estimate that the deviation from criticality is very small for the sample

measured, with
√

(p− pc)/pc ≈ 0.1. Taking Ec ≈ 4K, as will be justified below, we find from Eq.

(2) that κE ≈ 4 × e−10 K, which is much smaller than the range of temperature measurements.

Therefore, one is well justified in comparing with the theory for the dependence on frequency
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FIG. 4. χ′′(q, E, T ) as functions of q for two q-scans around Q1=(0.8,0,0) (a) and Q3=(1.4, 0, 0.3) (b) at

various fixed E and T for CeCu5.9Au0.1. A q-independent background contribution has been subtracted.

The fitting curve is Lorentzian 1/[(q − qc)2/κ2q + 1] with κq=0.11 r.l.u. ≈ 0.13 Å−1 (considering b = 5.1Å)

in (a) and κq=0.13 Å−1 in (b).

and temperature at criticality, Eq. (3), with ξ−1τ = 0, where it should simply be proportional to

tanh (E/2T ). However, unlike the case of the Fe compound discussed above, the E and T of the

measurements go well across the Fermi-energy of about 4 K, estimated from the linear part of

the specific heat32. The cut-off function Fu(E/Ec) due to the upper cutoff Ec can no longer be

approximated as 1. The measured29,31 χ′′(Q, E, T ), scaled by a constant χ0 [presumably the value

of χ′′(Q, E, T ) at E/(2T ) → ∞ and E � Ec], is shown as a function of E/2T in Fig.(5a). The

data agrees reasonably with the function tanh (E/2T ) when E � Ec, but systematically deviates
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FIG. 5. χ′′(Q, E, T ) as functions of E/(2T ) for various constant-E or T scans for CeCu5.9Au0.1 at three

ordering wave vectors Q = Q1,2,3. The label for different symbols shows the location of Q as well as the fixed

value of E (or T ), while T (or E) is varied. In (a), χ′′(Q, E, T ) is scaled by a constant χ0 = 5.5µ2
B(meV )−1

while in (b) it is scaled additionally by Fu(E/Ec) = 1/
√

1 + (E/Ec)2 with Ec = 4K.

when E & Ec . We now choose a cut-off function

Fu
(
E

Ec

)
=

1√
1 + (E/Ec)2

. (5)

We replot the same data, χ′′(Q, E, T )/χ0, divided by Fu(E/Ec), as a function of E/2T in Fig.

(5b). With a value of Ec = 4K, the data, within its considerable error bars, is consistent with the

scaling function tanh (E/2T ).

A complete test of the theory requires measurements varying x or pressure to vary the distance

to criticality and thereby test the theory of the correlation length. It would also be desirable to

have more measurements for the momentum-energy and temperature dependence for smaller E/T .

CeCu6−xAux has a rather complicated magnetic structure. We urge neutron scattering results also

on other heavy-fermions with simpler antiferromagnetic structure near their quantum-criticality.

The q and E dependence of the data also has been fitted to an alternate phenomenological form

earlier31. However, it does not give the observed linear in T resistivity.

V. DISCUSSION

The limited available data is consistent with the separability of the momentum and energy

dependence of the critical fluctuations in two completely different experimental system, which

share the feature that they both have itinerant AFM quantum critical points. The tanh (E/2T )

dependence for energies smaller than the cut-off is also consistent with the data. As mentioned

the linear in T -resistivity, and the T lnT entropy and thermopower are also properties of transport
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due to coupling of fermions to such fluctuations. Since an external field provides a linear change

to the energy for spin-systems for paramagnets, one expects the resistivity to be a function of

(|H|/T ) in the quantum-critical regime. The resistance variation in a field at various temperatures

has been found to be proportional to
√
µ2BH

2 + T 24. Magnetic fluctuations of the form of Eq. (3)

provide a constant contribution to the nuclear relaxation rate. This has also been observed3 near

quantum-criticality.

Finally, we note that in cuprates for dopings near the quantum-critical region of the AFM but

above a temperature, which appears to be determined by impurities, the resistivity is linear in T.

In this region the spectral function of AFM-fluctuations, as determined by neutron scattering, does

have E/T scaling and a temperature independent correlation length. See Refs. 33 and 34.

There are many other materials showing quasi-2d fluctuations, and/or linear-T resistivity, which

could also be tested by the criticality of 2d quantum-dissipative XY model. Heavy Fermions are

notoriously hard to grow as large single crystals suitable for inelastic neutron scattering but the

Ce compounds in the (115) family appear to be suitable for the purpose. Measurements have not

been done on them in a suitable range of (q, E, T ) to check the theory. The Fe superconductors

appear also appear to be suitable for the purpose but systematic quantitative measurements of the

kind needed are scarce. We urge such measurements.
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and P. Coleman, Nature 407, 351 (2000).
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