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In this work, we propose a method for calculating the free energy of anistropic classical spin
systems. We use a Hubbard-Stratonovich transformation to express the partition function of a
generic bilinear super-exchange Hamiltonian in terms of a functional integral over classical time-
independent fields. As an example we consider an anisotropic spin-exchange Hamiltonian on the
cubic lattice as is found for compounds with strongly correlated electrons in multi-orbital bands and
subject to strong spin-orbit interaction. We calculate the contribution of Gaussian spin fluctuations
to the free energy. While the mean field solution of ordered states for such systems usually has
full rotational symmetry, we show here that the fluctuations lead to a pinning of the spontaneous
magnetization along some preferred direction of the lattice.

I. INTRODUCTION

Recent research activities on transition metal oxides
suggest that the interplay of the strong spin-orbit cou-
pling (SOC), crystal field (CF) interactions and elec-
tron correlations may lead to compass-like anisotropic in-
teractions between magnetic degrees of freedom.1 These
anisotropic interactions have a generic form JαijS

α
i S

α
j in

which α depends on the direction of the particular link or
bond and S denotes spin or pseudospin describing mag-
netic or orbital degrees of freedom.

The models in which compass-like anisotropies are
dominating, or also the pure compass models, have been
known for a long time. These models appear naturally
in strongly correlated electron systems as minimal mod-
els to account for interactions between pseudospins de-
scribing orbital degrees of freedom.2–7 The compass-like
anisotropies also arise as interactions between magnetic
degrees of freedom in systems with strong SOC which
might be realized in 4d and 5d transition metal oxides.8

However, in these systems, due to the extended nature of
4d and 5d orbitals, the compass interactions are always
accompanied by the usual SU(2) symmetric Heisenberg-
type exchange. These models are especially interesting
because while the pure compass-like models are rare, the
combined Heisenberg-compass models have been shown
to be minimal models describing the magnetic properties
of various materials. A review of the different realizations
of compass models,2–21 their physical motivations, sym-
metries, unconventional orderings and excitations may
be found in the recent paper by Nussinov and van den
Brink.1

One of the common features induced by compass-like
anisotropies is frustration, arising from a competition of
interactions along different directions and leading to the
macroscopic degeneracy of the classical ground state and
in addition to rich quantum behavior. In many cases, the
pure compass models do not show conventional magnetic
ordering because the degeneracy of the classical ground
state is connected to discrete sliding symmetries of the
model.4,9 Because these symmetries are intrinsic symme-

tries of the model, they can not be lifted by the order-by
disorder mechanisms. Instead, the direct consequence
of the existence of these symmetries is that the natural
order parameters for pure compass models are nematic,
which are invariant under discrete sliding symmetries.

The nematic order present in the compass model is
fragile and is easily destroyed by the presence of the
isotropic Heisenberg interaction which breaks some of
the intrinsic symmetries of the model. In Heisenberg-
compass models, some of the degeneracies become acci-
dental. In these models, the true magnetic order might be
selected by fluctuations via an order by disorder mecha-
nism, removing accidental degeneracies and determining
both the nature and the direction of the order parameter.
Despite the simplicity of these models, the interplay of
the Heisenberg and compass interaction leads to very rich
phase diagrams even in the simplest case of the square
lattice.15 For classical systems this mechanism requires
finite temperatures, where entropic contributions of fluc-
tuations to the free energy become effective.

In this work, we will be interested in studying the di-
rectional ordering transitions in the Heisenberg-compass
model on the cubic lattice.16 From a historical perspec-
tive, the three-dimensional 90◦ compass model was the
first model of this kind proposed by Kugel and Khomskii2

in the context of the ordering of the t2g orbitals in tran-
sition metal oxides with perovskite structure and then
studied in more details by Khaliullin16 in application to
LaTiO3. The formal procedure which we will be using
here is based on the derivation of the fluctuational part
of the free energy by integrating out the Gaussian fluctu-
ations, and determining which orientations of the vector
order parameter correspond to the free energy minimum.
To do so, we first express the partition function as a func-
tional integral over classical fields. In this first paper we
consider classical spins at finite temperature. Our start-
ing point in evaluating this exact representation of the
partition function is the mean-field solution, which usu-
ally does not reflect the anisotropic character of the inter-
action referring to the crystal lattice axes. As a next step,
we evaluate the contribution of Gaussian fluctuations to
the free energy of the mean field ordered state. The latter
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carries the information embodied in the anisotropic spin
interaction and therefore allows to define preferred direc-
tions of the spin order with respect to the lattice. We
will not go beyond the simple evaluation of the contribu-
tion of fluctuations, e.g. by incorporating the fluctuation
contribution self-consistently.

For simplicity, we choose the parameters of the model
such that the ground state is ferromagnetic, i.e. we con-
sider the Heisenberg interaction to be ferromagnetic and
allow the compass interaction to be both ferromagnetic
and antiferromagnetic. Our analysis shows that the pro-
file of the fluctuation part of the free energy exhibits sig-
nificant changes when the compass interactions become
antiferromagnetic and exceed some critical value. For
any ferromagnetic and weak antiferromagnetic compass
interactions, the minima of the fluctuational part of the
free energy are attained if the spontaneous magnetization
vector points along one of the cubic axes. Once the an-
tiferromagnetic compass interactions become strong, the
minima of the free energy and thus the possible directions
of the magnetization shift to one of the cubic body di-
agonals. Interestingly, this transition happens smoothly
through an intermediate phase in which the locations of
the minima slide along the unit sphere in a very peculiar
way. As the compass interaction becomes more antifer-
romagnetic in the intermediate phase, the maxima and
minima interchange in a symmetric manner. In order to
do that, they continuously split and slide around each
other. We found the intermediate phase to exist when
the ratio of the compass to Heisenberg interactions is
roughly −1.2 < K/J < −1.45. However, since the pro-
cess is very smooth, it is difficult to determine the exact
boundaries of the intermediate phase.

This paper is organized as follows. In section II we
introduce the functional integral representation of the
partition function for the spin systems with interactions
described by the most general bilinear form of the super-
exchange Hamiltonian. The details of the method are
outlined in the Appendix. In section III, we apply this
framework to compute the angular dependence of the
fluctuational part of the free energy for the ferromagnetic
Heisenberg-compass model on the cubic lattice. Our re-
sults are presented and discussed in Section IV.

II. REPRESENTATION OF THE PARTITION
FUNCTION

We consider a system of identical classical spins S on a
lattice, interacting in an anisotropic fashion as indicated
in the introduction, defined by the Hamiltonian

H =
1

2

∑
j,j′

∑
αα′

Jα,α
′

j,j′ Sαj S
α′

j′ (1)

where j, j′ label the lattice sites, α, α′ = x, y, z label the
three components of the spin and S2 = 1. For the models
with compass-like anisotropic and Heisenberg isotropic

interactions of spins, the interaction is diagonal in spin
space, α = α′. The Jα,αj,j′ -matrix elements are different

for the (j, j′)-bonds along direction γ with γ = α and
γ 6= α. However, since our consideration is also valid for
the case when α 6= α′, in the following we will keep both
indices.

We will be interested in the long-range ordered phases
of the system. The mean field approximation of the order
parameter usually leads to a highly degenerate manifold
of states, e.g. a ferromagnetic state with spontaneous
magnetization pointing in any direction. This degener-
acy is lifted by the anisotropic components of the spin
interaction, but only at the level of the fluctuation con-
tribution to the free energy (action) Sfl. In the follow-
ing we outline a method allowing to calculate Sfl, which
is based on the Hubbard-Stratonovich transformation of
the partition function for spin systems described by the
generic Hamiltonian (1). We present details and discuss
justifications for this method in the Appendix.

The partition function of the system is given by the
integral over the Boltzmann weights of configurations

Z =

∫
[dSj ] exp[−β

∑
jα,j′α′

Jαα
′

jj′ S
α
j S

α′

j′ ]δ(S2
j − 1), (2)

where β = 1/kBT is the inverse temperature, Sαj are the
components of the spin operator at site j.
It is useful to represent the Hamiltonian in the basis of
the eigenfunctions χn;j,α of the spin exchange matrix,
defined by ∑

j′,α′

Jαα
′

jj′ χn;j′,α′ = κnχn;j,α .

For spins on a periodic lattice these eigenstates are la-
beled by wavevector q (inside the first Brillouin zone)
and index ν, characterizing three principle axes of the
matrix Ĵ . Thus, |n〉 = |q, ν〉 and the normalized eigen-
functions take the form

χq,ν;j,α =
1√
N
eiq·Rjuν,α ,

where N is the number of lattice sites, the uν,α are or-
thonormal real-valued eigenvectors, i.e.

∑
α uν,αuν′,α =

δνν′ and κq,ν are the eigenvalues of the spin exchange
interaction matrix.

We now define the normal amplitudes of the spins as

Sq,ν =
∑
j,α

χq,ν;j,αS
α
j

and express the Hamiltonian as

H =
∑
q,ν

κq,νS
∗
q,νSq,ν , (3)

where S∗q,ν = S−q,ν . Commutation of classical spins al-
lows us to employ a Hubbard-Stratonovich transforma-
tion in terms of classical fields ϕq,ν in order to represent



3

the interaction operator as a Zeeman energy operator of
spins in a spatially varying magnetic field. As a result one
finds the following representation of the partition func-
tion

Z =

∫
[dϕ] exp[−β{

∑
q,ν

|κq,ν |−1ϕ∗q,νϕq,ν−Sloc({ϕ∗q,ν , ϕq,ν})}],

(4)
where the integration volume element is given by

[dϕ] = Πq,ν

iβdϕ∗q,νdϕq,ν

2π|κq,ν |
.

The contribution to the action in the case of classical
spins is given by

Sloc({φ∗q,ν , φq,ν}) = β−1
∑
j

ln[sinh(2βϕj)/2βϕj ] , (5)

where ϕ2
j = (ϕxj )2 + (ϕyj )2 + (ϕzj )

2 , with ϕαj ≡∑
q,ν s(κq,ν)ϕq,νχ

∗
q,ν;j,α and s(κq,ν) = 1 for κq,ν < 0

and s(κq,ν) = i for κq,ν > 0. The Hubbard-Stratonovich
identity used to derive the above functional integral is
different for eigenmodes ϕq,ν with positive or negative
eigenvalue κq,ν , leading to the appearance of a complex-
valued ϕj . The details of evaluating Sloc({ϕ∗q,ν , ϕq,ν})
can be found in the Appendix.

III. APPLICATION TO THE CUBIC LATTICE

A. Isotropic Heisenberg interaction

In order to demonstrate how to perform the evalua-
tion of the above representation of the partition function,
we consider first the isotropic ferromagnetic Heisenberg
model with nearest neighbor interactions on the cubic
lattice. In this case, the Hamiltonian (1) reads

H = J
∑
〈j;j′〉

∑
α

Sαj S
α
j′ , (6)

where the lattice summation is over nearest neighbors
〈j, j′〉−bonds and J < 0. For the isotropic exchange
interaction, the eigenvalues, κq,ν = J

∑
α cos qα, are in-

dependent of ν, κq,ν = κq, and hence are degenerate.
A uniform ferromagnetic mean field solution is found

by solving the saddle point equation

∂

∂ϕMF
S = − ∂

∂ϕMF
N [|κq=0|−1(ϕMF )2 (7)

− β−1 ln[sinh(2βϕMF )/2βϕMF ]] = 0,

where we used ϕMF
qν =

√
NϕMF δq,0m0,ν , ϕj = ϕMF ,

m0,ν for the components of the unit vector along the mag-
netization in the reference frame defined by the principal
axes of the interaction matrix (which are the cubic axes
in this case), and N is the number of lattice sites. The

solution of the Eq.(7) gives us a non-linear equation for
the mean-field parameter:

2|κq=0|−1ϕMF − 2 coth(2βϕMF ) +
1

βϕMF
= 0 (8)

We solve this equation numerically at each tempera-
ture and get ϕMF (T ) . Linearizing the equation (8)
near the transition, we find the transition temperature
Tc = β−1

c = 2|κq=0|/3. We note in passing that a differ-
ent length of the classical spin vector |S| = S0 may be
simply scaled back to unit length by changing the tem-
perature as T ′ = S2

0T . Choosing S2
0 = 3/4 appropriate

for quantum spin S = 1/2 we find the renormalized tran-
sition temperature T ′c = |κq=0|/2 , which agrees with the
quantum mean field transition temperature.

The fluctuation contribution is obtained by expanding
the action in the fluctuation field δϕq,ν = ϕq,ν − ϕMF

qν

about the mean field solution to lowest order:

S = S0 + Sfl (9)

S0 = |κq=0|−1ϕ2
MF −NT ln[sinh(2βϕMF )/2βϕMF ]

For Gaussian fluctuations, the fluctuation part of the
free energy, or equivalently the action, Sfl, is a bilinear
function of δϕq,ν . It is given by

Sfl{δϕq,ν} =
∑
q;ν,ν′

Aq,νν′δϕ∗q,νδϕq,ν′ (10)

where we defined matrices Aq,νν′ describing the weight of
Gaussian fluctuations of wavevector q and polarization ν
as

Aqνν′ = |κqν |−1δν,ν′ (11)

−2

3
[βc(δν,ν′ −m0,νm0,ν′) + 3βrm0,νm0,ν′ ]s(κqν)s(κqν′)

Here, for shortness we introduced r = 1/(2βϕMF )2 −
1/ sinh2(2βϕMF ).

In the limit of small q, it is instructive to separate
the fluctuations into longitudinal (along m0) and trans-
verse (perpendicular to m0) components, δϕl

q = m0 ·δϕq

and δϕtr
q =

∑
µ=1,2 mµϕ

tr
q,µ, respectively. We defined

δϕtr
q,µ = mµ · δϕq, with m1 = (m0×z)/| sinθ| and

m2 = m1×m0, where cos θ = m0·z. Despite the complex
nature of fluctuational fields, their separation into trans-
verse and longitudinal is possible in the limit of small
q, because the interaction eigenvalues κqν < 0 and thus,
s(κqν) = 1 in this region of the BZ for any polarization
component ν. Then, the longitudinal fluctuations con-
tribute to the free energy as

Sfl,l =
∑
q

[|κq|−1 − 2βr](m0·δϕl
q)(m0·δϕl

−q) (12)

The transverse fluctuations are gapless in agreement with
Goldstone’s theorem:

Sfl,tr =
∑

q,κq,ν<0

[|κq|−1 − 2

3
βc](δϕ

tr
q ·δϕtr

−q) (13)

since limq→0[|κq|−1 − 2
3βc] = 0
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(a)

(b)

FIG. 1: (Colors online) The magnitude of the action Sfl(θ, φ)
defined by Eq. (18) is plotted on the surface of the unit sphere.
The preferred directions of the magnetization, corresponding
to the minima of the free energy, are shown by deep blue color.
The energy scale is shown in units of J . (a) J = −1 and
K = 0.75: the preferred directions of the magnetization are
along the cubic axes. (b) J = −1 and K = 1.5 : the preferred
directions of the magnetization are along cubic diagonals.

B. Fluctuations due to anisotropic compass
interactions

Next, in addition to the isotropic Heisenberg term,
let us take into consideration an anisotropic compass
interaction, K. The constraint that the ferromagnetic
mean field solution remains stable is satisfied for all neg-
ative (ferromagnetic) values of K and for positive values
K < 3|J |.

In the presence of the anisotropic compass interaction,
the model (1) reads

H =
∑
j;j′

∑
α

Jαjj′S
α
j S

α
j′ (14)

where the exchange interaction is given by

Jαjj′ =
1

2
δj′,j+τ [J +Kδα,|τ |] (15)

The index τ = ±x,±y,±z labels nearest neighbor sites,
where |τ | denotes a direction in spin space. The eigenval-

ues of the operator Jαα
′

jj′ defined in the previous section
are given by

κqν =
∑
α

(J +Kδα,ν) cos qα (16)

The eigenvectors uν are again along the three cubic axes,
such that the components are uνα = δνα. This time the
three eigenvalues for given q are not degenerate (except
in the limit q → 0) and the fluctuation contribution to
the free energy will therefore depend on the orientation
of the spontaneous magnetization. We may again use the
representation of the partition function Z as a functional
integral over the Fourier components ϕqν of the auxilliary
field.

Provided J < 0 and K < 3|J | the mean field solu-
tion ϕMF is given as before by solving the transcendental
equation (8) numerically. The fluctuation contribution to
the free energy is obtained by expanding the action in the
fluctuation field about the mean field solution to lowest
order. We get

Z = C exp(−βS0)

∫
[dδϕ] exp(−βSfl{δϕq,ν}), (17)

where the fluctuation part of the action is given by
Eq.(10) and Eq.(11) In the following, we show that by
comparison to the isotropic model, Eq. (17) manifestly
breaks rotational invariance, which results in a selection
of preferred directions of the order parameter which min-
imize the free energy.

The 3 × 3-matrix Aq,νν′ may be diagonalized and
has eigenvalues λγ,q and eigenvectors vγ,q, γ = 0, 1, 2.
This allows us to express

∑
νν′ Aq,νν′δϕ∗q,νδϕq,ν′ =∑

γ λγ,qδϕq,γδϕ−q,γ , where δϕq,γ = vγ,q · δϕq. The
integration over the fluctuation amplitudes may now be
performed and gives

Sfl = β−1 1

2

∑
q,ρ

{ln |λ0,qλ1,qλ2,q|} (18)

where we chose s(κqν) = ±i for κqν following the pro-
cedure described at the end of the appendix. Alterna-
tively, we may use that |λ0,qλ1,qλ2,q| = |det{Aq,νν′}|,
saving the trouble of having to determine the eigenstates
of Aq,νν′ .

Let us now derive the explicit expression for the fluc-
tuation contribution for an arbitrary orientation of m0 =
(sin θ cosφ, sin θ sinφ, cos θ). Inserting this into the defi-
nition of Aq,νν′ given by Eq.(11), we find its elements to
be

Aq,00 = |κq,x|−1 − 2
3s(κq,x)s(κq,x)(βc(1− s2

θc
2
φ) + 3βrs2

θc
2
φ)

Aq,01 = − 2
3s(κq,x)s(κq,y)(3βr − βc)cφsφs2

θ
Aq,10 = Aq,01

Aq,02 = − 2
3s(κq,x)s(κq,z)(3βr − βc)cφcθsθ

Aq,20 = Aq,02

Aq,11 = |κq,y|−1 − 2
3s(κq,y)s(κq,y)(βc(1− s2

θs
2
φ) + 3βrs2

θs
2
φ)

Aq,12 = − 2
3s(κq,y)s(κq,z)(3βr − βc)sφcθsθ

Aq,21 = Aq,12

Aq,22 = |κq,z|−1 − 2
3s(κq,z)s(κq,z)(βcs

2
θ + 3βrc2θ),

(19)
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(a)

(b)

(c)

FIG. 2: (Colors online) The magnitude of the action Sfl(θ, φ)
defined by Eq.(18) computed in the intermediate phase. The
energy scale is shown in units of J . (a) J = −1 and K = 1.25.
The free energy shows the early stages of the splitting of each
maximum along one of the cubic diagonals into three maxima
and the splitting of the each minimum along one of the cubic
directions into four minima.(b) J = −1 and K = 1.3. The full
splitting of each maximum into three and each minimum into
four minima. The maxima are moving towards cubic face
diagonals and the minima are moving towards cubic body
diagonals. (c) J = −1 and K = 1.4. The minima of the free
energy reach cubic diagonal directions.The maxima of the free
energy along [1,1,0], [1,0,1], [0,1,1] are splitting into two and
going towards cubic directions.

0.5 1.0 1.5 2.0 2.5 3.0
K

0.2
0.4
0.6
0.8
1.0
1.2
1.4

T

FIG. 3: (Colors online) The finite temperature phase diagram
of the model (14) restricted to K < 3|J |. The red dashed line
shows the borders of the intermediate phase. The phases on
the left and on the right from the intermediate phase have
the magnetizations pointing along cubic axes and cubic body
diagonals, respectively. Both the anisotropic interaction K
and the temperature T are measured in the units of J .

where, to shorten notations, we denote sin θ(φ) ≡ sθ(φ)

and cos θ(φ) ≡ cθ(φ). The interactions are defined as

κ−1
q,x = 1/((J + K) cos qx + J cos qy + J cos qz), κ

−1
q,y =

1/((J+K) cos qy+J cos qx+J cos qz) and κ−1
q,z = 1/((J+

K) cos qz + J cos qx + J cos qy). We see that the matrix
Aαα′ has a rather complex structure as a function of q
and angles θ and φ. This gives rise to a complex behavior
of the eigenvalues λ0,q, λ1,q and λ2,q.

IV. RESULTS AND DISCUSSIONS

We now present the results we obtained for Sfl(θ, φ)
by performing numerical integration in Eq.(18). The an-
gular dependencies of Sfl(θ, φ) for various values of K
are presented in Fig.1 and Fig.2, where the magnitude of
Sfl(θ, φ) as a function of orientation of the spontaneous
magnetization is shown as a color-coded plot on the unit
sphere. The calculations for all the plots in Fig.1 and
Fig.2 are performed at temperature β = βc + 1 and as-
suming J = −1. We see that Sfl(θ, φ) has a non-trivial
dependence on the direction of the order parameter de-
fined by angles θ and φ which is modified when we change
the parameters of the model. This peculiar angular de-
pendence of Sfl(θ, φ) is inherited from non-trivial angular
dependencies of λ0,q, λ1,q and λ2,q.

In Fig.1 (a), we present the profile of Sfl(θ, φ) com-
puted for K = 0.75. We can see, that Sfl(θ, φ) is min-
imized when the magnetization is directed along one of
the cubic axes. We note that the cubic directions are
also selected for other values of ferromagnetic compass
interactions (K < 0) and up to the limit of the pure fer-
romagnetic compass model. In Fig.1 (b), we increased
the compass interaction to be equal to K = 1.5. We see
that the minima of Sfl(θ, φ) are achieved when the mag-
netization is directed along one of the [1,1,1] axes, i.e.
along the cubic diagonals, indicating that a rotation of
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the order parameter takes place as a function of K.
Let us understand how the transition between these

two ferromagnetic phases with cubic easy axes and easy
axes along cubic diagonals takes place. In Fig. 3, we pre-
sented the finite temperature phase diagram of the model
(14). The ferromagnetic order is stable forK < 3|J |. The
mean field transition temperature is shown by a blue line.
At small K, the magnetization points along cubic axes.
At large K, the magnetization points along cubic diago-
nals. These two phases are separated by a phase in which
the magnetization points along some intermediate direc-
tion. The borders of the intermediate phase are shown by
red dashed lines. The characteristic profiles of the fluc-
tuation free energy in the intermediate phase are shown
in Fig. 2(a)-(c). Fig.2(a) shows Sfl(θ, φ) computed for
K = 1.25. The free energy shows the early stage of the
splitting of each maximum along one of the cubic diag-
onals into three maxima and the splitting of each mini-
mum along one of the cubic directions into four minima.
For example, the maximum along [1,1,1] direction con-
tinuously splits into three maxima which slide towards
the cubic face diagonals [1,1,0], [1,0,1], and [0,1,1]. At
the same time the minima at cubic directions slide to-
ward cubic diagonals. For example, the minimum at the
[1,0,0] direction splits into four minima, which slide to re-
place the maxima along [1,1,1], [1,-1,1], [1,1,-1], [1,-1,-1]
directions. At Fig.2(b) we slightly increased the value of
the compass interaction and set it equal to K = 1.3. Here
we see the full splitting of each maximum into three and
each minimum into four minima. The maxima are moved
towards cubic face diagonals and the minima are moved
towards cubic diagonals. In Fig. 2(c) we set K = 1.4,
which corresponds to the final stage of the deformation of
the free energy profile before it has the structure shown
in Fig.1(b). Here we see that the maxima of the free
energy along [1,1,0], [1,0,1], [0,1,1] are splitting into two
and are going towards the cubic axes directions but do
not yet reach it. So in this way the maxima and min-
ima slide around each other to replace each other as we
change the parameters.

V. CONCLUSION

The magnetic properties of heavy transition metal ox-
ides such as iridates and others are emerging as a new
fascinating field offering opportunities to realize strongly
frustrated quantum spin systems in the laboratory. In
these systems the combination of multi-band electronic
structure and strong Coulomb and Hund’s couplings with
strong spin-orbit interaction can give rise to extremely
anisotropic spin exchange interactions of the compass
type. Mean field solutions of these models are often un-
touched by the anisotropies of the model and show the
full isotropy of pure Heisenberg models, in contrast with
experimental observation. In this paper we addressed
the question how the system selects special preferred di-
rections of the mean field order parameter vector. We

restricted ourselves to the case of a ferromagnetic order
parameter, but the analogous question exists for anti-
ferromagnetic or more complicated ordered structures.
We find that the high degeneracy of the ferromagnetic
mean field solution is lifted by the free energy contribu-
tion from thermal fluctuations. We calculated the fluc-
tuation contribution for a Heisenberg-compass model of
classical spins on a three dimensional cubic lattice with
nearest neighbor interactions - an isotropic Heisenberg
coupling J < 0 (which we take as the energy unit), and a
compass coupling K. The ferromagnetic state is found if
K < 3|J |. Rather than exploring the full phase diagram,
we focused on one typical temperature T = Tc/(1 + Tc)
where Tc is the mean field transition temperature and
show a qualitative phase diagram in Fig.3. For values of
K < 1.2 the system is found to choose preferred direc-
tions of the spontaneous magnetization along one of the
cubic axes. For 1.5|J | < K < 3|J | the preferred direc-
tions are found to be along the space diagonals. The two
domains are separated by a region in which the minima
and maxima of the free energy split into four and three,
respectively, and perform an interesting dance around
each other. In this intermediate phase one thus has not
just six equilibrium orientations, but twenty four. Ex-
actly how these transitions happen, in particular as a
function of temperature, will be the subject of future
work. The thermodynamic properties of these intermedi-
ate phases at elevated temperature, when thermally acti-
vated transitions between different orientations of finite
domains may occur is another field to be explored. In
the temperature regime considered here we expect the
classical approximation to be valid. A generalization to
quantum spin systems of the approach presented here is
in preparation.
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Appendix A: Hubbard-Stratonovich transformation
of the partition function for spin systems

1. General formulation

The Hubbard-Stratonovich (H-S) transformation is
based on the mathematical identitiy
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exp[−ax2] =
1√
π|a|

∫
dy exp[− y

2

|a|
+ 2s(a)xy)] (A1)

where we defined

s(a) =
{

1 , if a < 0
ı , if a > 0

(A2)

For a > 0 we may as well use s(a) = −i. We will
later make use of this ambiguity when we evaluate the
y-integrals approximately, which may lead to imaginary-
valued contributions.

In the above H-S-transformation x may be a number
or an operator. In the case it is an operator, we use the
eigenfunctions |n〉 of x̂ defined by

x̂|n〉 = xn|n〉

to prove that

exp[−ax̂2]|n〉 = exp[−ax2
n]|n〉 (A3)

=
1√
π|a|

∫
dy exp[− y

2

|a|
+ 2s(a)xny)]|n〉.

=
1√
π|a|

∫
dy exp[− y

2

|a|
+ 2s(a)x̂y)]|n〉

This identity also works for complex (nonhermitian) x
and y :

exp[−ax̂†x̂] =
i

2π|a|

∫
dy∗dy exp[−y

∗y

|a|
+s(a)(x̂†y+h.c.)]

We now turn to the case of the partition function of
a spin system with generic interaction Hamiltonian (1).
In order to use the mathematical identities we need to
represent the Hamiltonian (1) in terms of normal coordi-
nates. To this end we define the normalized eigenstates
of the exchange interaction operator∑

j′,α′

Jαα
′

jj′ χn;j′,α′ = κnχn;j,α (A4)

in terms of which we have

Jαα
′

jj′ =
∑
n

κnχ
∗
n;j,αχn;j′,α′ , (A5)

where the χn;(j′,α′) are a complete and orthonormal set
of eigenfunctions and thus obey∑

j,α

χ∗n;j,αχn′;j,α = δn,n′ (A6)

∑
n

χ∗n;j,αχn;j′,α′ = δj,j′δα,α′

For spins on a periodic lattice, the eigenstates |n〉 =
|q, ν〉 are labeled by wavevector q and spin component
ν, and the eigenfunctions take the form

χq,ν;j,α =
1√
N
eiq·Rjuαqν (A7)

where uαqν are normalized real valued eigenvectors, i.e.∑
α u

α
qνu

α
qν = 1, and κq,ν are the eigenvalues of the spin

exchange operator.
We now define the normal amplitudes of the spin op-

erators as

Sq,ν =
∑
j,α

χq,ν;j,αS
α
j (A8)

and express the Hamiltonian (1) as

H =
∑
q,ν

κq,νS
∗
q,νSq,ν (A9)

where S∗q,ν = S−q,ν .
We seek to apply the above mathematical identities

(A1)-(A3) to each normal component separately. This
requires the normal components of the spin operators
to commute with each other, which is certainly true for
the classical spins. Then using the Hubbard-Stratonovich
transformation one may express the Boltzmann weight
operator of each normal mode in terms of normal field
amplitudes ϕq,ν as

exp[−βκq,νS∗q,νSq,ν ] = (A10)

ı

2πβ|κq,ν |

∫ ∫
dϕ∗q,νdϕq,ν

exp[−|βκq,ν |−1ϕ∗q,νϕq,ν + s(κq,ν)(S∗q,νϕq,ν + h.c.)] =

ıβ

2π|κq,ν |

∫ ∫
dϕ∗q,νdϕq,ν

exp[−β{|κq,ν |−1ϕ∗q,νϕq,ν + s(κq,ν)(S∗q,νϕq,ν + h.c.)}]

The complete Boltzmann weight operator may be ex-
pressed, again using the commutability of the normal
mode operators, as

exp[−β
∑
q,ν

κq,νS
∗
q,νSq,ν ] =

∫
[dϕ] (A11)

exp[−β
∑
q,ν

{|κq,ν |−1ϕ∗q,νϕq,ν + s(κq,ν)(S∗q,νϕq,ν + h.c.)}],

where ϕ∗q,ν = ϕ−q,ν . The integration volume element is
given by

[dϕ] = Πq,ν

iβdϕ∗q,νdϕq,ν

2π|κq,ν |

Next we find that the partition function of an interacting
classical spin system on an infinite periodic lattice may
be expressed as

Z = (A12)

= C

∫
[dϕ] exp[−β

∑
q,ν

|κq,ν |−1ϕ∗q,νϕq,ν − Sloc({ϕq,ν})],

where C is a constant. The contribution Sloc({ϕq,ν}) to
the action is given by

Sloc({ϕq,ν}) =
1

β

∑
j

lnWj (A13)
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andWj is computed by taking into account the constraint
of the unit length of classical spins, S2

j = 1, and integrat-
ing over all directions of spin at each lattice site

Wj =

∫
dSjdΩj

2π
exp[2β

∑
α

ϕαj S
α
j ]δ(S2

j − 1)

=

∫
dΩj
4π

exp[2β
∑
α

ϕαj S
α
j ] (A14)

=
sinh 2β|ϕj |

2β|ϕj |
.

This gives

Sloc({ϕq,ν}) =
1

β

∑
j

ln[
sinh 2β|ϕj |

2β|ϕj |
]. (A15)

Here we defined the complex-valued three-component
field ϕαj at each lattice site j as

ϕαj =
∑
q,ν

s(κq,ν)Re{ϕ∗q,νχq,ν;j,α} (A16)

=
∑
q,ν

s(κq,ν)ϕq,νχ
∗
q,ν;j,α

= ϕαR,j + iϕαI,j .

Observing that κq,ν = κ−q,ν , we get

ϕαR,j = Re{ϕαj } =
∑

q,ν,κq,ν<0

ϕq,νχ
∗
q,ν;j,α (A17)

ϕαI,j = Im{ϕαj } =
∑

q,ν,κq,ν>0

ϕq,νχ
∗
q,ν;j,α.

The field amplitude is determined by

ϕj =
√

(ϕR,j + iϕI,j)
2, (A18)

where ϕR,j =
(
ϕxR,j , ϕ

y
R,j , ϕ

z
R,j

)
and ϕI,j =(

ϕxI,j , ϕ
y
I,j , ϕ

z
I,j

)
.

We now derive the contribution of Gaussian fluctua-
tions to the free energy for the ferromagnetic mean field
state which we denote as ϕMF . To this end, we expand
Sloc({ϕq,ν}) (A15) in terms of the fluctuation amplitudes
and separate the mean field and fluctuational contribu-
tions. First, we expand the field amplitude ϕj to bilinear
order in the fluctuation amplitudes:

ϕj = ϕMF + δϕj , (A19)

δϕj =
1

2ϕMF
[2ϕMF · (δϕR,j+iδϕI,j) + δϕ2

R,j − δϕ2
I,j ]

− 1

2ϕ3
MF

[ϕMF · (δϕR,j + i δϕI,j)]
2.

Using the Eqs. (A17), we now obtain the expressions for
δϕj and δϕ2

j in terms of ϕ∗q,ν , ϕq,ν , keeping quadratic

(Gaussian) terms only:∑
j

δϕj =
1

2ϕMF

∑
q,ν,ν′

δν,ν′s(κqν)s(κqν′)ϕ∗q,νϕq,ν′

− 1

2ϕMF

∑
j

δϕ2
j (A20)

∑
j

δϕ2
j =

∑
q,ν,ν′

s(κqν)s(κqν′)m0,νϕ
∗
q,νϕq,ν′m0,ν′

Next, we expand Eq. (A15) step by step as

sinh 2β|ϕj | = sinh(2β(ϕMF + δϕj))

= sinh(2βϕMF )[1 + 2(βδϕj)
2] + cosh(2βϕMF )2βδϕj

and further

ln[sinh(2βϕj)/2βϕj ]

= ln sinh(2β(ϕMF + δϕj))− ln(2β(ϕMF + δϕj))

= ln[sinh(2βϕMF )/(2βϕMF )]

+[2βϕMF coth(2βϕMF )− 1]
δϕj
ϕMF

+
1

2
[− (2βϕMF )2

sinh2(2βϕMF )
+ 1](

δϕj
ϕMF

)2.

The fluctuation part of the free energy is then given by

Sfl = −β−1δ
∑
j

ln[sinh(2βϕj)/2βϕj ] =

= −4

3
βcϕMF

∑
j

δϕj (A21)

− 1

2βϕ2
MF

[1− (2βϕMF )2

sinh2(2βϕMF )
]
∑
j

δϕ2
j ,

where we have used that 2βϕMF coth(2βϕMF ) − 1 =
4
3βcβϕ

2
MF . Substituting the expressions for δϕj , δϕ

2
j and

defining r = 1/(2βϕMF )2 − 1/ sinh2(2βϕMF ), we get

Sfl{δϕq,ν} =
∑
q;ν,ν′

Aq,νν′δϕ∗q,νδϕq,ν′ (A22)

where we defined matrices Aq,νν′ describing the weight of
Gaussian fluctuations of wavevector q and polarization ν
as

Aqνν′ = |κqν |−1δν,ν′ (A23)

−2

3
[βc(δν,ν′ −m0,νm0,ν′) + 3βrm0,νm0,ν′ ]s(κqν)s(κqν′)

The fluctuation matrix Aqνν′ will in general be non-
hermitian, and its eigenvalues will be complex. We now
use that Aqνν′ is an even function of q and divide q-space
into qx > 0 (M>) and qx < 0 (M<) . For q-modes φq,ν
with q ∈M> we choose s(κqν) = +i , whereas for q ∈M<

we choose s(κqν) = −i , where κqν > 0 in both cases.
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Then we have A−qνν′ = A∗qνν′ and as a result of the
functional integration we will get

Z = ZMF

∫
[dφ] exp[−β

∑
q,ν,ν′

Aq,νν′ϕ∗q,νϕq,ν′ ]

= ZMF exp[−1

2

∑
q∈M>

ln(det(Aq,νν′) det(A∗q,νν′))]

= ZMF exp[−1

2

∑
q

ln |det(Aq,νν′)|] (A24)

where ZMF = [sinh(2βϕMF )/(2βϕMF )]N .
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