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The role of charge order in the phase diagram of high temperature cuprate superconductors has been recently
emphasized by the experimental discovery of an incipient bi-directional charge density wave (CDW) phase in
the underdoped regime. In a subset of the experiments, the CDW has been found to be accompanied by a d-wave
intra-unit-cell form factor, indicating modulation of charge density on the oxygen orbitals sandwiched between
neighboring Cu atoms on the CuO planes (the so-called bond-density wave (BDW) phase). Here we take a
mean field Q1 = (2π/3, 0) and Q2 = (0, 2π/3) bi-directional BDW phase with a d-wave form factor, which
closely resembles the experimentally observed charge ordered states in underdoped cuprates, and calculate
the Fermi surface topology and the resulting quasiparticle Nernst coefficient as a function of temperature and
doping. We establish that, in the appropriate doping ranges where the low temperature phase (in the absence
of superconductivity) is a BDW, the Fermi surface consists of electron and hole pockets, resulting in a low
temperature negative Nernst coefficient as observed in experiments.

I. INTRODUCTION

The origin and character of the enigmatic pseudogap phase
in the underdoped regime of high temperature cuprate super-
conductors remains an open problem1,2. While the insulat-
ing parent compounds of these systems are well understood
as three-dimensional (3D) antiferromagnetic Mott insulators,
the normal (non-superconducting) phase above superconduct-
ing transition temperature (Tc) at finite hole doping evinces
an anisotropic spectral gap (pseudogap) at low energies be-
low a temperature scale T ∗ > Tc and behaves strikingly dif-
ferently from a Fermi liquid. Understanding the pseudogap
phase from which superconductivity develops at lower tem-
peratures is generally understood to be the key to understand-
ing the d-wave superconducting pairing and the anomalously
high transition temperature of the superconducting phase of
the high Tc cuprates.

Recent theoretical and experimental work has proposed the
role of various charge, spin, electron nematic, and current or-
dered states competing with superconductivity, and also the
role of superconducting fluctuations themselves, to explain
the pseudogap phase above Tc 1–9. In the class of materi-
als YBa2Cu3O6+x (YBCO), exquisite quantum oscillations of
various electronic properties with the applied magnetic field,
strong enough to suppress superconducting fluctuations and
reveal the underlying normal state, have revealed small Fermi
pockets in excitation spectrum reminiscent of a broken sym-
metry state competing with superconductivity in the under
doped regime.10,11. The existence of such small Fermi pock-
ets in the underdoped regime combined with a large hole like
Fermi surface in the overdoped regime, indicates that the nor-
mal state of the cuprates, in the absence of superconductiv-
ity, goes through a Fermi surface reconstruction somewhere
near optimal doping. Independent evidence of a similar Fermi
surface reconstruction – from being large and hole-like in the
overdoped phase to small and electron-like at underdoping – is
also apparent from the measurements of low temperature Hall
and Seebeck coefficients which turn from positive at higher
doping to negative in the underdoped regime12–14. Since the

signs of the Hall and Seebeck coefficients are determined by
the sign of the dominant charge carriers, the low temperature
negative sign of these coefficients in the underdoped regime
(in the absence of superconductivity) can be explained by the
existence of electron pockets. Interestingly, the low tempera-
ture Nernst coefficient, which measures the transverse voltage
induced by a longitudinal thermal gradient in the presence of a
perpendicular magnetic field, has also been found to be nega-
tive in the under doped regime, while being vanishingly small
at higher doping. While the sign of the Nernst coefficient,
unlike that of Hall and Seebeck coefficients, is not directly re-
lated to the sign of the dominant charge carriers, but also de-
pends of the curvature and topology of the Fermi surface, the
strikingly different behaviors of the low temperature Nernst
response at low and high hole dopings also point to the exis-
tence of a Fermi surface reconstruction near optimal doping.
Although various charge, spin, and current ordered states have
been proposed to account for the Fermi surface reconstruction
in YBCO15,16, none had so far been observed in bulk-sensitive
probes until recently.

In recent x-ray diffraction experiments two groups have in-
dependently found strong evidence for a short range charge
density wave phase below the pseudogap temperature scale
T ∗ for a range of hole doping in the underdoped regime
of YBCO17–20. In these experiments it is not conclusively
known if the x-ray diffraction peaks derive from an equal dis-
tribution of domains with uni-directional stripe-like correla-
tions or from correlations with wave vectors (q1, 0, 0.5) and
(0, q2, 0.5) (with q1 ∼ q2 ∼ 0.31) co-existing as in a bi-
directional CDW state. However, the lack of anisotropy in
the scattering signals such as intensities and widths, and also
salient difference from the stripe like states as observed in the
LSCO family such as absence of a coincident magnetic or-
der and a strikingly different behavior of the modulation wave
vector with hole doping21, indicate that the short-ranged CDW
correlations observed in the YBCO family may be different
from stripes and in fact an incipient CDW order which is bi-
directional. Although the temperature (T ) dependence of the
correlation length above Tc and only short ranged correlations
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in the CuO2 planes indicate that the observed charge order is
only quasi-static, the near divergence of the correlation length
as T → Tc and that the scattering signals significantly in-
crease on application of magnetic field below Tc indicate that
a true thermodynamic CDW transition at some critical temper-
ature (TCDW < Tc) may be preempted by the superconduct-
ing transition at Tc. Furthermore, recent inelastic x-ray scat-
tering and nuclear magnetic resonance experiments indicate
that the short-range charge order observed below T ∗ is in fact
truly static22,23, presumably due to pinning by disorder poten-
tial. Evidence for a similar charge density wave transition in
the underdoped regime has also been found in other recent
experiments24–28. In at least two recent experiments27,28 the
charge order has been found to be accompanied by a d-wave
intra-unit-cell form factor, indicating modulation of charge
density on the oxygen orbitals sandwiched between neighbor-
ing Cu atoms on the CuO planes (the so-called bond-density
wave (BDW) state). Taken together, though it is unclear at
the moment if the bond density wave order observed in the
cuprates is static and long-ranged or fluctuating and short-
ranged below T ∗, it is clear that its role in the fermiology
of the cuprates should be significant especially at low tem-
peratures (T < Tc) and in high magnetic fields (sufficient
to suppress superconductivity) where the bi-directional bond
density wave is expected to develop long range order resulting
in Fermi surface pockets in the single particle spectrum.

An important part of the fermiology of the cuprates is the
normal state Nernst effect in the pseudogap phase. The Nernst
response, which measures the transverse voltage induced by a
longitudinal thermal gradient in the presence of a perpendic-
ular magnetic field, is defined to be positive if dominated by
vortices in a superconductor. While the quasiparticle Nernst
signal is typically small for conventional metals due to Sond-
heimer cancellation, the signal carried by vortices can be large
and positive in the presence of superconducting fluctuations,
as has been found in the cuprates near superconducting Tc
and above. Suppressing the superconducting fluctuations by
a strong magnetic field reveals the normal state Nernst coeffi-
cient (ν/T , with T the temperature) and this has been found
to drop with decreasing T in the pseudogap phase, culmi-
nating in a negative ν/T as T → 029,30. The low temper-
ature negative Nernst response as T → 0 is reminiscent of
a similar change of sign (with decreasing T ) in other trans-
port signatures of the pseudogap phase such as Hall and See-
beck coefficients12–14. The signs of the Hall and Seebeck co-
efficients are determined by the sign of the dominant charge
carriers and can be explained by the existence of an electron
pocket centered at (Q/2, Q/2) where the bi-directional BDW
state is a superposition of CDWs (with d-wave form factors)
with ordering wave vectors (Q, 0) and (0, Q). This is similar
to the recently found result of a change of sign (with decreas-
ing temperature) of the Hall and Seebeck coefficients in the
bi-directional CDW state without the d-wave form factors31.
The sign of the Nernst coefficient, on the other hand, is not di-
rectly determined by the sign of the dominant charge carriers
and thus may or may not be the same as the sign of the Hall
and Seebeck coefficients.

In this paper we ask if the quasiparticle Nernst coeffi-

cient in the mean field BDW state does indeed show a drop
with decreasing temperature, with ν/T eventually becoming
negative as T → 0 as seen in experiments. We consider
a two-dimensional (2D) bi-directional Q1 = (2π/3, 0) and
Q2 = (0, 2π/3) BDW state in mean field theory (valid for
temperatures T < TBDW and magnetic fields high enough
to eliminate the superconductivity) and investigate the quasi-
particle Nernst coefficient as functions of temperature and
hole doping appropriate for the underdoped regime of the
cuprates. Although the experimental evidence is that for a
slight incommensuration in the BDW scattering vectors (i.e.,
q1 ∼ q2 ∼ 0.31) in this paper we work with a commensurate
BDW for simplicity (i.e. we take q1 = q2 = 0.33, corre-
sponding to charge modulations with periodicity of three lat-
tice vectors). We find that, below the BDW transition temper-
ature and in the appropriate regime of hole doping, the Fermi
surface topology changes from a large hole-like Fermi sur-
face at higher doping (where there is no BDW) to small Fermi
surface pockets at lower doping. A similar fermi surface re-
construction in terms of a CDW state was recently assumed
to explain the low frequency of quantum oscillations in the
pseudogap phase of the cuprates26,32. We find that the quasi-
particle Nernst coefficient in the mean field BDW state does
indeed show a drop with decreasing temperature, with ν/T
eventually becoming negative as T → 0, as seen in experi-
ments.

This paper is organized as follows: In Sec. II, we consider
the Hamiltonian for the BDW state and examine the energy
spectrum and the reconstruction of the Fermi surface. In Sec.
III, we define the quasiparticle transport coefficients which
we compute numerically using Boltzmann semiclassical equa-
tions. Sec. IV and V are devoted to analytical calculations of
the Nernst coefficient in the limit of small order parameter and
magnetic fields and the breakdown of Sondheimer cancella-
tion. In Sec VI, we present our numerical results for Seebeck,
Hall and the Nernst coefficient for the BDW state and show
that they all become negative at low temperatures. We end
with summary and conclusion in Sec. VII. Some analytic ex-
pressions and formulas have been relegated to the appendix.

II. MODEL AND FORMALISM

In a mean-field picture, the Hamiltonian describing a den-
sity wave ordered state can be written as,

HDW =
∑
k,Q,σ

[W (k)c†k+Q,σck,σ + h.c.], (1)

where W (k) is the order parameter which can in general de-
scribe a charge, orbital current, or a bond density wave in
cuprates depending on the form factor W (k). The operator
c†k,σ creates an electron of spin σ with momentum k, and Q
denotes the modulation wave vector. Charge modulations with
a periodicity of 1/δ (1/δ integer) lattice vectors describes a
commensurate CDW state. The modulations can be given by a
uni-directional modulation Q1 = 2π(δ, 0) or Q2 = 2π(0, δ)
or a superimposition of the two wave-vectors in which case
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FIG. 1. (color online) Bond order modulation in real space over a
spacing of three lattice vectors. Plot of |ψBDW (x, y)|2 − |ψ(x, y)|2
in real space of lattice constant a, where ψ(x, y)/ψBDW (x, y) is
the lowest energy wave function without/with bond order parameter
W = 0.2t1.

the CDW is bi-directional. A modulation wave-vector of type
Q = 2π(δ, δ) can describe a third variant of the same CDW
state. The functional dependence of the form factorW (k) and
the modulation vector Q distinguish different density wave
states for example Q = (π, π) andW (k) = (cos kx−cos ky)
is the well known staggered flux or d-density wave (DDW)
state4.

The tight binding description for electrons on a two-
dimensional square lattice of unit lattice constant is given by
the energy dispersion relation

εk = −2t1(cos kx + cos ky) + 4t2 cos kx cos ky

− 2t3(cos 2kx + cos 2ky), (2)

where t1, t2 and t3 are the nearest neighbor, next-nearest
neighbor and next-to-next-neighbor hopping parameters. For

all numerical calculations, we chose the parameters t1 = 0.3
eV , t2 = 0.3t1 and t3 = 0.1t2 which reproduce the non-
interacting Fermi surface (see Fig. 3). We now focus on the
Hamiltoniain for the BDW state. The following real space
mean field Hamiltonian couples fermions to the bond order33

HBDW =
∑

r,a,σ
[Wa

(
eiQ1·(r+a/2) + eiQ2·(r+a/2)

)
c†r+a,σcr,σ

+ h.c], (3)

where in the sum r denotes the lattice sites, the vector a rep-
resents all the nearest neighbors vectors. The operator cr,σ
annihilates an electron of spin σ at the site r. Recent ex-
periments suggest that the bond order Wa resembles the d-
wave form factor W±x̂ = −W±ŷ = W0/2

27,28. The vectors
Q1 = 2π(δ, 0) and Q2 = 2π(0, δ) describe the periodic mod-
ulation of the bond order where δ = 1/3 indicating a com-
mensurate BDW order with periodicity of three lattice vectors.
The bond density wave order effectively redefines the hopping
amplitude t1 modulating it spatially. Fig. 1 shows the bond
order modulation in real space for the chosen modulation vec-
tors. It is useful to Fourier transform Eq. (3) and rewrite the
equation in momentum space:

HBDW (k) = W0

∑
k,σ

[(cos kx − cos ky) c†k+Q1/2,σ
ck−Q1/2,σ

+ c†k+Q2/2,σ
ck−Q2/2,σ] + h.c, (4)

where ck,σ is the annihilation operator for an electron of mo-
mentum k and spin σ. The total Hamiltonian HMF for the
system is

HMF =
∑
k,σ

εkc
†
k,σck,σ +HBDW , (5)

which can be expressed in terms of a nine component operator
Ψk,σ as

HMF =
∑

k∈RBZ,σ

Ψ†k,σH(k)Ψk,σ (6)

where RBZ is the reduced Brillouin zone (−π/3 < kx <
π/3, −π/3 < ky < π/3) and H(k) is

H(k) =



εk w12 w13 w14 0 0 w17 0 0
w21 εk+Q1 w23 0 w25 0 0 w28 0
w31 w32 εk−Q1 0 0 w36 0 0 w39

w41 0 0 εk+Q2 w45 w46 w47 0 0
0 w52 0 w54 εk+Q1+Q2

w56 0 w58 0
0 0 w63 w64 w65 εk−Q1+Q2

0 0 w69

w71 0 0 w74 0 0 εk−Q2
w78 w79

0 w82 0 0 w85 0 w87 εk+Q1−Q2
w89

0 0 w93 0 0 w96 w97 w98 εk−Q1−Q2


(7)

Details of the non-zero entries wij in the Hamiltonian matrix
are given in the appendix. Note that hermiticity of the ma-

trix imposes the condition that wji = w∗ij . Diagonalizing the
Hamiltonian H(k) in Eq. (7), we obtain the energy eigenval-
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ues En(k) and the corresponding eigenvectors. Fig. 2 shows
the relevant bands of Hamiltonian HMF near the chemical
potential out of a total of 9 bands. One notes the presence of
an electron pocket centered at (π/3, π/3) and a hole pocket at
(π/3, 0) and symmetry related points, which are also depicted
in the reconstructed Fermi surface in Fig. 3.

In Fig. 4, we plot the electron spectral function for the
BDW Hamiltonian. The electron spectral function A(ω,k)
is given by

A(ω,k) = − 1

π
Im Gret(ω,k), (8)

where Gret(ω,k) is the retarded Green’s function for the
Hamiltonian. A(ω,k) essentially maps out the Fermi surface
as it should be observed in ARPES experiments. In contrast
to the Fermi surface plot in Fig. 3, the electron spectral func-
tion is not 2π/3 periodic in kx and ky , but it is weighted by
the coherence factors at each point on the Brillouin zone34.
A very similar ARPES spectral function for the BDW phase
with slight incommensuration has recently appeared in Ref.
[33].

The hole doping in the cuprates is conventionally counted
from half-filling, i.e., one electron per Cu atom. If n denotes
the fraction of occupied number of states in the Brillouin zone
then the doping p = 1− 2n. The fraction n is calculated as

n =
∑

n,k∈RBZ

f(En(k)), (9)

where f(En(k)) = 1/(1+eβ(En(k)−µ)) is the Fermi distribu-
tion function which at zero temperature is simply a step func-
tion Θ(µ−En(k)). We find that µ behaves linearly with dop-
ing p. Half filling (p = 0) is evaluated to be at µ = −0.7055t1
and a doping of p = 12.5% is found at µ = −1.0016t1.

III. QUASIPARTICLE TRANSPORT COEFFICIENTS

The sign of the transport coefficients such as the Hall
and Seebeck coefficients reveals information about the carrier
types (electron or holes) and also the underlying Fermi sur-
face. We use the formalism of linear response theory to cal-
culate the Hall, Seebeck and Nernst coefficients for the BDW
state. The charge current J and the thermal current Q can be
related to the electric field E and the temperature gradient∇T
as (

J
Q

)
=

(
σ̂ −̂α
Tα̂ −̂κ

)(
E
∇T

)
(10)

The use of three conductivity tensors σ̂, κ̂ and α̂ is sufficient
to relate thermal and electrical effects. The diagonal compo-
nents of the matrix in Eq 10 give us the electrical and thermal
conductivity while α̂ interrelates the thermal current and the
charge current to electric field and the temperature gradient
respectively. Applying a temperature gradient ∇T across the
x axis of the sample, an electric field Ex is generated across
given by Ex = σ̂−1xx α̂xx∇xT and the Seebeck coefficient S
is defined as S = αxx/σxx. Applying a magnetic field in the

FIG. 2. (color online) Energy bands of BDW state for W = 0.22t1
(a) along the path (0, 0) to (2/3, 0), (b) along (2/3, 0) to (2/3, 2/3),
(c) from (2/3, 2/3) to (0, 0) (d) Energy bands in the limit ofW → 0.
The solid black line indicates the chemical potential corresponding
to a doping of 11%.

FIG. 3. (color online) Fermi surface reconstruction for BDW state
for p = 11% consisting of an electron pocket at (π/3, π/3) and hole
pockets at (π/3, 0) and (0, π/3). The green contour shows the Fermi
surface without the BDW order parameter i.e. W = 0. The smallest
square at the center enclosed by dashed line is the reduced Brillouin
zone (RBZ) appropriate for the BDW state.

perpendicular direction now generates a Hall current Jy and
the Hall coefficient is given by RH = σxy/σxxσyy .

The Nernst effect measures transverse electrical response
to a thermal gradient in the absence of a charge current i.e.
Ey = −ϑ dT/dx, where ϑ is the Nernst coefficient and we
apply −dT/dx thermal gradient along the x direction which
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FIG. 4. Electron spectral function A(ω = 0,k) in the presence of
bi-directional bond order Q1 = (2π/3, 0) and Q2 = (0, 2π/3) at
a doping value of p = 10%. Fermi surface reconstruction due to
BDW results in the formation of small electron and hole-like pockets
which are also observed in Fig. 3. The electron spectral function,
unlike the bare Fermi surface, is weighted at each point of the BZ by
coherence factors and therefore in general is not a periodic function
of Q1 or Q2. Similar spectral function for the BDW phase has also
been reported earlier33.

is the appropriate experimental convention. From Eq. 10 it
follows that the Nernst coefficient ϑ is

ϑ =
Ey

(−dT/dx)
=
αxyσxx − αxxσxy

σ2
xx + σ2

xy

(11)

For magnetic field B pointing in the z direction, we redefine
the Nernst coefficient to be ν = ϑ/B. The quantity ν/T
is the one which is determined experimentally. It is impor-
tant to clarify the sign convention of the Nernst coefficient
chosen here according to which the sign of the supercon-
ducting Nernst signal is opposite to that of standard textbook
convention35. According to this convention, the sign of the
Nernst signal of the vortices is positive when there is a nega-
tive temperature gradient along the x axis.

We employ the semi-classical Boltzmann equations ap-
proach for the calculation of conductivities in the relaxation
time approximation36 with the bi-directional BDW modula-
tion.

αxx =
2e

T

∑
n

∫
τ(k)(vxn)2En(k)

∂f(En(k))

∂En(k)
d2k (12)

αxy = 2e2B
T

∑
n

∫
[τ2(k)(vxn)2En(k)∂f(En(k))

∂En(k)

(vynv
xy
n − vxnvyyn )]d2k (13)

σxx = −2e2
∑
n

∫
τ(k)(vxn)2

∂f(En(k))

∂En(k)
d2k (14)

σxy = −2e3B
∑
n

∫
[τ2(k)vxn

∂f(En(k))
∂En(k)

(vynv
xy
n − vxnvyyn )]d2k, (15)

where n is the band index, vxn is the semi-classical quasi-
particle velocity vxn = ∂En(k)

∂kx
and vxyn =

∂vyn
∂ky

. The integra-
tion is restricted to RBZ and the energy eigenvalues En(k)
are measured relative to the chemical potential. The fac-
tor of 2 present in the numerators takes into account spin-
degeneracy of the energy bands and τ(k) is the scattering
time which takes in to account interactions between quasi-
particles and impurities, phonons and other quasiparticles.
We point out that τ(k) is assumed to be independent of en-
ergy but we retain a possible momentum dependence which
yields a positive Seebeck coefficient in the normal state con-
sistent with experiments. We assumed the scattering time
τ(k) = (1 + α(cos kx + cos ky))2, where the parameter α
is chosen to be 0.431. The precise functional form of τ(k) is
unimportant, however, and any other momentum dependence
of the scattering time that produces a positive sign of the See-
beck coefficient at high temperatures works just as well. Note
that an assumption of a momentum independent τ results in
a negative Seebeck coefficient in the normal state37–39 (i.e.,
above the BDW transition temperature), inconsistent with
experiments12–14. So although the Nernst coefficient ν/T is
robust and negative in the BDW phase as T → 0 even with a
momentum independent τ , which is our central result in this
paper, we retain a momentum dependent scattering time only
to be consistent with the sign of the high temperature See-
beck coefficient (which is not the focus of this work)31. The
temperature dependence of the conductivities arises from the
factor of derivative of the Fermi function ∂f(E(k))/∂E(k)
which takes the form of a Dirac-Delta function at absolute
zero.

By examining the definitions of α and σ, we note that we
can make τ(k) and B dimensionless by replacing τ(k) →
τ(k)/τ0 and B → B(eτ0t1a

2/~2). Here τ0 = τ(k =
(π/2, π/2)) is a representative scattering time, and a ∼ 3.9Å
is taken to be 1. Choosing B = 1 corresponds to a physical
B ∼ 2T (higher values of B does not qualitatively change
our results), and we obtain that a mean-scattering time of
τ0 = 1 corresponds to a mean scattering rate ~τ−10 ∼ 10K.
For our numerical calculations in the next section, we will
choose τ0 = 0.01 corresponding to a mean scattering rate of
∼ 0.086eV ∼ 1000K, and B = 30T .

IV. ANALYSIS OF NERNST EFFECT IN BDW STATE
USING HOT-SPOT MODEL

Before we compute the low temperature Nernst coefficient
numerically using Eqs. 12 to 15, let us first understand the
contribution to Nernst effect from mean field BDW state us-
ing the so-called “hot spot” model shown in Fig. 5. For weak
BDW amplitude W , the BDW can only affect electrons at the
Fermi surface by scattering by wave-vector Q1. The strongest
effect of the BDW is felt at momenta k, where both the start-
ing wave-vector k and the ending wave-vector k + Q1 are on
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the Fermi-surface. The wave-vectors k on the Fermi-surface
which satisfy this condition are referred to as hotspots.

The finite temperature thermoelectric coefficients and con-
ductivities can be written in terms of the zero-temperature
conductances as

σT=0
xy (µ) = 2e3B

∑
±

∫
dkτ2kv

x
k

[
vyk
∂vyk
∂kx
− vxk

∂vyk
∂ky

]
δ(Ek − µ)

σT=0
xx (µ) = 2e2

∑
±

∫
dkτk(vxk)2δ(Ek − µ), (16)

αxy =
1

eT

∫
dρ
∂f0ρ
∂ρ

(ρ− µ)σT=0
xy (ρ) (17)

αxx =
1

eT

∫
dρ
∂f0ρ
∂ρ

(ρ− µ)σT=0
xx (ρ) (18)

σxx = −
∫
dρ
∂f0ρ
∂ρ

σT=0
xx (ρ) (19)

σxy = −
∫
dρ
∂f0ρ
∂ρ

σT=0
xy (ρ). (20)

In the limit where σT=0
ij (ρ) varies slowly on the scale of

T such that ∂ρσT=0
ij � T∂2ρσ

T=0
ij the thermoelectric coeffi-

cients are given by the Mott relation

αij = −π
2

3

T

e

∂σT=0
ij

∂µ
. (21)

In this low temperature limit, the expression for Nernst signal
can be simplified as:

θxy = −π
2

3

T

e

∂ΘH

∂µ
(22)

where ΘH =
σT=0
xy

σT=0
xx

is the Hall angle. Since the Hall angle
ΘH changes on the scale of the Fermi energy, which is much
larger than the temperature, the typical contribution of a metal
to the Nernst coefficient is small. This is referred to as the
Sondheimer cancellation41.

However, in the presence of a BDW order singular con-
tributions to σT=0

ij (ρ) can lead to sharp changes in the Hall
angle ΘH , that result in enhancement of the Nernst coeffi-
cient. To compute the effects of the BDW with wave-vector
Q on T = 0 conductivity (i.e. Eq. 14, 15), it is convenient to
change the integration variables from kx, ky to U =

εk+εk+Q

2

and V =
εk−εk+Q

2 . The resulting conductivity is written as:

σT=0
xy (ρ) =

∑
±

∫
dUdV

D(kx, ky)

D(U, V )
τ2vx [vyvxy − vxvyy]

× δ(E − ρ) (23)

E(U, V ) = U + α
√
V 2 +W 2 (α = ±1) (24)

where vx, vxy(detailed expression are given in the appendix)
are band velocities that are related to derivatives of the energy
E.

Q1

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

kx

ky

FIG. 5. (color online) The ‘hot spot’ is defined as the point where
one piece of unperturbed Fermi surface intersect with another piece
when it is translated by the BDW wave-vector Q1. In this figure, blue
lines are unperturbed Fermi surfaces, green ones are Fermi surfaces
translated by vector Q1, the intersection between blue and green line
at the tip of the arrow is the ‘hot spot’.

To understand the role of the BDW order parameter W , we
focus on the limit of a small order parameter W � |µ|. The
contributions to the thermoelectric and conductivity response
are dominated by “hot spots” where the modification of Fermi
surface by the BDW order is more dominant. In the small W
limit, deviations from the Sondheimer relations can be under-
stood in terms of singular terms in the integrand of Eq. 16,
which are written as:

∂E

∂V
= α

V√
V 2 +W 2

(25)

∂2E

∂V 2
= α

W 2

(V 2 +W 2)
3
2

. (26)

These terms develop singularity around the ‘hotspots’ where
V ∼ 0 in the presence of a small BDW order parameter W .
The singularities at the hot-spot lead to linear in W contribu-
tions to Eq. 16. Since in this section we are interested in only
linear W contribution to Eq. 16, the other terms in Eq. 16 can
be Taylor expanded at hot spots.

Defining the BDW induced correction to σT=0 as

δσij(ρ) = σW,T=0
ij (ρ)− σW=0,T=0

ij (ρ) (27)

where σW,T=0
ij (ρ) is the conductivity when there is BDW in-

duced gap, while σW=0,T=0
ij (ρ) is the bare quantity. The

leading order for δσT=0
xy (ρ) would be of O(W ), since results

of O(W 0) is subtracted by the unperturbed ones. The non-
singular contributions result in O(W 2) contributions which
we will ignore. After simplifying Eq. 23 (details in the ap-
pendix), the leading order terms of δσxy(ρ) is written as

δσxy(ρ) = −2π(F1 + F2 +G1 +G2)W

+π(F3 − F4 +G3 −G4)W (28)

where the expressions for F and G are involved and given in
the appendix. Similarly, we could obtain δσxx(ρ):

δσxx(ρ) = −2πf1W, (29)



7

-1.0 -0.8 -0.6 -0.4 -0.2 0.2 0.4
μ

-1.2

-1.0

-0.8

-0.6

δσxx

-1.0 -0.8 -0.6 -0.4 -0.2 0.2 0.4
μ

-3.4

-3.2

-3.0

-2.8

-2.6

-2.4

-2.2

δσxy

FIG. 6. The change of electrical conductivities as a function of chem-
ical potential µ. In this figure −1 < µ < −0.8 is the range of
chemical potential corresponding to the underdoping.

where as before the expression for f1 is given in the appendix.
Expanding the conductivities σij for small W according to
Eq. 27 in Eq. 22 we can write the linearized correction to the
Nernst coefficient as

δθxy = −π
2

3

T

e

∂

∂µ
(δΘH)

∣∣∣∣∣
EF

(30)

= −π
2

3

T

e

∂

∂µ

(
δσxy − δσxxΘ0

H

σ02
xx

) ∣∣∣∣∣
EF

. (31)

Using the parameters we set in the beginning of this paper, the
numerical results for δσxx and δσxy in the range of chemical
potential to our interest are shown in FIG. 6. From the plots,
we see the dominant contribution to the Nernst coefficient in
the chemical potential range −1 < µ < −0.7 comes from
∂
∂µ (δσxy) which leads to a positive Nernst signal. However,
changes in parameters where the δσxy curve shifts to lower
chemical potentials will alter this sign to the experimentally
consistent negative value. Such a shift can potentially be ob-
tained by larger values of W beyond linear response, which
produces a negative Nernst coefficient in a larger parameter
range as we find in our numerical results described later. An-
other interesting feature of Fig. 6 is the divergence around
µ ∼ 0.3. This leads to a dramatic enhancement of the Nernst
coefficient, which will be the subject of the next section.

V. LARGE NERNST SIGNAL FOR SMALL W

An interesting feature of the linear response results is a di-
vergence in the conductance shifts δσ in Fig. 6. Since the
Nernst signal is proportional to the derivative of Hall an-
gle over chemical potential, the divergence suggests a giant

Nernst signal and a significant breakdown of the Sondheimer
cancellation for specific structures of the fermi-surface. In
Fig. 6, for a critical value of the chemical potential µc ∼ 0.3
both δσxy, δσxx appear to diverge. Examining Eq. 24, the di-
vergence can be viewed as a result of the divergence in the
Jacobian D(kx,ky)

D(U,V )

J =
D(kx, ky)

D(U, V )
=

2

|v(k + Q)× v(k)|
, (32)

which appears in Eq. 16.
To derive the form of the divergence as a function of chem-

ical potential µ, we notice that for the Q = (Q, 0) symmetry
of the BDW,

vx(k0 + Q) = −vx(k0) vy(k0 + Q) = vy(k0) (33)

where k0 is the position of hot spot. Extracting the divergent
terms in δσij we obtain:

δσxy = 4πeBW0τ
2

(
vx,k0+Q

vy,k0

M−1yy

)
(34)

δσxx = −4πW0τ
vx,k0+Q

vy,k0

(35)

Substituting the above, we obtain:

δθxy = W0
4π3eBτ2

3

T

σ0
xx

vx,k0+Q

v3y,k0

(36)

×
[
2M−1yy + Θ0

H

]
M−1yy (37)

where vy,k0 =
√

2M−1yy (µ− µc), and Myy is the effec-
tive mass at the hot spot. We see that there is a significant
enhancement of Nernst signal around the critical chemical
potential(µc). But the sign of the Nernst signal depends both
on the bare Hall angle and the property of effective mass at
hot spot and at critical chemical potential.

This mechanism produces a large Nernst signal by break-
ing down the Sondheimer cancellation when µ = µc where
Eq. 32 diverges. This occurs when the BDW wave-vector
matches a nesting vector of the bare fermi surfaces. While
the preceeding calculation is valid for small W and explains
the breakdown of Sondheimer cancellation at a chemical po-
tential beyond the usually accepted range in the underdoped
regime, it is conceivable that larger values of W extend the
range of breakdown of this cancellation. Besides, it has been
proposed40 that strong correlation effects may lead to a low
temperature electron pocket structure where the nesting would
be similar to the required condition here i.e. µ ∼ µc. Our
result suggests that in addition to providing a natural expla-
nation for the BDW wave instability with the experimentally
observed wave-vector direction, this correlated state40 would
provide a mechanism for breakdown of Sondheimer cancella-
tion even at small W .

VI. NUMERICAL RESULTS FOR NERNST COEFFICIENT
IN BDW STATE

For numerical evaluation of the transport coefficients we
choose values of the various parameters appropriate in the
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FIG. 7. (color online) Plot of transport coefficients vs. temperature
for three different doping values showing an enhanced negative sig-
nal in the underdoped regime. Top panel: Seebeck coefficient S/T in
the units of µV/K2, Middle panel: Hall coefficient RH in the units
~a2/e2, and Bottom panel: Nernst coefficient ν/T in the units of
nV/K2T . The negative signals for doping values of p = 11% and
p = 12.5% is ascribed to emergence of electron pockets due to Fermi
surface reconstruction by BDW state. The Seebeck and Hall signal
is positive for a doping of p = 7% when W = 0 while Nernst co-
efficient shows a small positive signal close to zero (when compared
to the large negative signal for the other two doping values). TBDW

is 48K and 54K respectively for p = 11% and p = 12.5%. For
these plots we have chosen W = 0.25t1, τ0 = 0.01 (corresponding
to mean scattering rate of ∼ 0.086eV ∼ 1000K), and B = 30T ,
which is roughly of the order of the field applied in experiments to
eliminate superconducting fluctuations.

pseudogap phase. It is important to emphasize that our re-
sults (specifically the qualitative temperature and doping de-
pendencies of the transport coefficients such as the Nernst co-
efficient) are completely robust against variations of the nu-
merical values and functional forms of the various parame-
ters. The functional dependence of the BDW order param-
eter on T, p etc is chosen to qualitatively mimic the exper-
imental trend, and is by no means meant to produce quan-
titatively accurate results for the Nernst and other transport
coefficients in the pseudogap phase. We chose the bond den-
sity order parameter W = 0.25t1 at zero temperature and at
doping p = 0.125 (12.5% or 1/8 hole doping) which is also
set as the upper critical doping value pup, for bond order to
survive. For any finite value of doping below pup = 0.125,
we assume a mean field doping dependence of W (p) to be
W |(p−plow)/(pup−plow)|1/2, where we chose plow = 0.085
as the lower cutoff. For any other doping range W (p) = 0.

FIG. 8. (color online) Phase plot of transport coefficients in arbitrary
units in the p − T space showing an enhanced negative signal in
the underdoped regime and low temperatures (a) Seebeck coefficient
S/T (b) Hall coefficient RH , and (c) Nernst coefficient ν/T . The
dark blue area indicates the region of maximum negative response.
For these plots (in arbitrary units) we have chosen W = 0.22t1,
τ0 = 1, and B = 1.

The bond order parameter is also assumed to scale mean
field like with temperature below TBDW (p) as W (p, T ) =

W (p)
√
|1− T/TBDW (p)|. From experimental fit, TBDW (p)

is chosen to be 142 (p − pl)0.3, which gives the critical tem-
perature in Kelvins. For T > TBDW (p), W (p, T ) is again
chosen to be zero.

Eq. 12 to 15 were used to calculate normal state conduc-
tivities (αxx, αxy , σxx, σxy) at a give temperature T and
doping value p. Thus the T dependence of the the Seebeck
(S = αxx/σxx), Hall (RH = σxy/σxxσyy) and Nernst co-
efficients (ϑ = (αxyσxx − αxxσxy)/(σ2

xx + σ2
xy)) is calcu-

lated. Fig. 7 shows normalized Seebeck and Nernst coeffi-
cients (S/T and ν/T ) and Hall coefficient (RH ) as a function
of temperature for three different doping values. For p = 11%
and p = 12.5%, we observe negative coefficients ascribed to
electron like pockets due to BDW order but the signal remains
positive for p = 7% (p < pl) doping when W = 0. Fig. 8
shows a phase space plot of Seebeck, Hall and Nernst coeffi-
cients in the p−T phase space, where the region of enhanced
negative response can be visualized to be in the pseudogap
regime of low temperature and low doping.

It has been known that superconducting fluctuations, if
present, can also give rise to a non-zero Nernst response
even in the absence of long ranged superconducting order.9

Such a Nernst response, however, is positive by definition,35

and is typically much larger than the quasiparticle Nernst re-
sponse present in the absence of superconducting fluctuations
seen in earlier experiments on the cuprates.9 The positive
Nernst coefficient (ν) found in the cuprates in the putative
superconducting fluctuation regime in the pseudogap phase
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is around ∼ 500 nV/KT . This magnitude is also much
larger than the Nernst coefficient in typical metals (which
can be both positive and negative), due to Sondheimer can-
cellation. However, in the cuprates, according to the more
recent experimental works13 (to which our present work is
addressed) the Nernst coefficient in the pseudogap phase is
of magnitude∼ −5 nV/K2T , which is still smaller than the
Nernst response obtained from superconducting fluctuations,
but most interestingly is of the negative sign. This negative
sign of the Nernst coefficient cannot be produced by super-
conducting fluctuations. Also at low temperatures, the Nernst
coefficient has been found to be independent of the applied
magnetic field (which is at least of the order of 20 − 30T ),
thus ruling out superconducting fluctuations responsible for
the Nernst coefficient. Our numerical results (see Figure 7)
roughly estimate the magnitude of the Nernst coefficient to
be ∼ −15 nV/K2T for p = 12.5% doping.

VII. CONCLUSIONS

In this work we studied the normal state of high Tc cuprates
i.e in the absence of superconductivity when a large magnetic
field is applied. Starting with a mean field Hamiltonian for
bi-directional BDW order with wave-vectors Q1 = (2π/3, 0)
and Q2 = (0, 2π/3), we observed reconstruction of the Fermi
surface from being large hole-like at higher doping (when
there is no BDW order) to the appearance of small electron-
like and hole-like pockets in the doping regime appropriate for
the BDW state, which results from breaking of lattice trans-
lational symmetry. The normal state Nernst effect is impor-
tant to understand the Fermi surface topology of cuprates in
the underdoped regime. The enhancement and the negative
sign of the low temperature Nernst signal experimentally ob-
served in the pseudogap phase of cuprates is the main focus
of this work. The Nernst response typically vanishes for con-
ventional metals due to Sondheimer cancellation, but this can-
cellation breaks down in the presence of magnetic field at low
temperatures due to the presence of a BDW order parame-
ter. In addition to providing analytical understanding for the
breakdown of the Sondheimer’s cancellation in the presence
of the BDW order parameter using the hot spot model, we
numerically calculated all the three thermoelectric transport
coefficients, namely Hall, Seebeck and Nernst coefficients, in
the semi-classical Boltzmann approximation. At the temper-
ature scale T < TBDW , we observed a negative Nernst coef-
ficient in the underdoped regime. This low temperature neg-
ative Nernst response is reminiscent of a similar response of
other two transport coefficients, namely the Hall and Seebeck
coefficients. Though the negative sign of the Hall and Seebeck
coefficients can be ascribed to the appearance of electron-like
pockets which appear on the Fermi surface, the sign of the
Nernst coefficient is not directly determined by the sign of the
dominant charge carriers and depends on the detailed Fermi
surface topology.
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Appendix A: Expansion of Nernst coefficient

The explicit expression for band velocity vα is

vx =
∂E

∂kx
=
∂U

∂kx

∂E

∂U
+
∂V

∂kx

∂E

∂V

= Ux + Vx

(
∂E

∂V

)
(A1)

vy = Uy + Vy

(
∂E

∂V

)
(A2)

The inverse of effective mass terms are:

vxx =
∂vx

∂kx
= Uxx + Vxx

(
∂E

∂V

)
+ (Vx)2

∂2E

∂V 2
(A3)

vyy =
∂vy

∂ky
= Uyy + Vyy

(
∂E

∂V

)
+ (Vy)2

∂2E

∂V 2
(A4)

vxy =
∂vx

∂ky
= Uxy + Vxy

(
∂E

∂V

)
+ VxVy

∂2E

∂V 2
, (A5)

where

E = U ±
√
V 2 +W 2 (A6)

Ux =
∂U

∂kx
Uy =

∂U

∂ky
(A7)

Vx =
∂V

∂kx
Vy =

∂V

∂ky
(A8)

Uxx =
∂U

∂kx

(
∂Ux
∂U

)
+
∂V

∂kx

(
∂Ux
∂V

)
(A9)

Uxy =
∂U

∂ky

(
∂Ux
∂U

)
+
∂V

∂ky

(
∂Ux
∂V

)
(A10)

Uyy =
∂U

∂ky

(
∂Uy
∂U

)
+
∂V

∂ky

(
∂Uy
∂V

)
(A11)

While calculating the leading order of δσT=0
xy (ρ), we substi-

tute in the expressions between eqs. A1 and A11 into Eq. 16,
and perform the integration, and keep only the linear order
terms in W . The result is Eq. 28, where,

F1(ρ, 0) = τ2J(U, V ) (UxVyVxy + VxUyVxy + VxVyUxy) |(ρ,0)
(A12)

F2(ρ, 0) =
∂

∂U

(
τ2JUxUyVxVy

)
|(ρ,0) (A13)

F3(ρ, 0) =
∂

∂V

[
τ2J (UxVyVxVy + VxUyVxVy)

]
|(ρ,0)

(A14)

F4(ρ, 0) =
∂

∂U

[
τ2J (VxVyVxVy)

]
|(ρ,0) (A15)

Here, we have assumed the integral limits of V to be V/W →
±∞. The above expression only represent the first part in the
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square bracket of the first equation in Eq. 16. For the sec-
ond part, we just change the derivative variable from xyxy to
xxyy, a minus in the front and thus obtainG’s. When we con-
sider Qy , because of the C4 rotational symmetry, we simply
interchange x and y. Similarly, we get the expression for δσxx
in Eq. 16, where

f1(ρ, 0) = τJ(Vx)2|(ρ,0) (A16)

Appendix B: Hamiltonian matrix elements

The non zero elements of the 9 component Hamiltonian are
specifically given by:

w12 = W0 (cos (kx + π/3)− cos ky)

w13 = W0 (cos (kx − π/3)− cos ky)

w14 = W0 (cos kx − cos (ky + π/3))

w17 = W0 (cos kx − cos (ky − π/3))

w23 = W0 (cos (kx + π)− cos ky)

w25 = W0 (cos (kx + 2π/3)− cos (ky + π/3))

w28 = W0 (cos (kx + 2π/3)− cos (ky − π/3))

w36 = W0 (cos (kx − 2π/3)− cos (ky + π/3))

w39 = W0 (cos (kx − 2π/3)− cos (ky − π/3))

w45 = W0 (cos (kx + π/3)− cos (ky + 2π/3))

w46 = W0 (cos (kx − π/3)− cos (ky + 2π/3))

w47 = W0 (cos kx − cos (ky + π))

w56 = W0 (cos (kx + π)− cos (ky + 2π/3))

w58 = W0 (cos (kx + 2π/3)− cos(ky + π))

w69 = W0 (cos (kx − 2π/3)− cos(ky + π))

w78 = W0 (cos (kx + π/3)− cos (ky − 2π/3))

w79 = W0 (cos (kx − π/3)− cos (ky − 2π/3))

w89 = W0 (cos (kx + π)− cos (ky − 2π/3))
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Hardy, R. Liang, D. A. Bonn, and M.-H. Julien, Nature 477, 191–
194 (2011).
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14 F. Laliberté, J. Chang, N. Doiron-Leyraud, E. Hassinger, R. Daou,
M. Rondeau, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy,
S. Pyon, T. Takayama, H. Takagi, I. Sheikin, L. Malone, C.
Proust, K. Behnia, and L. Taillefer, Nature Communications 2,
432 (2011).



11

15 S. Chakravarty, H.-Y. Kee, Proc. Natl. Acad. Sci. USA 105, 8835
(2008).

16 A. J. Millis, M. R. Norman, Phys. Rev. B 76, 220503(R) (2007).
17 J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen,

J. Larsen, J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy,
A.Watenphul, M. v. Zimmermann, E. M. Forgan, S. M. Hayden,
Nature Phys. 8, 871 (2012).

18 G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa,
C. Mazzoli, N. B. Brookes, G. M. De Luca, A. Frano, D. G.
Hawthorn, F. He, T. Loew, M. Moretti Sala, D. C. Peets, M. Sal-
luzzo, E. Schierle, R. Sutarto, G. A. Sawatzky, E. Weschke, B.
Keimer, L. Braicovich, Science 337, 821 (2012).

19 E. Fradkin, S. A. Kivelson, Nature Physics 8, 865 (2012).
20 J. M. Tranquada, Science 337, 811 (2012).
21 S. Blanco-Canosa, A. Frano, E. Schierle, J. Porras, T. Loew, M.

Minola, M. Bluschke, E. Weschke, B. Keimer, and M. Le Tacon,
Phys. Rev. B 90, 054513 (2014).

22 M. Le Tacon, A. Bosak, S. M. Souliou, G. Dellea, T. Loew, R.
Heid, K-P. Bohnen, G. Ghiringhelli, M. Krisch and B. Keimer,
Nature Phys. 10, 52 (2014).

23 T. Wu, H. Mayaffre, S. Krmer, M. Horvati, C. Berthier, W.N.
Hardy, R. Liang, D.A. Bonn, M.-H Julien, arXiv:1404.1617.
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