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Several observed transport and thermodynamic properties of the heavy-fermion compound
YbRh2Si2 in the quantum critical regime are unusual and suggest that the fermionic quasiparti-
cles are critical, characterized by a scale-dependent diverging effective mass. A theory based on
the concept of critical quasiparticles scattering off antiferromagnetic spin fluctuations in a strong-
coupling regime has been shown to successfully explain the unusual existing data and to predict a
number of so far unobserved properties. In this paper, we point out a new feature of a magnetic
field-tuned quantum critical point of a heavy-fermion metal: anomalies in the transport and ther-
modynamic properties caused by the freezing out of spin-flip scattering of critical quasiparticles and
the scattering off collective spin excitations. We show that a step-like behavior as a function of
magnetic field of e.g. the Hall coefficient and magnetoresistivity results, which accounts quantita-
tively for the observed behavior of these quantities. That behavior has been described as a crossover
line T ∗(H) in the T −H phase diagram of YbRh2Si2. Whereas some authors have interpreted this
observation as signaling the breakdown of Kondo screening and an associated abrupt change of the
Fermi surface, our results suggest that the T ∗ line may be quantitatively understood within the
picture of robust critical quasiparticles.

PACS numbers: 71.27.+a, 71.10.Ay

I. INTRODUCTION

Quantum phase transitions in heavy-fermion com-
pounds have attracted considerable interest over the last
two decades. These systems exhibit deviations from the
standard Fermi-liquid description of metals, as a con-
sequence of the interaction of the fermionic (Landau)
quasiparticles with bosonic critical spin fluctuations. The
existence of phase transitions in these systems was pro-
posed early on by Doniach1, who argued that the compe-
tition of Kondo screening of the local moments and the
(RKKY) interaction between them should lead to a quan-
tum phase transition separating a paramagnetic from a
(usually) antiferromagnetic phase. A full explanation of
just how this happens is still lacking (for a review see Ref.
2). Therefore the discovery of a well-accessible quantum-
critical regime in some heavy-fermion compounds has
generated a good deal of research activity. In particular,
YbRh2Si2 (YRS), which has a magnetic field-tuned quan-
tum phase transition, has been studied extensively. Mo-
tivated by experimental observations of deviations from
conventional quantum-critical behavior2 at very low tem-
perature in YRS, we have previously considered the inter-
play of fermionic (quasiparticle) and bosonic (spin fluc-
tuations) critical behaviors and shown how this leads
to critical quasiparticles with unconventional behavior in
the critical region.3 The behavior of several of the trans-
port and thermodynamic properties in the critical regime
were successfully accounted for on the basis of the critical
quasiparticle theory, both in YRS3,4 and CeCu6−xAux.5

In addition to the unconventional behavior in YRS as
T → 0, a crossover behavior in the Hall constant6 and
several other quantities7 was observed along a line T ∗(H)

in the temperature (T ) - magnetic field (H) phase dia-
gram, with the crossover width scaling as T . This T ∗ line
begins at relatively high (T,H), monotonically decreases
with decreasing magnetic field and apparently ends at
the quantum critical point (QCP), which is accessed by
tuning H to the critical field Hc ≈ 0.06 T. A number
of authors have interpreted this crossover as a signature
of the breakdown of Kondo screening and a concomitant
change of the Fermi surface8–10.

In this paper, we propose an alternative explanation
for the T ∗ line that is based on the theory3,4 of well-
defined critical quasiparticles with robust Kondo screen-
ing. The theory was originally developed for disordered
systems, in which impurity scattering serves to distribute
to the entire Fermi surface the critical renormalization of
the quasiparticle effective mass. This results from in-
teraction with antiferromagnetic spin fluctuations that
in the pure case is important only at “hot spots” on the
Fermi surface. Later, it was shown that exchange of pairs
of AFM spin fluctuations, (i.e. energy fluctuations), car-
rying small total momentum leads to critical quasiparti-
cles even for clean systems.5 In both cases, there results
scaling behavior of the free energy and transport prop-
erties that is characterized by fractional power laws in
temperature and in the tuning parameter. In addition to
the strong-coupling regime, the theory also applies in the
conventional spin-density wave weak-coupling regime. In
renormalization group language, the theory has two sta-
ble fixed points, at weak and at strong coupling. Thus,
depending on the initial conditions at the temperature
where the scaling towards lower temperatures begins,
the system flows either to the weak-coupling or to the
strong-coupling fixed point. The predictions of this the-
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ory in the strong-coupling regime were found to be in
excellent agreement with all available experimental data
in cases where the system possesses additional fluctua-
tions enhancing the effective mass in a singular way. In
the case of YbRh2Si2, three-dimensional ferromagnetic
fluctuations have been identified, leading to a logarith-
mic increase of the effective mass in temperature (which
is weaker than the power-law increase eventually result-
ing from the strong-coupling theory of three-dimensional
antiferromagnetic fluctuations at low T ).

We argue here that the thermal activation of spin-flip
excitations of critical quasiparticles in a non-zero mag-
netic field leads to a threshold behavior of transport prop-
erties as a function of magnetic field at fixed tempera-
ture. There are actually two types of processes contribut-
ing to this threshold behavior, which defines a crossover
T ∗(H), Near the QCP, the switching on of spin-flip scat-
tering leads to a step-like feature in the imaginary part
of the critical component of the quasiparticle self energy
[at a temperature T ∗1 (H)], which by analyticity carries
over to the real part and hence to the thermodynamic
properties. The properties of this T ∗1 line mirror those
of the experimentally determined T ∗(H) line near the
QCP. As we show below, the T ∗1 line approaches the QCP
following a fractional power law. In the temperature
regime for which data are available at present, the asymp-
totic low temperature behavior has not yet been reached.
Nonetheless, an evaluation of the T ∗1 line using the avail-
able thermodynamic data approaches the QCP almost
vertically in the T −H phase diagram, as apparently ob-
served for T ∗(H). This effect arises as a consequence of
the unusual renormalization of the bare single quasipar-
ticle Zeeman splitting h0 = gµBH. As we explain below,
the magnetic field is screened by the Fermi liquid inter-
action, such that h0 → h = Rnlh0, where Rnl(T,H) is a
generalized Wilson ratio (in the limit H → 0, Rnl → R,
where R is the usual Wilson ratio). This renormalization
of the Zeeman splitting played an important role in the
interpretation of the linewidth of electron spin resonance
(ESR) in YRS,11,12 in that it increases the low tempera-
ture linewidth in the Fermi liquid regime by two orders
of magnitude, in agreement with experiment.13 Since the
Wilson ratio R is found to tend to zero upon approach-
ing the QCP, the renormalized Zeeman splitting of the
quasiparticle energy is predicted to nearly vanish (the ob-
served finite response to a magnetic field is accounted for
by the noncritical, nonquasiparticle contribution). Con-
sequently, the thermal energy required to flip the spin
nearly vanishes as H → Hc and T → 0, leading to a
threshold anomaly at T ∗1 (H) the width of which goes to
zero as well. At higher T the anomaly is rapidly washed
out.

There exists, however, a second type of spin-flip
excitation, the collective excitation observed in ESR
experiments.13,14 This excitation has also been seen in
inelastic neutron scattering experiments.15 The condition
of thermal energy being equal to the ESR energy quan-
tum ωr defines a line T ∗2 (H) which we find coincides with

the experimentally determined T ∗ line at higher T,H. At
lower field the T ∗2 line crosses the critical field at a non-
zero temperature and therefore with a non-zero width.
We therefore find a crossover behavior near the point
where T ∗1 (H) and T ∗2 (H) meet.

In Sec. II, we review the reasons leading to a renormal-
ization of the single-particle Zeeman splitting. In Sec.
III, we calculate the imaginary part of the self energy
of the critical quasiparticles and derive the threshold be-
havior at the line T ∗1 (H). This allows an approximate
calculation of a step-like feature in the magnetoresistiv-
ity in Sec. IV and in the Hall coefficient in Sec. V, which
is compared with experiment. Then we deduce the real
part of the self energy using analyticity arguments, and
therefore the quasiparticle weight factor Z. The effective
mass ratio obtained from the relation m∗/m = 1/Z al-
lows the identification, in Sec. VI, of a step-like feature
in the magnetic-field dependence of the specific heat and
other thermodynamic quantities.

In Sec. VII, we calculate the contribution of thermal
excitation of the ESR spin resonance to the imaginary
part of the self energy. Using analogous arguments as
in Sec. II, we derive the threshold contributions to the
transport quantities along a line T ∗2 (H), defined by the
scattering off the spin resonance.

We collect the results in Sec. VIII and compare
the theoretically determined T ∗(H) line with the pub-
lished experimentally-determined T ∗(H) and find excel-
lent agreement.

We summarize our findings in Sec. IX and give a criti-
cal evaluation of the interpretation of the T ∗ line as cor-
roborating the picture of critical quasiparticles

II. RENORMALIZATION OF THE ZEEMAN
SPLITTING

A. Fermi liquid theory

The single particle Green’s function in a magnetic field
has the form

Gσ(k, ω;H) =
1

ω − εk + σh/2− Σσ(k, ω;H)
(1)

Here h = Rnlh0 and h0 = gµBH where Rnl
is the renormalized Wilson ratio formulated as fol-
lows: The external field is screened by the molec-
ular field h0 → h0(1 − faM/H), where M =∑
σ

∫
dω
∫
ddk(2π)−dσGσ(k, ω;H) is the spin polariza-

tion and fa is the (Landau quasiparticle) spin ex-
change interaction. In this paper, we consider a three-
dimensional metal, with critical fluctuations also in d =
3. In the limit H → 0 , or more generally, if M
is linear in H, we have M = χH. Using the Fermi
liquid expression for the spin susceptibility16 (in ap-
propriate units) χ = ∂M/∂H = N∗0 /(1 + F a), where
F a = N∗0 f

a is the Landau parameter in the spin channel
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and N∗0 is the quasiparticle density of states, we then get
h = h0/(1 +F a) = Rh0 , where R = χ/N∗0 = 1/(1 +F a)
is the usual Wilson ratio. Now, in the case of non-zero
magnetic field Rnl = 1 − faχb, where b = (M/H)/χ.
Here χ = ∂M/∂H is the differential susceptibility at fi-
nite field H. Expressing faχ = F a/(1 +F a) = 1−R, we
finally get

h = h0[1 + (R− 1)b] = h0Rnl (2)

The static screening changes the applied field h0 to h
everywhere, so that we shall use the screened field in
place of the bare field from now on. The screening
factor Rnl (nl stands for “nonlinear screening”) is ex-
pressed in terms of the Wilson ratio R and b, the ra-
tio of nonlinear and differential susceptibility. Here,
R = αRχT/C, with C/T = γ, the specific heat coeffi-
cient, αR = (2πkB/3gµB)2, and g = 3.6 is the g-factor.
The experimental data show that b > 1, always. and
b(H) is an increasing function of H, since the slope of
M(H) becomes smaller for increasing H −Hc. The non-
linearity of M thus weakens the increase of R with de-
creasing field towards Hc .

Expanding the dynamic part of the self energy at small
ω and defining the quasiparticle (qp) Z-factor as Z−1 =
[1− ∂Σ(k, ω; 0)/∂ω], we find

Gσ(k, ω;h) =
Z

ω − ε∗k + Zhσ(σh/2) + iΓ
, (3)

where Γ = ZImΣ and

Zhσ =
1− σ[Σ↑(k, 0;h)− Σ↓(k, 0;h)]/h

[1− ∂Σ(k, ω; 0)/∂ω]ω=0
(4)

ε∗k = Z[εk +
1

2
(Σ↑(k, 0;h) + Σ↓(k, 0;h))] (5)

In the limit of h→ 0 we may use the relation

lim
h→0

2σ∂Σσ(k, 0;h)/∂h = lim
ω→0

∂Σ(k, ω; 0)/∂ω, (6)

to find Zhσ = 1. So, the coupling of qp spins to the exter-
nal field is only renormalized by the molecular field. This
is in accord with the statement that Landau quasiparti-
cles have the same quantum numbers as bare particles,
and therefore the qp spin is a conserved quantity.

B. Renormalization of the Zeeman splitting of
critical quasiparticles near a field-tuned QCP

The above relation of the two derivatives of the self
energy with respect to h and ω does not hold generally
in non-zero magnetic field. This can be seen by analyz-
ing any diagram of the self energy Σσ(ω) in terms of bare
Green’s functions in the following way: there is always ex-
actly one string of Green’s functions Gσ(kj , ω−ω1−...) =
(ω + σh/2− ω1 − ...− εkj )−1 (carrying the external spin
label) connecting beginning and end of the diagram. In

those Green’s functions a shift of magnetic energy σh is
equivalent to a shift of ω . All other Green’s functions
belong to closed loops in which the spin index is summed
over. The closed loop contributions are then necessarily
functions of H2. In the limit H → 0 those H2 correc-
tions drop out. Hence in this limit the relation Eq. (6)
holds. At non-zero field the H2 corrections are not neg-
ligible (although they may be small of O(H/εF )2, where
εF is the Fermi energy) and Eq. (6) does not hold in gen-
eral. However, near the critical field hc the derivative
∂Σσ(k, 0;h)/∂h is critically enhanced. As suggested in
Ref. 5, the vertex function corresponding to the deriva-
tive ∂Σσ(k, 0;h)/∂h is enhanced ∝ 1/Z , diverging at
the QCP just like ∂Σ(k, ω; 0)/∂ω. Therefore, the relation
Eq. (6) still holds, as far as the critical contributions are
concerned, and, as explained in the previous subsection,
we have

h = Rnlh0 + hreg. (7)

In the following we shall drop the regular contribution
hreg, since it vanishes at the critical point faster than
the first contribution, at least ∝ Z2 .

The relation of the renormalized Zeeman splitting h to
the magnetic field H is somewhat involved and in gen-
eral may not be expressed as a simple functional rela-
tionship. Near the QCP of YRS, however, we may use
the result4 Z−1 ∝ (H − Hc)

1/3 ∝ h, from which fol-
lows T ∗(H) ∝ (H − Hc)

2/3 as the asymptotic form of
the T ∗ line. At the temperatures for which data are
available, the behavior of the magnetic susceptibility, in
particular, as a function of T,H is not well-represented
by a simple scaling form. It is then more reliable to use
directly the available experimental information on the
specific heat coefficient γ(T,H) (see Ref. 17), the differ-
ential spin susceptibility χ(T,H) (see Refs. 18–21), and
the magnetization M(T,H) (see Refs. 20, 22, and 23)
to determine the quasiparticle Zeeman splitting h(T,H).
In this way one may derive a parameter-free represen-
tation of the Zeeman splitting. In Fig. 1 we show re-
sults for h(T,H) versus magnetic field H at four selected
temperatures T = 18, 38, 65, 100 mK, for which magne-
toresistivity data,24 Sec. IV below, are available. The
T = 18K data is shown as the purple line while the other
three temperatures give similar results, as shown. Also
shown is the bare Zeeman splitting h0(H). One can see
that h is substantially enhanced by the ferromagnetic
molecular field. At these temperatures the asymptotic
behavior h ∝ (H − Hc)

1/3 mentioned above is not yet
seen. It is masked by the relatively strong increase of
the spin susceptibility towards lower fields (at these low
temperatures critical antiferromagnetic spin fluctuations
dominate and χ eventually reaches its asymptotic T = 0
limiting value).
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FIG. 1. Renormalized Zeeman splitting h(T,H) at various T ,
in degrees K. The unrenormalized Zeeman splitting h0 is also
shown. The magnetic field unit is Tesla and the temperatures
are in Kelvin.

III. THRESHOLD BEHAVIOR OF SPIN FLIP
SCATTERING OF SINGLE QUASIPARTICLES:

SELF ENERGY

Since the differential spin susceptibility χ and the mag-
netization M both approach a constant finite value at the
QCP, and since the specific heat coefficient C/T as well
as Z−1 diverge as T−1/4 (in 3d - for 2d AFM fluctua-
tions, see Ref. 5), h is seen to nearly vanish at the QCP
(more precisely, h/h0 = 1 − b at the QCP, which is a
very small quantity). In one-loop approximation of the
self energy the most important effect of Zeeman splitting
is from the intermediate quasiparticle line (straddled by
a fluctuation propagator). The effect on the AFM spin
fluctuation propagator is small (h does not enter the Lan-
dau damping term in lowest order).

Let us then look at the self energy expression (due to
coupling to magnetic energy fluctuations, as in Ref. 5):

ImΣσ(k, ω) ≈ λ2E
∑
σ′

∫
(dq)

∫ ∞
−∞

dνF (ν, ω)

×ImχEσσ′(q, ν)ImGσ′(k + q, ν + ω) (8)

where F (ν, ω) = f(ν+ω)+b(ν) and f(ω) = 1/(eω/T +1)
and b(ω) = 1/(eω/T − 1). The energy fluctuation spec-
trum is given by (see Ref. 5):

ImχE(q, ω) ∝ ω(|ω|/Z2)3/2

(q2 + ξ−2 + |ω|/Z2)2
(9)

The wavevector q and the inverse correlation length ξ−1

are in units of the Fermi wavenumber kF and the fluc-
tuation energy ω as well as all other energies (T, h) in
units of the Fermi energy εF , of the heavy quasiparticle
band of YRS, approximately 10 K. The decisive effect
of the Zeeman splitting is on the result of the angular

integration over q in Eq. (8).∫
dΩq
4π

ImGσ′(k + q, ω)

≈
∫
dΩq
4π

Zδ(ω − ε∗kσ′ − v∗F q cos θ)

=
Z

v∗F q
θ(v∗F q − |ω − ε∗kσ′ |) (10)

where v∗F = ZvF and vF are the quasiparticle and bare
Fermi velocities. We need ImΣσ(k, 0) at the Fermi en-
ergy, i.e. ε∗kσ = 0 and ε∗kσ′ = h(σ′−σ)/2. Also, ω � v∗F q,
as may be seen from the structure of ImχE(q, ω), so that
ω may be dropped in Eq. (10). We now see that the non-
spinflip term σ′ = σ gives rise to half of the contribution
we had previously (at H = 0). The spin-flip term, how-
ever, has the additional constraint on the q-integration
v∗F q > |h|. The q-integral of the spin flip term in Eq. (8)
may be approximated by Φ(ω; ξ, T, h) defined as

Φ(ω; ξ, T, h) =

∫
q2dq ImχE(q, ω)

1

vF q
θ(v∗F q − h)

≈ Z−3
∫

(qdq)ω5/2

(q2 + |ω|/Z2)2
θ(q2 − h2/Z2v2F )

≈ ω|ω|3/2

Z3

[
θ(|ω| − h2)

|ω|/Z2
+
θ(h2 − Z2 − |ω|)

h2/Z2

]
(11)

where θ(x) is the unit step function and we have taken
ξ → ∞, since we restrict ourselves to the critical region
We use this result in Eq. (8) to obtain

ImΣcrσ (ω) ≈ λ2E
∫ ∞
−∞

dνF (ν, ω)[Φ(ν;T, 0) + Φ(ν;T, h)]

≈ asT 3/4[K(0, ω/T ) +K(u/T, ω/T )], (12)

where u = h2/εF and we defined a function K(z, y) de-
scribing the scaling behavior as the magnetic field and
the energy ω is varied as follows:

K(z, y) = I(z, y)/I(0, 0) (13)

I(z, y) = I3/2(z, y) + [I5/2(0, y)− I5/2(z, y)]/z (14)

Iµ(z, y) =

∫ ∞
z

dxF (x, y)xµ (15)

where the thermal factor F (x, y) is defined below Eq.
(8). We also used λE ∝ Z−3 and we approximated Z by
Z(ω = 0; ξ → ∞, T,H) = const.(T/T0)1/4. In Eq.(12),
as is a phenomenological parameter which may be deter-
mined, e.g.from a fit to the specific heat coefficient as a
function of T at the critical field.

The function K(h2/εFT, 0) drops monotonically with
increasing h, in a step-like fashion. The step width
scales with temperature T . This means that the spin
flip term shows threshold behavior as a function of h
at h ≈ (εFT )1/2. As mentioned above, the dependence
of h on magnetic field does not follow a simple functional
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form, so that the T ∗ line has to be determined numeri-
cally.

In the following we will use the above result for the self
energy to determine the contribution of qp spin-flip scat-
tering to several of the quantities for which a threshold
behavior as a function of H has been observed. In par-
ticular we will give a detailed comparison of the magne-
toresistance and Hall coefficient data with our theoretical
result.

IV. MAGNETORESISTIVITY

The magnetoresistivity ρ(T,H) is determined by the
quasiparticle scattering rate due to impurities 1/τ imp

and that due to scattering off the critical fluctuations
1/τ∗ = Z(ω)ImΣ(ω). At low enough temperature, im-
purity scattering dominates. We obtain ρ(T,H) from the
Kubo formula for the conductivity by expanding in the
small quantity τ imp/τ∗ � 1 as follows (f is the Fermi
function):

ρ(T,H)− ρ(0, H)) =

[∑
σ

∫
dω

∂f

∂ω

N∗0 (ω)v∗2F (ω)(τ imp)2

τ∗(ω)

]

×

[∑
σ

∫
dω

∂f

∂ω
N∗0 (ω)v∗2F (ω)τimp

]−2
= a

∑
σ

∫
dω

∂f

∂ω
ImΣσ(k, ω) (16)

where the renormalized density of states N∗0 (ω) = N0/Z,
the Fermi velocity v∗F = vFZ, and the qp relaxation rate
1/τ∗ = ZImΣ , so that N∗(ω)v∗2F (ω) ∝ Z(ω), cancelling
the factor of Z in 1/τ∗, the quasiparticle relaxation rate
(and we neglect a contribution from vertex corrections,
which may be assumed to change only the prefactor).3–5

Using Eq. (12) for ImΣ and scaling out the overall T -
dependence, we find

ρ(T,H)− ρ(0, H) ≈ a(m/e2N0)T 3/4L(u/T ) (17)

L(z) =

∫ ∞
0

dy
K(0, y) +K(z, y)

cosh2(y/2)
, (18)

where a is a constant to be adjusted. In Sec. IIB, we
found the renormalized Zeeman splitting h numerically
from the available experimental data (see Fig. 1). It en-
ters the functions K(z, y), Eq. (13) which determine the
magnetoresistivity. Substituting the found renormalized
Zeeman splitting into the expression for the magnetore-
sistivity, we have evaluated Eq. (17) for four tempera-
tures T = 18, 38, 65, and 100 mK for which data are
available. In Fig. 2, we compare our results with the
data for sample #1 of Friedemann et al.24 Here, assum-
ing an analytic dependence of the impurity scattering
rate on the magnetic field, we approximated the mag-
netic field dependence of the background resistivity by

ρ(0, H)) = c1 + c2H
2, assuming an analytic dependence

of the impurity scattering rate on the magnetic field. The
characteristic energy u = h2/εF , where εF ≈ 10K and
h is obtained from Eq. (2), as shown in Fig. 1. The
remaining unknown parameter set {a ≈ 1µΩcm, c1 ≈
0.9µΩcm, c2 ≈ 0.5µΩcm/T2} was chosen to give the best
fit to the data for all the temperatures chosen. As one
can see, the experimental data are described quite well by
the theory, with the single set of parameters. The width
of the step ∆H is found to approximately scale with T .
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FIG. 2. Magnetoresistivity ρ(T,H) at various T . Clockwise
from upper left, T = 18, 38, 65 and 100 mK. H in Tesla and
ρ in µΩ-cm. Dots are theory, Eq. (17); triangles are from the
data, Ref. 24

The agreement of our simplified model calculation
with experiment is remarkable, considering that we have
adopted a number of approximations, including the ne-
glect of the H-dependence of Z (assuming that the mag-
netic field region considered here lies completely inside
the critical regime, and neglect of the difference of effec-
tive masses of spin (↑, ↓)-quasiparticles.

V. HALL COEFFICIENT RH

Electronic structure calculations,25 in particular
within the “renormalized band theory,” i.e. taking
the Kondo resonance scattering at the Yb ions into
account,26 have revealed two relevant bands involved in
transport, one of particle, the other of hole character. As
a consequence, substantial compensation is observed in
the Hall coefficient data, leading to small values of RH
and an enhanced sensitivity to disorder.6,24,26 The Hall
coefficient is given in terms of the partial Hall (σjxyz)

and longitudinal (σjxx) conductivities of the two bands
(j = 1, 2) as26

RH(T,H) =

∑
j=1,2 σ

j
xyz

(
∑
j=1,2 σ

j
xx)2

(19)



6

where

σjxyz =
∑
k

τ∗2k,ju
∗
k,xy,j

(
∂f

∂ε∗kj

)
(20)

σjxx =
∑
k

τ∗k,jv
∗2
k,x,j

(
− ∂f

∂ε∗kj

)
(21)

Here u∗k,xy,j = [v∗k,x,jv
∗
k,x,jM

∗−1
yx,j−v∗2k,x,jM

∗−1
yy,j ], and v∗k,x,j

and M∗−1yx,j are the x-component of the quasiparticle ve-
locity and the yx-component of the inverse quasiparticle
mass tensor of the j-th band (as earlier, the asterix indi-
cates the quasiparticle renormalization). As in the case
of the magnetoconductivity, we use the fact that the in-
elastic scattering from critical fluctuations gives only a
small contribution to the scattering rate, thus allowing
expansion in the small parameter τ impkj /τ∗kj :

∆σjxyz(T,H) = 2
∑
k

(τ∗impk,j )3

τ∗inelkj

u∗k,xy,j

(
∂f

∂ε∗kj

)
∝ (N0v

2
F /m)(τ impj )3uj

×
∫
dω

(
−∂f
∂ω

)
ImΣj(ω) (22)

where ∆σjxyz(T,H) = σjxyz(T,H)−σjxyz(0, H). Here, we

have used u∗k,xy,j(∂f/∂ε
∗
kj) → uj(v

2
F /m)Z2

j (ω)(∂f/∂ω),
and have accounted for band structure effects in an av-
erage way by the dimensionless factor uj ≶ 0. We recall
that the impurity relaxation rate in the case of unitary
scattering (which we assume to be dominant) is renor-

malized as 1/τ∗impkF ,j
∝ Z(ω)/τ impkF ,j

. In the critical regime,

using the results obtained for Z(ω) and ImΣ(ω) for YRS
in the regime dominated by three-dimensional antiferro-
magnetic fluctuations5 we may scale out the tempera-
ture dependence by using Zj(ω) ∝ |ω|1/4 and ImΣj(ω) ≈
γj |ω|3/4, γj > 0. As mentioned above, both data and the-
ory suggest that the Hall coefficient RH(0, H) at T = 0,
and therefore σxyz(0, H) =

∑
j σ

j
xyz(0, H), are rather

small, as particle and hole contributions almost compen-
sate. The temperature- dependent contribution may be
approximated as

RH(T,H) = [ρ(T,H)]2[σxyz(0, H) + σ′xyz(T,H)], (23)

where, using Eq. (22),

σ′(T,H) =
∑
j

∆σjxyz(0, H)

= a′H
n(τ imp)3b

m2
T 3/4L(u/T ). (24)

L(z) was defined in Eq. (18). Here the dimensionless
quantity b ∝ (b1γ1 + b2γ2) , with b1 > 0 (particles) and
b2 < 0 (holes) describes the extent of compensation. We
note that in the extreme limit of low temperature, when

the inelastic component of σjxx may be neglected, such
that the denominator of Eq. (19) may be replaced by
[ρ(0, H)]−2 ∝ (τ imp)2, two powers of τ imp in Eq.(22)
are cancelled and the T -dependent contribution to RH
scales with disorder strength as ∆RH = RH(T,H) −
RH(0, H) ∝ τ imp .

For the numerical evaluation of Eq.(23), we used again
a parameterization of the impurity scattering contribu-
tion of the form σxyz(0, H) = cH1 + cH2H

2 and defined
aH = a′Hn(τ imp)3u/m2. In Fig. 3, we show a comparison
of the calculated RH curves with experimental data,24

again choosing a single set of parameters {cH1 ≈ 1.7,
cH2 = 1.5, aH ≈ 0.5} and the magnetoresistivity as de-
termined above in Sec. IV. We conclude that the theory
accounts well for the observed behavior.
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FIG. 3. Hall constant RH at various T . Clockwise from up-
per left, T = 18, 38, 65 and 100 mK. H in Tesla and RH in
10−10m3/C. Dots are theory, Eq. (22); triangles are from the
data, Ref. 24.

VI. SPECIFIC HEAT

The spin-flip contribution to the self energy of criti-
cal quasiparticles will also affect thermodynamic prop-
erties. For example, the specific heat coefficient will be
proportional to 1/Z. We now show how the specific heat
coefficient acquires a step-like variation as a function of
magnetic field at fixed temperature. Using the analytic-
ity properties of Σ, we have approximately

ReΣσ(ω) ≈ (|ω|/Z2)7/2[1/|ω|+ 1/[|ω|+ h2/εF ] (25)

Since Z−1(T ) = 1 − ∂Σ/∂ω|ω→T , we get the self-
consistent equation for Z(T ) as

Z−1 = 1 + Z−7|T |3/2[1 + T/(T + h2/εF )] (26)
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The strong coupling solution of this equation is

Z(T,H) ∝ |T |1/4[1 + T/(T + h2/εF )]1/6 (27)

such that the specific heat coefficient would be

γ ∝ T−1/4[1 + T/(T + h2/εF )]−1/6 (28)

This expression for the specific heat coefficient also de-
scribes step-like behavior as the magnetic field is lowered
through the T ∗-line. The size of the step is of order
10%, but this time the step is reversed. We do not at-
tempt a detailed comparison with experiment here be-
cause the transition to the antiferromagnetic phase at
temperatures T < 70mK gives rise to a peaked contribu-
tion masking the step-like feature obtained above.

VII. SCATTERING OF QUASIPARTICLES BY
SPIN RESONANCE BOSONS

ESR experiments on YRS have shown a well-defined
spin resonance13,14 in a wide region of the phase diagram
extending from fields as high as 8T down to the critical
field (see, for example, Fig. 1 in Ref. 12). Inelastic neu-
tron scattering experiments15 have shown the existence
of the ESR resonance at small but non-zero momentum.
Extending our earlier results11,12 to non-zero q, we are
led to the spin-fluctuation spectrum

Imχ(q, ω) = Im

[
χ0
−ωr − aq2 + iγ

ω − ωr − aq2 + iγ

]
= χ0

ωγ

(ω − ωr − aq2)2 + γ2

≈ χ0 ωδ(ω − ωr − aq2) (29)

where ωr is the spin-resonance frequency as calculated by
us, see Eq. (2) of Ref. 12, χ0 is the static susceptibility
and γ is the line width, see Eq. (4) and following, of Ref.
12. The resonance frequency ωr is everywhere non-zero;
it does not vanish at the QCP, but gets renormalized
to about 2/3 its high field limiting value in the criti-
cal regime.12,27 The coefficient a has some T -dependence
that we neglect. Since the resonance linewidth is found
to be much less than the resonance frequency, we may
take it to be infinitesimally small. The imaginary part of
the electron self energy caused by scattering on the spin
resonance is then given by

ImΣ(ω) = λ2
∫ ∞
−∞

dνF (ν, ω)χ0ν

∫
dq

× ImG(ν + ω,k + q)δ(ν − ωr − aq2), (30)

Where F is the thermal factor of Eq. (8). Again using
the angular integral∫

dΩq
(2π)3

ImG(ν + ω,k + q) ∝ 1

vF q
, (31)

we find

ImΣ(ω) ∝ λ2χ0

∫ ∞
−∞

dνF (ν, ω)ν

∫
dq2δ(ν − ωr − aq2)

∝ λ2χ0

∫ ∞
ωr

dνF (ν, ω)ν

∝ λ2χ0T
2I1(

ωr
T
,
ω

T
) (32)

where I1(z, y) has been defined in Eq. (15). The vertex
correction λ and the static spin susceptibility are both
temperature dependent. Below, we approximate χ0 in
the relevant regime 0.3K < T < 2K and 0 < H < 4T by
χ0(T ) ∝ ln(10/T ) , which describes the data reasonably
well. The corresponding contribution to the magnetore-
sistivity will have soft threshold behavior at T ∗2 (H) ≈ ωr.

VIII. T*-LINE IN THE PHASE DIAGRAM OF
YRS

We are now ready to collect our results on the loca-
tion of the T ∗ line in the T −H phase diagram of YRS.
These are determined in two ways, with identical results:
i) from the position of the midpoint of the step feature in
the magnetoresistance, Hall coefficient and other quanti-
ties, and ii) from the solutions of the implicit equations
πT ∗ ≈ u(T ∗, H) in the low temperature regime (spin-flip
scattering) T . 0.3K and T ∗ ≈ ωr(T

∗, H) at higher T
(scattering from spin resonance). The collected T ∗ points
from our calculations are shown in Fig. 4 together with
the T ∗ line published in numerous papers by the Dresden
group.6,7,24 The agreement is seen to be very good. As
shown above, the step heights of the features associated
with T ∗1 and T ∗2 vary with temperature as T 3/4 and T 2,
respectively, which explains why the T ∗1 feature is less
important at higher T , and vice versa.

IX. CONCLUSION

We have addressed the crossover behavior in trans-
port and thermodynamic quantities that occurs across
the line T ∗(H) in the small (T,H) region of the phase
diagram of YRS. We propose that the T ∗ line marks the
onset of spin-flip scattering processes. We show in de-
tail how these processes are switched on provided the
temperature, and therefore the thermal energy is suffi-
ciently high to allow additional scattering processes of
at least two different types: (1) quasiparticle spin-flip
scattering off the quantum fluctuations associated with
the QCP of YRS. This involves excitation over the Zee-
man gap, which we show to nearly vanish at the QCP;
and (2) scattering off spin resonance bosons, relevant at
higher magnetic fields. While the second contribution is
noncritical and therefore affects only the transport quan-
tities, the first involves quantum critical excitations and
is therefore operative in both the transport and the ther-
modynamic quantities. We have demonstrated that the
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FIG. 4. Experimental phase diagram of YRS.28 In the FL
region (blue) the resistivity is ∝ T 2. NFL denotes the non-
Fermi liquid region where the resistivity varies with T as Tα

with α ≤ 1. The purple region is where several experimen-
tal probes exhibit a crossover behavior, called the T ∗-line.
The dots are the theoretical positions of the onset of spin-
flip scattering - from quantum fluctuations (yellow) and at
higher (T,H), from the spin resonance (red). The red dots at
H < 0.1T are calculated using unpublished data27

observed magnetoresistivity and the Hall coefficient may
be quantitatively explained by our model calculation.

In our calculation of the magnetotransport properties,
we have made extensive use, as input, of experimental
data on specific heat, susceptibility and magnetization.
This enables us to conclude that in the experimentally
relevant temperature regime the rapid drop of the Zee-
man splitting h as the magnetic field is lowered to be-
low the critical field at fixed temperature is not so much
controlled by the decrease of the quasiparticle weight
Z(H,T ), but it is governed by the H - dependence of
the differential susceptibility and of the magnetization.
Therefore the T ∗-line is not necessarily tied to the crit-
ical field (although at lower temperature it presumably
is). This is to say that if the QCP is shifted to higher or

lower values of magnetic field by doping the pure com-
pound appropriately, this does not necessarily mean that
the T ∗(H) as obtained above will follow the shift of the
QCP. Rather, it may stay approximately at the unshifted
position. This may be easily checked as soon as sufficient
data on specific heat, magnetization and susceptibility
become available. The part of the T ∗-line at higher tem-
perature, which according to our calculation is controlled
by the scattering off the spin resonance excitations will
stay unchanged upon doping as long as the resonance
frequency is not affected by doping.

We emphasize that our description of the T ∗(H)-line
derives from the magnetic field induced changes (1) of
the fermionic spectrum as expressed by the Zeeman split-
ting, and (2) of the bosonic spectrum through the tuning
parameter. The T ∗-features result from incorporating
spin-flip scattering from critical fluctuations and scatter-
ing from the spin resonance mode into the transport and
thermodynamic responses. Within this picture, which
successfully accounts for the observed crossover phenom-
ena, there are no additional effects that would further
change the spectra from those at H = 0.
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12 P. Wölfle and E. Abrahams, Phys. Rev. B 80, 235112
(2009).

13 J. Sichelschmidt, V.A. Ivanshin, J. Ferstl, C. Geibel, and
F. Steglich, Phys. Rev. Lett 91, 156401 (2003).

14 U. Schaufuss, V. Kataev, A.A. Zvyagin, B. Büchner, J.
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