
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Equilibration and generalized Gibbs ensemble for hard wall
boundary conditions

Garry Goldstein and Natan Andrei
Phys. Rev. B 92, 155103 — Published  1 October 2015

DOI: 10.1103/PhysRevB.92.155103

http://dx.doi.org/10.1103/PhysRevB.92.155103


Equilibration and GGE for hard wall boundary conditions

Garry Goldstein and Natan Andrei
Department of Physics, Rutgers University, Piscataway, New Jersey 08854, USA

In this work we present an analysis of a quench for the repulsive Lieb-Liniger gas confined to
a large box with hard wall boundary conditions. We study the time average of local correlation
functions and show that both the quench action approach and the GGE formalism are applicable
for the long time average of local correlation functions. We find that the time average of the system
corresponds to an eigenstate of the Lieb-Liniger Hamiltonian and that this eigenstate is related to
an eigenstate of a Lieb-Liniger Hamiltonian with periodic boundary conditions on an interval of
twice the length and with twice as many particles (a doubled system). We further show that local
operators with support far away from the boundaries of the hard wall have the same expectation
values with respect to this eigenstate as corresponding operators for the doubled system. We present
an example of a quench where the gas is initially confined in several moving traps and then released
into a bigger container, an approximate description of the Newton cradle experiment. We calculate
the time average of various correlation functions for long times after the quench.

I. INTRODUCTION

Nonequilibrium many body physics is one of the most
challenging areas of research of modern condensed mat-
ter physics. There have been spectacular advances in
the field, driven by experimental studies of dynamics
in optically trapped atomic gas systems, systems with
extremely weak coupling to the environment allowing a
study of essentially Hamiltonian dynamics of time evolu-
tion [1–9]. Encouraged by these experimental advances
there has been great theoretical activity in the area [10–
20], focused on questions like does a steady state emerge,
how do local observables equilibrate, is there any prin-
ciple which allows us to relate the steady state to the
initial conditions?

One of the most important recent experimental [1, 21]
and theoretical [22–34] results is that there is a relation
between the initial state and the long time steady state
for time evolution of integrable models. This was as-
cribed to the fact that integrable models possess an in-
finite family of local conserved charges {Ii}, in involu-
tion, which include the Hamiltonian H, typically identi-
fied with I2:

[H, Ii] = [Ii, Ii′ ] = 0, H = I2, (1)

These conserved quantities imply that there is a com-
plete set of eigenstates for an integrable model which
may be parametrized by sets of rapidities {k} which
are simultaneous eigenstates of all Ii. For the Lieb-
Liniger Hamiltonian, the model which describes the
Newton Cradle experiment [1], the the action of the
charges on these eigenstates given by: Ii |k1, k2, ...kN 〉 =(∑N

j=1 k
i
j

)
|k1, k2, ...kN 〉 (we note that this is additive in

the number of particles). It was shown for the Lieb-
Liniger gas, by following its actual time evolution nu-
merically and analytically, [22], that at long times the
gas reaches equilibration with the density matrix having
no time dependence and becoming diagonal in the basis
{k}.

How to describe this diagonal, time independent, den-
sity matrix in general is an open question. It was pro-
posed that the diagonal ensemble in turn [22, 24] takes
the form of a generalized Gibbs ensemble (GGE) [24–36],

ρGGE =
1

Z
exp

(
−
∑

αiIi

)
(2)

with the αi, the generalized inverse temperatures, en-
coding the initial state |Φ0〉 through the requirement
〈Ii〉final ≡ Tr {ρGGEIi} = 〈Φ0 |Ii|Φ0〉 ≡ 〈Ii〉initial. Z is
a normalization constant ensuring Tr [ρGGE ] = 1. This
interesting proposal, while valid for the case at hand, the
repulsive Lieb-Liniger model, fails for models with bound
states (string solutions) [37], a large class of models which
encompasses, among others, the attractive Lieb-Liniger,
the XXZ Heisenberg chain and the Hubbard model.

When a GGE description is valid it provides an elegant
shortcut to the computation of correlation functions at
long times, without having to explicitly follow the time
evolution or needing to compute overlaps. Instead, when
equilibration is reached the correlation functions (of the
Lieb-Liniger gas) at long times, or in this case the time
average of the correlation functions, may be computed
by taking their expectation value with respect to the
GGE density matrix, e.g. 〈Θ (t→∞)〉 = Tr [ρGGEΘ].
It was further shown [38] that the GGE ensemble is
equivalent to an eigenstate, ρGGE ∼= |{k0}〉 〈{k0}|, for
an appropriately chosen |{k0}〉 so that 〈Θ (t→∞)〉 =
〈{k0}|Θ |{k0}〉. Another approach, the quench action
approach [39], is of more general validity but is more
difficult to implement. It allows the computation of the
diagonal density matrix in terms of the overlaps of eigen-
states with the initial state, but such overlaps are hard
to determine and are known only for few initial states.
Again, it was shown that the resulting diagonal ensemble
is equivalent to an eigenstate.

Most of the work done on the Lieb-Liniger model was
concerned with periodic boundary conditions, exceptions
are [40, 41]. Real systems [1–9] have finite extent with
typically a parabolic potential confining the particles. We
will approximate this parabolic confining potential as a
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hard wall boundary. We will study the system in the limit
where the system size L → ∞, the number of particles
N scales with the system size, N/L = const, and for
times much greater then the system size, t > L/vtyp (vtyp
is a typical velocity). This regime is relevant for many
experiments [1–9] as it is typically possible to trap cold
atoms for a considerable length of time. We note that this
time scale has been theoretically considered in [40, 42].

II. TIME AVERAGE

We shall consider circumstances where the system does
not necessarily equilibrate in the long time limit and fo-
cusing instead on the long time average of a local operator
(observable) Θ evolving from the initial state |Φ0〉,

〈Θ〉T ≡
1
T

´ T
0
dt 〈Φ0| eiHtΘe−iHt |Φ0〉 =

= 1
T

∑
λ

∑
κ
ei(Eλ−Eκ)T−1
i(Eλ−Eκ) 〈Φ0 | λ〉 〈λ|Θ |κ〉 〈κ | Φ0〉

∼=
∑
λ 〈Φ0 | λ〉 〈λ|Θ |λ〉 〈λ | Φ0〉 ,

(3)
the last equality is in the limit where T → ∞ where
we find it is given by a diagonal ensemble in the limit
T → ∞. Here |λ〉 and |κ〉 are exact eigenstates of the
evolution Hamiltonian. Therefore, as the time averaged
expectation values of local observables is given by the
diagonal ensemble. We shall show how to express it in
terms of a GGE for a system given by the integrable
Lieb-Liniger Hamiltonian, to which we turn next.

III. THE SYSTEM

We shall study the Lieb-Liniger Hamiltonian describ-
ing the 1-D system of bosons with short range interac-
tions [35, 43, 44]:

HLL =

L̂

0

dx
{
∂xb
† (x) ∂xb (x) + c

(
b† (x) b (x)

)2}
. (4)

Here b† (x) is the bosonic creation operator at the point
x and c is the coupling constant. Hard wall boundary
conditions are imposed:

ψ (x1 = 0, x2, ...xN ) = 0

ψ (x1, x2, ..xN = L) = 0 (5)

with ψ (x1, ...xN ) the wave function of the bosons in the
region x1 < x2 < ... < xN .

The exact eigenstates of the Hamiltonian with the
boundary conditions given in Eq. (5) are given by [43]:

ψ (|k1| , .. |kN |) =
∑
{ε}

C {ε} ψ̄ (ε1 |k1| , ..εN |kN |) , (6)

where {ε} corresponds to the 2N sequences εj = ±1 and
C (ε1, ...εN ) =

∏
εj
∏
i<j

(
1− ic

εi|ki|+εj |kj |

)
, and

ψ̄ (k1, ...kN ) =
∑
P

A (P ) ei
∑
kPixi , x1 < x2 < ... < xN

with A (P ) =
∏
i<j

(
1 + ic

kPi−kPj

)
and the sum

∑
P ex-

tending over N ! permutations. These (the ψ̄ (k1, ...kN ))
are the eigenstates with periodic boundary conditions.
Furthermore the rapidities ki = εi |ki| satisfy the Bethe
ansatz equations [43]:

kiL = πni+
∑
j 6=i

(
arctan

(
c

ki − kj

)
+ arctan

(
c

ki + kj

))
These are exactly the same equations as for a doubled
system of length 2L with twice as many particles hav-
ing 2N with rapidities {ε |k|}. There is a one to one
correspondence between states of a system with hard
wall boundary conditions and states of a doubled sys-
tem with periodic boundary conditions where all the ra-
pidities come in pairs {k,−k} [43]. The Bethe Ansatz
equations which determine the allowed rapidities {k} for
the doubled system can be translated in a standard fash-
ion [35] into a set of integral equations for the rapidities’
densities. We denote, for a given eigenstate |{k}〉 of the
doubled system, by ρp (k) the Bethe density of particles
so that 2Lρp (k) dk is the number of particles in the in-
terval [k, k + dk] of the doubled system. Similarly ρh (k)
denotes the hole density and ρt (k) = ρp (k) + ρh (k)
the total density. The number of states |{k}〉, consis-
tent with a given set of densities, {ρp (k) , ρh (k)}, is
measured by the Yang-Yang entropy [35], SY Y ({ρ}) =´∞
−∞ dk

(
ρh (k) ln

(
ρt(k)
ρh(k)

)
+ ρp (k) ln

(
ρt(k)
ρp(k)

))
. The den-

sities {ρp (k) , ρh (k)} for the doubled system are deter-
mined by the thermodynamic Bethe Ansatz equations
which enforce the periodic boundary conditions: ρt (k) =
1

2π + 1
2π

´
K (k, q) ρp (q), with K (k, q) = 2c

c2+(k−q)2 .

IV. TIME AVERAGE, QUENCH ACTION AND
THE GGE

The time average of a local observable, Eq.(3), can be
rewritten as [39, 45]:

〈Θ〉T→∞ =

ˆ
D

(
ρt
ρp

)
e2LSQuench({ρ(k)}) 〈{k}|Θ |{k}〉

(7)
Here 〈{k}|Θ |{k}〉 is computed in the hard wall (non-
doubled) system, and the quench action is given by:

SQuench ({ρ (k)}) =

ˆ
gΦ0 (k) ρ (k) +

1

2
SY Y ({ρ (k)})

with
´
gΦ0 (k) ρ (k) = 2

2L log (|〈Φ0 | {k}〉|), where g (k) =
g (−k) and SY Y ({ρ}) defined above. The extra factor of
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1
2 in front of SY Y ({ρ (k)}) comes from the fact that we
are only considering states where the rapidities come in
pairs {k,−k}.

The time average of the Lieb-Liniger gas with hard
wall boundary conditions corresponds therefore to a sin-
gle eigenstate, the one that maximizes the quench ac-
tion [45]. Let us denote the solution quasiparticle den-
sity for the doubled system as ρΦ0

p (k) and the quasi-
particle density for the original system as ρ̃Φ0

p (k) with
ρ̃Φ0
p (k) = 2θ (k) ρΦ0

p (k) and ρΦ0
p (k) = ρΦ0

p (−k).
We proceed to convert the quench action into a GGE

description of the system with hard wall boundary condi-
tions and use it to compute time average of local observ-
ables. We begin by determining its conserved charges.
Since an eigenstate, see Eq. (6) is given by a superpo-
sition of eigenstates of the periodic Lieb Liniger Hamil-
tonian with rapidities of the form {ε |k|} all the even
conserved quantities satisfy the relation:

I2nψ (|k1| , .. |kN |) =
∑

k2n
i ψ (|k1| , .. |kN |) (8)

Therefore {I2n} form a set of local integrals of motion and
the quasiparticle density ρΦ0

p (k) being symmetric in k is,
in turn, uniquely determined by its even moments which
correspond to its conserved quantities [46] in particular
{I2n} are complete. Hence the even local integrals of
motion, {I2n}, determine final state in terms of the GGE
density operator, ρ̃GGE = 1

Z exp (−
∑
α2nI2n). The in-

verse temperatures, α2n, found from the initial state |Φ0〉
setting 〈I2n〉 = 〈I2n〉GGE . Any local observable can be
written in the form:

〈Θ〉GGE =

ˆ
D

(
ρt
ρp

)
e2LSGGE({ρ(k)}) 〈{k}|Θ |{k}〉 (9)

with SGGE =
´
ρ (k)

(
1
2

∑
α2nk

2n + 1
2L lnZ

)
+ 1

2SY Y .
We can identify g (k) = 1

2

∑
α2nk

2n+ 1
2L lnZ (since both

the quench action and the GGE are equivalent to a single
eigenstate of the Lieb Liniger Hamiltonian (which corre-
sponds to the extremum of the path integral in Eq. (9)),
we establish that 〈Θ〉T→∞ = 〈Θ〉GGE . We conclude that
the time average of Lieb-Liniger gas corresponds to a
GGE density matrix where the conserved operators are
the even local conserved densities. We further note that
when considering an operator Θ with support far away
from the hard wall boundaries we may as well calcu-
late 〈Θ〉GGE with respect to the doubled system. Indeed
〈Θ〉GGE = Tr {Θ exp (−

∑
α2nI2n)} for both systems.

Since operators I2n are local, all correlation functions Θ
may be calculated by considering paths where the propa-
gator is the quadratic piece of

∑
α2nI2n while the inter-

actions are given by the quartic and higher order pieces.
We note that paths that cross the boundary of the sys-
tem are exponentially suppressed when Θ is far from the
boundary.
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Figure 1: (A) The system is initialized in a state where two
hard wall Lieb Liniger droplets of length l moving with ve-
locity ±V inside a large hard wall trap of length L. (B-G)
The velocity distribution for the BEC bottom and the ground
state quench top for a variety of quasiparticle densities and
interaction strengths. The time average velocity distribution
in red the initial velocity distribution before the quench is
shown in blue. (B-D) V = 5, L = 1, kF = 1. (E-G) V = 5,
L = 1 n = 1. The initial velocity distribution is computed
in the appendix and is shown in blue while the final velocity
distribution is shown in red. the initial velocity distribution
of the BEC is shown in the form of delta functions. Note
collision narrowing in (B-D) and broadening in (E-G).

V. EXAMPLES OF USES OF GGE FOR HARD
WALL BOUNDARY CONDITIONS

A. Newton’s cradle type - eigenstate initial
conditions

We will consider the following setup: there is a large
trap of length L with hard wall boundary conditions in
which there are multiple smaller traps of lengths Li mov-
ing with velocities Vi. Each of the smaller traps contains
a Lieb-Liniger gas initialized in an eigenstate described
by quasiparticle density ρip (k) with ρip (k) = ρip (−k) (we
note that thermal states also correspond to specific eigen-
states [35]). At time t = 0 the smaller traps are turned
off and the whole of the gas expands into the larger trap.
We would like to find the quasiparticle density of the long
time averaged final state. To do so we use the fact that
all the even local conserved quantities are conserved dur-
ing the quench, so we need to equate their values before
and after the quench. We will show in Section VI that
in the thermodynamic limit we do not need to consider
the edge effects for computing the local conserved quanti-
ties. Therefore we need to find a symmetric quasiparticle
density that satisfies the following set of equations:

L

ˆ
dkρfp (k) k2n =

∑
Li

ˆ
ρip (k)

(
k +

1

2
Vi

)2n
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The extra terms k + 1
2Vi stem from the fact that under

a boost to velocity Vi the wave function is multiplied
by exp (i

∑
miVixi) with mi = 1

2 . We note that here
ρip (k) = ρip (−k) is the quasiparticle density of the dou-
bled system. A solution to this equation is given by:

ρfp (k) =
∑ Li

2L

(
ρip

(
k +

1

2
Vi

)
+ ρip

(
k − 1

2
Vi

))
,

This solution allows for the calculation of various corre-
lation functions for the system. Note that in the case of a
periodic boundary condition we would have received the
answer ρfp (k) =

∑ Li
L ρ

i
p

(
k − 1

2Vi
)
.

Consider now the quench dynamics of a system consist-
ing initially of two boxes of length l with N particles each
in the ground state moving with of opposite velocities V
and −V see Fig. 1(A). The case with multiple boxes
may be done by straightforward modification of Eq. (10)
and (11) below but requires more tedious notation. In
experiment one typically measures the probability distri-
bution for the particle velocity. It is given by the Fourier
transform of the field-field correlation function

P (v, t) =

ˆ
dxe−i

v
2 x
〈
b† (x) b (0)

〉
t

We will be interested in its time average. This exam-
ple has many similarities to the experiment done by Ki-
noshita et. al [1] where the system is placed in a parabolic
confining potential and initialized in a state with some
of the particles going left and some of the particles going
right. Here we have replaced the parabolic confining po-
tential with a hard wall box and do not therefore expect
this probability distribution to match well with the one
measured in the experiment. The reason being that when
confined by a harmonic potential the bosons move up and
down the potential which slows them down and speeds
them up periodically. In our setup the particles hit a hard
wall and have their velocities reversed after the collision
(as such they experience no intermediate velocities). As
a result our calculation is expected to underestimate the
probability of a particle having low velocity.

We now proceed with the calculation for the setup
where we consider two boxes of length l moving to-
wards each other with velocities ±V . An important
ingredient in calculating correlation functions is the
occupation probability of the doubled box fL (k) =
ρp(k)
ρt(k) . To calculate it we first calculate the quasi-
particle distributions of the smaller boxes. The
ground state total density ρt of the smaller boxes,
in the limit of large c is determined from [35]:
2πρt (k) = 1 + 2

c

´ kF
−kF dqρt (q) leading to ρt (k) =

θ (−kF , kF ) 1
2π

(
1 + 2kF

πc

)
+ o(kFc )..... Furthermore it is

possible to obtain a relation between kF and N with
kF = πN

l −
2
πc

(
πN
l

)2
+ ..... which implies that the total

particle density of the doubled box is given by: ρp (k) =
l

2πL

(
1 + 2kF

πc

)∑
v=±V2

θ (−kF + v, kF + v), therefore the
final total density is: ρt (k) = 1

2π

(
1 + 4kF l

cπL

)
+ .... and oc-

cupation probability:

fL (k) = AL
∑
v=±V2

θ (−kF + v, kF + v) (10)

with AL = l
L

(
1 + 2kF

πc

(
1− 2l

L

))
. We now proceed to

compute the field-field correlation function
〈
b† (x) b (0)

〉
.

We will only consider the case when the points x and
0 are far away from the boundaries of the box so
we may use the doubled system for all calculations.
In terms of the occupation distribution, fL(k), the
correlation function is given by [47]:

〈
b† (x) b (0)

〉
=´

dk
2πfL (k) e−ikxω (k) exp

(
−x
´
dufL (t)Pu (k)

)
+ h.o.t.

with ω (k) = exp
(
− 1

2π

´
dqK (k, q) f (q)

) ∼= exp
(
−FLπc

)
,

and FL = 4kFAL and K (k, q) = 2c
(k−q)2+c2

∼= 2
c .

The generating function Pu (k) satisfies the equation:
2πPu (k) = −k−u+ic

u−k+ic exp
(
−
´
fL (s)K (u, s)Ps (k)

)
− 1

yielding for large c: Pu (k) ∼= − 1
2π

(
1 + exp

(
− 2FL

πc

))
+

i
exp
(
− 2FL

πc

)
πc (k − u) and

´
fL (u)Pu (k) ∼=

−FL2π

(
1 + exp

(
− 2FL

πc

))
+ iFL

k
πc exp

(
− 2FL

πc

)
. Comb-

ing all we obtain the velocity probably distribution:

P (v) ∼ AL
exp

(
−FLπc

)
2π

∑
i,j=±

(−1)
j

arctanAi,j(v) (11)

withA±±(v) = CL

(
(1− FL exp(−2FL/πc)

πc )
(
±V2 ± kF

)
+ v

2

)
and CL = 2π

4kFAL
(

1+exp
(
− 2FL

πc

)) .
Note that the velocity distribution Eq.(11), see Fig.

1(B-D), underwent a collision narrowing. The distribu-
tion is the leading order term for the set up of a hard wall
trap. In a harmonic trap, as argued before, the probabil-
ity of a particle having low velocity would be larger due
to having to move up and down the harmonic confining
potential.

B. Newton’s cradle type- BEC initial conditions

A very similar scenario happens when we initialize the
state in a collection of BEC’s each of length Li moving
with velocity Vi inside a larger trap of length L. At
t = 0 the smaller traps are released and interactions are
turned on so that the system is described by a Lieb-
Liniger Hamiltonian with coupling constant c. The initial
state is BEC and can be described by a quasiparticle
density [45]:

ρBECip (x) =
τi

d
dτi
a (x, τ)

1 + a (x, τ)
. (12)

Here x = k
c , τi = ni

c (where ni is the particle density)
and a (x, τ) = 2πτ

x sinh(2πx)J1−2ix (4
√
τ) J1+2ix (4

√
τ), with

Jn a modified Bessel function of the first kind of order n.
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By an argument similar to the one given above the final
quasiparticle density is given by:

ρfp (k) =
∑ Li

2L

(
ρBECip

(
k +

1

2
Vi

)
+ ρBECip

(
k − 1

2
Vi

))
(13)

More generally any translationally invariant quench
that may be solved using periodic boundary conditions
it is possible to define a box quench which may be solved
analogously to Eq. (13) above. In the Appendix we show
that for a quench with two boxes (each of length l with
N particles in each box in a BEC state) with velocities
V and −V inside of a box of total length L the velocity
probably distribution is given by:

P (v) ∼ nBL
exp

(
−GLπc

)
π

×

×
(

HL

H2
L + 1

4 (v − V KL)
+

HL

H2
L + 1

4 (v + V KL)

)

Here, KL =
(

1−GL exp(−2GL/πc)
πc

)
, GL = 2nBL

BL = l
L

1
1
2π+ 2N

πcL

, HL = GL
2π

(
1 + exp

(
− 2GL

πc

))
+

2n
(

1−GL exp(−2GL/πc)
πc

)
and n = N

l , see Fig. 1(E-G).
The more general case is tedious but analogous.

We note that the average velocity distribution has
broadened as compared to its value at the start of the
quench, while in the previous case ground state initial
conditions the distribution underwent narrowing due to
the collisions.

VI. Q-BOSON REGULARIZATION

We wish to show that the in the thermodynamic limit
the edge contributions to the conserved quantities van-
ish so the calculations presented in Section V are rigor-
ous. To do so we need to introduce a q-boson regular-
ization of the conserved charges [48, 49]. The q-boson
system corresponds to M bosonic lattice sites with each
site having operators Bn, B†n and Nn = N†n that satisfy
the relations BnB†n − q−2B†nBn = 1, [Nn, Bn] = −Bn
and

[
Nn, B

†
n

]
= B†n. The q-boson Hamiltonian is given

by:

Hq = − 1

δ2

M∑
n=1

(
B†nBn+1 +B†n+1Bn − 2Nn

)
(14)

The system is integrable since the Hamiltonian may be
derived from the following transfer matrix

T =

(
A (λ) B (λ)
C (λ) D (λ)

)
= LM (λ) ....L1 (λ) (15)

With

Ln (λ) =

(
eλ χB†n
χBn e−λ

)
(16)

Here χ =
√

1− q−2 and q = eλ. There is an infinite
family of conserved charges In, the first few densities cor-
responding to these conserved charges are given by:

J1 (n) =χ2B†nBn+1

J2 (n) =χ2

(
1− χ2

2

)(
B†nBn+2−

− χ2

2− χ2
B†nB

†
nBn+1Bn+1 − χ2B†nB

†
n+1Bn+1Bn+2

)
(17)

Furthermore the open q-boson chain is also integrable
[50]. It is known that the Lieb-Liniger gas is a limiting
case of the q-bosons, where the limit is taken as δ → 0,
Mδ = L, γ = cδ

2 and q = eλ. We shall show that in the
limit Li →∞ for any finite χ the edges give no contribu-
tion to the conserved quantities. Indeed we notice that
the conserved quantities are linear functions of the expec-
tations of various operators e.g. I1 =

∑
n

〈
B†nBn+1

〉
with

∼ Li terms in the sum. Furthermore by translational in-
variance each of the terms gives the same contribution
e.g.

Ii =
Li
δ

〈
J i (n0)

〉
−Boundary Terms (18)

Here n0 is some site in the middle of the q-boson chain.
We notice that the expectation values of the boundary
terms have absolutely no L dependence (they are just
proportional to the expectation value of the density, den-
sity density, field-field and related correlation functions
which do not scale with L). Therefore in the limit that
Li → ∞ we have that Ii = Li

δ

〈
J i (n0)

〉
and the bound-

ary terms have disappeared. Since the Lieb-Liniger gas
corresponds to a limit of the q-bosons we see that it the
thermodynamic limit the boundary terms do not effect
conserved quantities.

VII. CONCLUSIONS

We have studied a quench of the Lieb-Liniger gas on
an interval with hard wall boundary conditions. We in-
troduced a doubled system with periodic boundary con-
ditions that is equivalent to the one on an interval. We
have shown that the GGE formalism applies to the com-
putation of time averages of local operators and that the
even integrals of motion form a complete set of local con-
served quantities. We have used this approach to com-
pute a quench where there are several small traps inside
of a larger one and the smaller traps are released. We
found that the quasiparticle density is additive. We have
also calculated the expectation values of some local oper-
ators for this quench and in particular the time averaged
velocity distribution. In the future it would be of interest
to extend this work to models with bound states.

Acknowledgments: This research was supported by
NSF grant DMR 1410583 and Rutgers CMT fellowship.
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Appendix A: Correlation functions (zero
temperature case)

We would like to calculate various cor-
relation functions

〈
b† (0) b† (0) b (0) b (0)

〉
,〈

b† (0) b† (0) b† (0) b (0) b (0) b (0)
〉
, and 〈ρ (x) ρ (0)〉

(
〈
b† (x) b (0)

〉
and the quasiparticle occupation proba-

bility fL (k) =
ρp(k)
ρt(k) has already been partially done

in the main text) for quenches discussed in the main
text. We will consider the case where both x and 0 are
far away from the boundaries of the box. In this case
the problem becomes translationally invariant and all
correlations may be calculated using a doubled box with

doubled quasiparticle density (see the discussion below
Eq. (9) in the main text). As such we may use the
results found in [47, 51–54]. We will consider the initial
conditions where the system starts with two small boxes
of length l with N particles each, with each box cooled
to the ground state. We will also assume that the boxes
have velocities V and −V . To make the computations
tractable we will work only in the limit of large c and
only to leading order in 1

c .

We now compute the local correlation functions using
this occupation probability. We begin with the correla-
tion function

〈
b† (0) b† (0) b (0) b (0)

〉
. It is given by [51]:

〈
b† (0) b† (0) b (0) b (0)

〉
= 2

ˆ
dk1

2π
fL (k1)

ˆ
dk2

2π
fL (k2)

(k1 − k2)
2

(k1 − k2)
2

+ c2
+ ....

∼=
4

π2
A2
Lk

2
F

(
V

c

)2

+ .... (A1)

Where the last equality is in the limit kF � V � c and for convenience we will denote AL = l
L

(
1 + 2kF

πc

(
1− 2l

L

))
.

Furthermore it is possible to obtain the density density density correlation function in the same limit. It is given by
[51]:

〈
b† (0) b† (0) b† (0) b (0) b (0) b (0)

〉 ∼=6

ˆ
dk1

2π

ˆ
dk2

2π

ˆ
dk3

2π
fL (k1) fL (k2) fL (k3)

(k1 − k2)
2

(k1 − k2)
2

+ c2
(k1 − k3)

2

(k1 − k3)
2

+ c2
(k2 − k3)

2

(k2 − k3)
2

+ c2

∼=
1

8π3
A3
L

(
2kF
c

)4(
V

c

)4

(A2)

Where again the last equality is true in the limit kF �
V � c.

We now repeat the calculation of the field-field corre-
lation function

〈
b† (x) b (0)

〉
(already partly given in the

main text). It is given by [47]:

〈
b† (x) b (0)

〉 ∼= ˆ dk

2π
fL (k) e−ikxω (k)×

× exp

(
−x
ˆ
dtfL (t)Pt (k)

)
with ω (k) = exp

(
− 1

2π

´
dqK (k, q) f (q)

) ∼= exp
(
−FLπc

)
,

where FL = 4kFAL and K (k, q) = 2c
(k−q)2+c2

∼= 2
c . Fur-

thermore the function Pt (k) satisfied the equation:

2πPt (k) = −k − t+ ic

t− k + ic
exp

(
−
ˆ
fL (s)K (t, s)Ps (k)

)
−1

(A3)

Using this expression it is possible to obtain that:

Pt (k) ∼=−
1

2π

(
1 + exp

(
−2FL
πc

))
+ i

exp
(
− 2FL

πc

)
πc

(k − t) + o

(
1

c

)

From this we obtain that
´
fL (t)Pt (k) ∼=

−FL2π

(
1 + exp

(
− 2FL

πc

))
+ ikFLπc exp

(
− 2FL

πc

)
. Comb-

ing we obtain that :
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〈
b† (x) b (0)

〉
=

exp
(
−FLπc

)
2π

exp

(
−FLx

2π

(
1 + exp

(
−2FL
πc

))) ˆ
fL (k) e

−ikx
(

1−FL
exp(−2FL/πc)

πc

)

=
2 exp

(
−FLπc

)
πx
(

1− exp(−2FL/πc)
πc

) exp

(
−FLx

2π

(
1 + exp

(
−2FL
πc

)))
AL×

× sin

(
kFx

(
1− FL

exp (−2FL/πc)

πc

))
cos

(
V

2
x

(
1− FL

exp (−2FL/πc)

πc

))
+ o

(
1

c

)
(A4)

We now proceed to the density density calculation. We know that the density density function is given by [54]:

〈ρ (x) ρ (0)〉 = ρ2 − 1

4π2

ˆ
dk1fL (k1)ω (k1)

ˆ
dk2fL (k2)ω (k2)

(
k1 − k2 + ic

k1 − k2 − ic

)(
p (k1, k2)

k1 − k2

)
exp (xp (k1, k2))

Here p (k1, k2) = −i (k1 − k2) +
´
dtfL (t)Pt (k1, k2), where the function Pt (k1, k2) satisfies:

2πPt (k1, k2) =
k1 − t+ ic

k1 − t− ic
· k2 − t− ic
k2 − t+ ic

exp

(
−
ˆ
fL (s)K (s, t)Ps (k1, k2)

)
− 1 (A5)

From this we obtain that Pt (k1, k2) = −i
πc (k1 − k2) + .... Combing we obtain that

〈ρ (x) ρ (0)〉 ∼=ρ2 − 1

4π2
exp

(
−2FL
πc

)(
1 +

FL
πc

)2 ˆ
dk1fL (k1)

ˆ
dk2fL (k2)

(
1− 2i

k1 − k2

c

)
exp

(
−ix (k1 − k2)

(
1 +

FL
πc

))
=ρ2 − 4

π2
exp

(
−2FL
πc

)
1

x2
sin2

(
kFx

(
1 +

FL
πc

))
cos2

(
V

2
x

(
1 +

FL
πc

))
− 1

π2c
exp

(
−2FL
πc

)
1

x3
(
1 + 2FL

πc

) sin2

(
kFx

(
1 +

FL
πc

))
cos2

(
V

2
x

(
1 +

FL
πc

))
− 1

π2c
exp

(
−2FL
πc

)
1

x2
sin

(
kFx

(
1 +

FL
πc

))
cos

(
V

2
x

(
1 +

FL
πc

))
×

×
(
V

{
cos

(
x

(
V

2
− kF

)(
1 +

FL
πc

))
− cos

(
x

(
V

2
+ kF

)(
1 +

FL
πc

))}
+

+ 2kF

{
cos

(
x

(
V

2
− kF

)(
1 +

FL
πc

))
+ cos

(
x

(
V

2
+ kF

)(
1 +

FL
πc

))})
+ o

(
1

c

)

As such to leading order in 1/c we have calculated all the
correlation functions for the two box quench.

Appendix B: Correlation Functions (BEC)

We would like to carry out similar calculations
to the ones done above in the case when there are
two boxes each of which is initialized in a BEC each
of length l with N particles. The boxes are mov-
ing with velocities V and −V (the container box is
assumed to have size L). We will calculate the expec-
tation values of the operators

〈
b† (0) b† (0) b (0) b (0)

〉
,〈

b† (0) b† (0) b† (0) b (0) b (0) b (0)
〉
,

〈
b† (x) b (0)

〉
and

〈ρ (x) ρ (0)〉. We will work in the limit of large c and to
leading order in 1/c. We will also assume that both x
and 0 are far away from the box boundaries so that we
may use the doubled box system to do all calculations.

The first step towards this calculation is to calculate the
occupation probability of the BEC quench f (k) =

ρp(k)
ρt(k) .

It is known that for large c the total quasiparticle density
satisfies:

ρt (k) =
1

2π
+

1

πc

ˆ
ρp (q) dq =

1

2π
+

2N

πcL
(B1)

From this we obtain that

f (k) = BL ×
(
ρBEC

(
k − V

2

)
+ ρBEC

(
k +

V

2

))
(B2)

Here for future use we have defined BL = l
L ×

1
1
2π+ 2N

πcL

.

Furthermore we note that for large c: ρBEC (k) '
1

2π
4n2

k2+4n2 +O
(

1
c2

)
with n = N

L [45]. Next we know that
[51]:
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〈
b† (0) b† (0) b (0) b (0)

〉
= 2

ˆ
dk1

2π
fL (k1)

ˆ
dk2

2π
fL (k2)

(k1 − k2)
2

(k1 − k2)
2

+ c2
+ ....

∼=
1

π2
B2
LN

2

(
V

c

)2

+ .... (B3)

Here we have assumed that n � V � c. Furthermore we may calculate the density density density correlator
similarly, it is given by [51]:

〈
b† (0) b† (0) b† (0) b (0) b (0) b (0)

〉 ∼= 6

ˆ
dk1

2π

ˆ
dk2

2π

ˆ
dk3

2π
fL (k1) fL (k2) fL (k3)

(k1 − k2)
2

(k1 − k2)
2

+ c2
(k1 − k3)

2

(k1 − k3)
2

+ c2
(k2 − k3)

2

(k2 − k3)
2

+ c2

∼=
9

8π3
B3
LN

(
V

c

)4

×
− c2

4n2 − c
2n +

(
c2

4n2 − 1
)

c
2n + c2

4n2

√
1 + c2

4n2 + c
n − 2

√
c2

4n2

(
1 + c2

4n2 + c
n

)
(
c2

4n2 − 1
)√

c2

4n2

(
1 + c2

4n2 + c
n

)
∼=

9

4π3
B3
LN

(
V

c

)4 (n
c

)
+ ...

Here we have assumed that n� V � c. We can now calculate the density density correlation function. We know
that the density density function is given by [54]:

〈ρ (x) ρ (0)〉 = ρ2 − 1

4π2

ˆ
dk1fL (k1)ω (k1)

ˆ
dk2fL (k2)ω (k2)

(
k1 − k2 + ic

k1 − k2 − ic

)(
p (k1, k2)

k1 − k2

)
exp (xp (k1, k2))

Here ω (k) = exp
(
− 1

2π

´
dqK (k, q) f (q)

) ∼= exp
(
−GLπc

)
with GL = 2BLn. Here p (k1, k2) = −i (k1 − k2) +´

dtfL (t)Pt (k1, k2). Here the function Pt (k1, k2) satisfies:

2πPt (k1, k2) =
k1 − t+ ic

k1 − t− ic
· k2 − t− ic
k2 − t+ ic

exp

(
−
ˆ
fL (s)K (s, t)Ps (k1, k2)

)
− 1 (B4)

From this we obtain that Pt (k1, k2) = −i
πc (k1 − k2) + .... Furthermore k1−k2+ic

k1−k2−ic ' −1
(
1− 2 ic (k1 − k2)

)
'

− exp
(
−2 ic (k1 − k2)

)
. We now obtain that p (k1, k2) ∼= −i (k1 − k2)

(
1 + GL

πc

)
. Combining we obtain that:

〈ρ (x) ρ (0)〉 = ρ2 −
2 + 2 cos

(
V
2

(
x
(
1 + GL

πc

)
+ 2

c

))
4π2

exp

(
−GL
πc

)(
1 +

GL
πc

)2

B2
L×

×
ˆ
dk1ρ

BEC (k1)

ˆ
dk2ρ

BEC (k2) exp

(
−i (k1 − k2)

(
x

(
1 +

GL
πc

)
+

2

c

))
=

ρ2 −
2 + 2 cos

(
V
2

(
x
(
1 + GL

πc

)
+ 2

c

))
4π2

exp

(
−GL
πc

)(
1 +

GL
πc

)2

B2
L · n2 exp

(
−2n

(
x

(
1 +

GL
πc

)
+

2

c

))
(B5)

We would now like to calculate the field-field correlation function. It is given by [47]:

〈
b† (x) b (0)

〉 ∼= ˆ dk

2π
fL (k) e−ikxω (k)× exp

(
−x
ˆ
dtfL (t)Pt (k)

)
(B6)

Here ω (k) = exp
(
− 1

2π

´
dqK (k, q) f (q)

) ∼= exp
(
−GLπc

)
, where and K (k, q) = 2c

(k−q)2+c2
∼= 2

c . Furthermore the
function Pt (k) satisfied the equation:

2πPt (k) = −k − t+ ic

t− k + ic
exp

(
−
ˆ
fL (s)K (t, s)Ps (k)

)
− 1 (B7)

Using this expression it is possible to obtain that:

Pt (k) ∼= −
1

2π

(
1 + exp

(
−2GL

πc

))
+ i

exp
(
− 2GL

πc

)
πc

(k − t) + o

(
1

c

)
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From this we obtain that
´
fL (t)Pt (k) ∼= −GL2π

(
1 + exp

(
− 2GL

πc

))
+ iGL

k
πc exp

(
− 2GL

πc

)
. Combing we obtain that :

〈
b† (x) b (0)

〉
=

exp
(
−GLπc

)
2π

exp

(
−GLx

2π

(
1 + exp

(
−2GL

πc

))) ˆ
fL (k) e

−ikx
(

1−GL
exp(−2GL/πc)

πc

)

=
exp

(
−GLπc

)
π

exp

(
−GLx

2π

(
1 + exp

(
−2GL

πc

)))
BL cos

(
V

2

(
1−GL

exp (−2GL/πc)

πc

))
×

×
ˆ
ρBEC (k) e

−ikx
(

1−GL
exp(−2GL/πc)

πc

)

=
exp

(
−GLπc

)
π

exp

(
−GLx

2π

(
1 + exp

(
−2GL

πc

)))
BL×

× cos

(
V

2

(
1−GL

exp (−2GL/πc)

πc

))
n exp

(
−2nx

(
1−GL

exp (−2GL/πc)

πc

))
+ o

(
1

c

)
The velocity probably distribution is then:

P (v) ∼
ˆ
dxe−i

v
2 x
〈
b† (x) b (0)

〉
∼ nBL

exp
(
−GLπc

)
π

×
(

HL

H2
L + 1

4 (v − V KL)
+

HL

H2
L + 1

4 (v + V KL)

)
(B8)

Here HL = GL
2π

(
1 + exp

(
− 2GL

πc

))
+ 2n

(
1−GL exp(−2GL/πc)

πc

)
and KL =

(
1−GL exp(−2GL/πc)

πc

)
.

Appendix C: Initial Correlations

We would like to calculate the velocity probability dis-
tribution when the traps are initially released at time
equal to zero. This would help us compare with the time
averaged case. The experimentally accessible quantities
are most easily given in terms of an average velocity prob-
ability:

Pav (v) =
1

L

ˆ
dx

ˆ
dye−i

v
2 x
〈
b† (x) b (y)

〉
(C1)

In the case of the BEC it is not too hard to see that

Pav (v) =
l

L
n (δ (v − V ) + δ (v + V )) (C2)

In the case of the two boxes in their ground state,
following a derivation given above we see that the velocity
probably distribution:

Pav (v) ∼ l

L

exp
(
−JLπc

)
2π

∑
i,j=±

(−1)
j

arctanAi,j(v) (C3)

withA±±(v) = CL

(
(1− JL exp(−2JL/πc)

πc )
(
±V2 ± kF

)
+ v

2

)
,

and CL = 2π

JL
(

1+exp
(
− 2JL

πc

)) , with JL = 2kF . These

results are used in Fig. 1(B-G).
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