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Numerical calculations on a mesoscopic ring of a type II superconductor in the London limit sug-
gest that an Abrikosov vortex can be trapped in such a structure above a critical magnetic field and
generate a phase shift in the magnetoresistance oscillations. We prepared submicron-sized super-
conducting loops of single-crystal, type II superconductor NbSe2 and measured magnetoresistance
oscillations resulting from vortices crossing the loops. The free energy barrier for vortex crossing
determines the crossing rate and is periodically modulated by the external magnetic flux threading
the loop. We demonstrated experimentally that the crossing of vortices can be directed at a pair of
constrictions in the loop, leading to more pronounced magnetoretistance oscillations than those in a
uniform ring. The vortex trapping in both a simple ring and a ring featuring two constrictions was
found to result in a phase shift in the magnetoresistance oscillations as predicted in the numerical
calculations. The controlled crossing and trapping of vortices demonstrated in our NbSe2 devices
provide a starting point for the manipulation of individual Abrikosov vortices, which is useful for
future technologies.

Vortex motion in a type II superconductor is an im-
portant problem to consider for increasing the critical
current density and upper critical field of superconduct-
ing materials, both of which are crucial for applications
of superconductors such as electromagnets and magnetic
levitation. Manipulating the motion of Abrikosov vor-
tices is also of fundamental interest. It is known that
a moving Abrikosov vortex is subjected to various fun-
damental forces including damping, pinning, boundary
image, and transverse (Lorentz and Magnus) forces[1].
None of these forces influencing vortex motion are fully
understood. Indeed, even the effective vortex mass upon
which the forces act remains a subject of controversy[2–
5]. Additionally, Abrikosov vortices in conventional type
II superconductors have long been a model system for
motion in soft matter[6], and controlled vortex manip-
ulation in superconducting devices has potential appli-
cation in rectifiers[7], superconducting logic circuits[8],
and hybrid superconductor/dilute magnetic semiconduc-
tor spintronic systems[9].

In order to manipulate and detect the motion of in-
dividual Abrikosov vortices, a scanning superconduct-
ing quantum interference device (SQUID) and mag-
netic force microscope were employed on planar films
of YBa3Cu2O6.354[10] and Nb[11], respectively. On the
other hand, little work has been done on the manipu-
lation and detection of vortex motion in mesoscopic su-
perconductors, which are more relevant for technological
applications than planar films. Static few vortex states
in mesoscopic superconductors have been studied pre-
viously both theoretically[12–16] and experimentally[17–
25], with an impressive accumulation of detailed under-
standing. Studies of vortex motion have also been car-

ried out[26–30] and have led to interesting findings such
as vortex-crossing-induced magnetoresistance oscillations
[27, 29, 30] with an amplitude much larger than that of
the traditional Little-Parks effect[31]. Nevertheless, the
manipulation of the vortex motion in these mesoscopic
devices has yet to be pursued systematically.

In the present work, we use electrical transport mea-
surements to explore the vortex crossing of a mesoscopic
type II loop as well as vortex trapping in such a loop. As
the magnetic flux threading the loop is varied, the rate
of vortex crossing, which is controlled by the free energy
barrier through a Boltzmann factor, varies accordingly.
The free energy barrier is a function of superfluid veloc-
ity, which is a periodic function of the global winding
number of the superconducting phase as well as the ap-
plied flux[31]. This leads to a periodically varying rate
for vortex crossing[27, 29], and, consequently, a period-
ically varying magnetoresistance. Interestingly a vortex
can also be trapped in the loop under suitable conditions.
The trapping of such a vortex, which demands the local
phase winding around the vortex core be superimposed
on the global phase winding, will have observable effects.
It should be emphasized that this Abrikosov vortex trap-
ping is distinct from the so-called “few-vortex states” in
mesoscopic systems of type I superconductors. In the lat-
ter, the “vortices” are static solutions to the London or
Ginzburg-Landau equations in an applied magnetic field,
which are different from Abrikosov vortices in a type II
superconductor. For example, as shown in the present
study, the vortex crossing can be directed to constric-
tions with a minimal crossing barrier and at the same
time, Abrikosov vortices can also be trapped in the wide
regions of the loop, isolated from the crossing events,
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FIG. 1. (color online) (a) Color plot of current density in
a 10 nm thick loop with inner radius a = 73 nm and outer
radius b = 158 nm (purple (dark gray) is lowest magnitude,
yellow (light gray) is highest). Applied field is 0.39 T and
a vortex is fixed at (x, y) = (115, 0) nm (black disk). Plot
generated assuming ξ(0) = 10 nm and λ(0) = 200 nm. Loop
boundaries are shown in black, and current streamlines are
shown in white. (b) Ground state free energy (F) in units of
ε0 (Supp. Mat. Sec. II) versus normalized applied magnetic
field for loop in (a). Black curves are for vortex-free state, and
purple (light gray) curves are with a single vortex trapped at a
radius v = 115 nm. Vortex trapping field is indicated. Inset:
Close up of boxed region in main panel. (c) Same as (b)
over a restricted field range to emphasize the phase shift (δv)
between vortex-trapped and vortex-free states.

providing a clean experimental system for the study of
vortex manipulation.

To obtain the conditions under which Abrikosov vor-
tices can be trapped in a mesosopic superconducting loop
of a type II superconductor, we follow the analysis of
Kogan, Clem, and Mints[15] (see Appendix A for more
details) using the London equations in the limit d� λ,
where d is the loop thickness and λ is the magnetic pene-
tration depth. Using the analytic results of these authors,
we obtain the current distribution in a superconducting
loop with a single vortex trapped at radius v, as shown in
Figure 1a. Near the vortex, the current density diverges.
Therefore, a cutoff is introduced at |~r− ~v| ≤ 1.2ξ, where
ξ is the superconducting coherence length, to facilitate
the plotting.

Both the free energy (F) of the superconducting loop
as a function of global winding number (N), vortex posi-
tion (v), and magnetic field (H), and the free energy dif-
ference between the vortex-trapped and vortex-free states
(Vin(N, v,H)) were calculated (Appendix A). In Fig-

ure 1b, we plot the free energy of the trapped vortex
state, which depends upon the vortex position. As the
magnetic field increases, the free energy of the loop is rep-
resented as consecutive parabolas with different N . For
the vortex-free loop, the transition from state N − 1 to
state N requires the system overcome a free energy bar-
rier with a local maximum at H/∆H = N − 1/2. How-
ever, when a vortex is trapped in the loop, a different
set of parabolas are generated. The backgrounds of the
two sets of parabolas, which reflect the kinetic energy re-
sulting from the finite wire width, have different slopes.
At the lower critical field, Hc1, the state with a vortex
becomes energetically more favorable than that without
one, as shown in Figure 1b. At this field, Vin first ac-
quires a global minimum[32]. The background of the free
energy originates from the induced currents required by
the global phase winding. The crossing of two curves
suggests that introducing a vortex into the loop disrupts
this current distribution, leading to the lowering of the
free energy of the loop.

The vortex-trapped parabolas are phase shifted from
the vortex-free parabolas by an amount δv, as shown in
Figure 1c. To calculate the magnitude of the phase shift,
we look for solutions to F(N − 1, v,HN ) = F(N, v,HN )
(Eq. A10) and see that

HN/∆H =

(
N − 1

2

)
+

ln(b/v)

ln(b/a)
. (1)

The acquired phase shift is δv = ln(b/v)/ ln(b/a). It is
interesting to note that an apparent free energy oscilla-
tion phase shift accompanied by a period change may
occur in mesoscopic loops as a result of a field-dependent
crossover between effective singly- and doubly-connected
geometries[13]. However, in the mechanism considered in
the present work, the phase shift is not accompanied by
a change in oscillation period, and therefore corresponds
to a different scenario. Vortex trapping discussed here is
also distinct from pinning. In vortex pinning, a vortex
preferentially occupies a spot where superconductivity is
locally suppressed by a material defect. In the scenario
presented here, the trapping potential originates from the
image force even in the absence of local defects.

While the theoretical prediction is clear, it is not obvi-
ous a priori that the vortex trapping leads to an experi-
mentally observable effect. For devices recently reported
in the literature[27–29], the measurements appear to have
been performed at fields below Hc1, which depends on
the sample size and geometry (Fig. 4). Furthermore, as
seen in Eq. 1, δv depends upon the vortex position within
the loop, which may not be fixed. Additionally, near the
trapping field, the energy difference between the vortex-
trapped and vortex-free states is quite small. Indeed,
the free energy curves intersect multiple times (inset to
Fig. 1b), potentially prohibiting a clean transition be-
tween the vortex-free and vortex-trapped states. So it is
quite interesting to see if the phase shift can be detected
in a real system.
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FIG. 2. (a) Scanning electron microscope (SEM) image of
Sample A: a single-crystal NbSe2 square loop with median
diameter s ≈ 200 nm and arm width w ≈ 80 nm. Cur-
rent is sourced from 1 to 6 and voltage is measured from
3 to 4. (b) SEM image of Sample B: a NbSe2 loop with
s ≈ 200 nm, w ≈ 80 nm, and two artificial constrictions.
Current is sourced from 1 to 5 and voltage is measured from
3 to 6. (c) Magnetoresistance of Sample A (black) and Sample
B (light purple) at 1.8 K. Sample A data is after subtraction
of a smooth background; Sample B data has no subtraction,
but is scaled for ease of comparison. Curves offset vertically
for clarity. Dashed lines are separated by ∆H = 520 Oe, and
the phase shift, δv ≈ 0.3∆H, is indicated. (d) Magnetoresis-
tance of Sample B at 1.8 K and 900 nA for increasing (black)
and decreasing (light purple) magnetic fields. Dashed lines
are separated by ∆H = 520 Oe.

Experimentally, we used a combination of electron-
beam lithography and CF4 reactive ion plasma etching
to prepare mesoscopic loops from atomically thin crys-
tals of NbSe2. The pinning force found in bulk NbSe2 is
small. In addition, superconductivity was found to sur-
vive down to single-unit-cell thickness[33], making NbSe2

the material of choice for the present study. In the bulk,
the superconducting coherence length is ξ(0) = 10 nm,
and the magnetic penetration depth is λ = 200 nm[34].
The thickness of our starting crystals is . 10 nm, so the
condition d� λ is satisfied. The fabrication of NbSe2 de-
vices with feature sizes comparable to the vortex normal
core size was described previously[35].

Shown in Figure 2a is a scanning electron micro-
scope (SEM) image of a NbSe2 square loop (Sample A)
with median diameter, s = 200 ± 4 nm, arm width,
w = 80± 4 nm (uncertainty comes from edge roughness
and SEM resolution), and thickness, t = 9±1.3 nm (mea-
sured by AFM-calibrated color code[33, 35]). This square

loop, which has the same effective area and arm width
as the loop considered in Figure 1, is easier to fabricate
than a circular loop, but likely complicates a direct quan-
titative comparison to theory. Measurement leads were
fabricated on either side of the ring to allow for four-
terminal transport measurements. Measurements were
carried out using standard current-biased DC techniques
under high vacuum (P . 10−5 Torr) in a Quantum De-
sign Physical Property Measurement System with a base
temperature of 1.8 K and a 9 T superconducting mag-
net. The magnetic field was oriented perpendicular to
the plane of the device as indicated.

Sample A is fully superconducting with an onset tran-
sition temperature of Tc = 6.3 K, which is only slightly
reduced from the bulk value of 7.1 K. The residual re-
sistivity ratio (RRR ≡ R(300 K)/R(8 K)) is 3.3 for this
loop, which is typical for this thickness of NbSe2,[33, 36]
indicating the processing did not degrade the quality of
the flake. In Figure 2c, we present the magnetoresistance
oscillations of Sample A at 1.8 K after removing a smooth
background resistance. The oscillations have a period of
∆H ≈ 520 Oe, which is consistent with the measured ge-
ometry, and the amplitude of the oscillations is much
larger than that expected from the Little-Parks effect,
confirming the oscillations originate from vortex cross-
ing. We see that the local maxima in resistance coincide
with half-integer values of H/∆H (dashed lines) up to
µ0H ≈ 0.25 T. Above 0.25 T, the oscillations acquire a
phase shift, δv ≈ 0.3∆H, which is the expected signature
of vortex trapping. The field at which this phase shift oc-
curs is in reasonable agreement with the calculated value
of Hc1 (0.38 T from Fig. 4a). Qualitatively similar be-
havior was observed in multiple samples. We note that
the subtraction of a non-monotonic background can in
principle introduce an artificial phase shift into other-
wise periodic data. However, we can confidently rule out
this possibility in the case of Sample A. The observed
phase shift between the low-field and high-field peaks is
nearly 160 Oe, but we find that the background subtrac-
tion shifts the local maxima by less than 25 Oe (see Fig. 5
and accompanying discussion).

As discussed above, by deliberately fabricating arti-
ficial constrictions in the loop, we can direct the vortex
crossing to the constrictions with a minimal crossing bar-
rier, and simultaneously isolate the trapped vortex from
the crossing events by confining it to the wider regions
where Hc1 is lowest (Fig. 4). An SEM image of a repre-
sentative NbSe2 loop with a pair of constrictions is shown
in Figure 2b (Sample B); this device features the same
dimensions as Sample A with the exception of the con-
strictions. While the addition of the constrictions makes
this device in principle a SQUID, we restrict our analysis
to the vortex crossing and trapping, rather than quan-
tum interference measurements. In Figure 2c we plot the
magnetoresistance at 1.8 K. In this device, the magne-
toresistance oscillations are much more pronounced, with
no background subtraction necessary when plotting the
data of this sample. This is likely because the vortex
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crossing events are localized to the constrictions where
the energy barrier to crossing is suppressed. Further dis-
cussion of the effect of the constrictions on vortex cross-
ing can be found in Appendix B, but we wish to focus
now on the evidence for vortex trapping. A clear phase
shift of 0.3∆H in the magnetoresistance oscillations is
again seen at +0.25 T. A number of phase shifts at vari-
ous positive and negative fields were found (Fig. 6), due
either to a sequence of vortex trapping or a change in
the location of the trapped vortex. The period of oscilla-
tion always remains unchanged, distinguishing this result
from the mechanism presented in Ref. 13. We observe no
hysteresis in the magnetoresistance (Fig. 2d), confirming
the vortex trapping is not the result of pinning centers,
but is instead determined by the field-dependent free en-
ergy. Multiple samples were fabricated in the geometry
of Sample B, and all show qualitatively similar behavior;
namely, pronounced periodic magnetoresistance oscilla-
tions which are superimposed on a minimal background
resistance and acquire a discrete and reproducible phase
shift at a critical magnetic field.

In Figure 3a we plot the magnetoresistance oscillations
of Sample B around 0.25 T at various applied currents.
The dashed vertical lines are placed at the expected (un-
shifted) fields of the N = 4, 5, and 6 peaks. At low
currents, the N ≤ 5 peaks are not phase-shifted, but the
N = 6 peak is (along with subsequent higher peaks not
shown), indicating 4.5∆H ≤ Hc1 ≤ 5.5∆H. At higher
currents, the first phase-shifted peak is the N = 5
peak, indicating the vortex stability field has decreased
to 3.5∆H ≤ Hc1 ≤ 4.5∆H. At all currents, the phase
shift is equal in magnitude, as demonstrated by the con-
sistent position of the N = 6 peak. A similar effect is
observed when sourcing a fixed current but varying the
temperature of the system (Fig. 3b). The magnetoresis-
tance oscillations broaden with increasing temperature,
but it is still clear the first phase-shifted peak changes
from N = 6 to N = 5 as temperature increases. We also
observe an additional local maximum in the magnetore-
sistance curves which evolves systematically with current
(indicated with solid red lines in Fig. 3a), and may be re-
lated to the fine structure near Hc1 seen in the inset to
Figure 1b.

The observed features agree with the expectations of
the theoretical picture presented above and demonstrate
that both temperature and applied current provide ad-
ditional means of manipulating the trapped vortex. The
temperature dependence of Vin is contained in the ξ(T )
term. Assuming that the applied current is uniformly
distributed within the loop, an additional Lorentz force
on the vortex is expected, resulting in the addition of a
linear term to the Vin curves in Figure 4. Numerical so-
lutions for Hc1 as a function of applied current and tem-
perature are shown in Figures 3c-d for the square loop.
Hc1(I) should be an even function for our system, since in
our measurement geometry, current counter propagates
in both arms, but in Figure 3c, we consider Hc1 in only
one arm due to an experimentally observed asymmetry
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FIG. 3. (a) Normalized resistance (R/R0) of Sample B ver-
sus applied field (µ0H) at 1.8 K and 0.4, 0.5, 0.6, 0.7, 0.8,
0.9 and 1.0 µA (bottom to top). Vertical dashed lines indi-
cate the expected (unshifted) positions of peaks 4, 5, and 6.
Slanted red lines track approximate value of Hc1 as indicated
by local resistance maxima. Curves offset vertically for clar-
ity. (b) R/R0(H) for Sample B at 0.4 µA and 1.8, 2.0, 2.2,
2.4, 2.6, 2.8, 3.0, 3.2, and 3.4 K (bottom to top). Curves off-
set vertically for clarity. (c) Calculated µ0Hc1 versus applied
current (I) at 1.8 K. Horizontal dashed lines are placed at
half-integer multiples of H/∆H. (d) Calculated µ0Hc1 versus
temperature (T ) at I = 0. Horizontal dashed lines are placed
at half-integer multiples of H/∆H.

between the arms (see Appendix C).

The discontinuities in the calculated Hc1 curves can
be understood by considering the energy difference be-
tween the N and N+1 states at a given applied field.
F0(N + 1, H)−F0(N,H) is periodic in H (Eq. A12) and
maximal just above half-integer values of H/∆H (indi-
cated by dashed lines in Figs. 3c-d). Going from a vortex-
free to vortex-trapped state is similar to increasing the
winding number from N to N + 1, and is therefore most
energetically costly where F0(N + 1, H)−F0(N,H) is
maximal. Our measured R(H, I) curves appear to be
consistent with a jump in Hc1. The observed resistance
peaks are sufficiently sharp so that both the non-shifted
and shifted N = 5 peaks would be seen at intermediate
currents if the critical field for vortex stability evolves
smoothly. Given that only one or the other is found
experimentally, and that the additional local resistance
maximum jumps discontinuously between the 0.6 and
0.7 µA curves, at least a rapid decrease in Hc1 from
H ≈ 5∆H to H . 4.5∆H is present as I increases, if not
an actual discontinuity.

The manipulation of both vortex crossing and trap-
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ping in a mesoscopic loop demonstrated in the present
work lays a foundation for further investigations into
vortex motion in mesoscopic samples. For example, if
the trapped vortices behave as complex quantum me-
chanical particles, this system may possess macroscopic
quantum coherence and form macroscopic energy lev-
els, which can then be measured by radio or microwave
measurements[37]. Furthermore, if the trapped vortex
can perform coherent quantum motion, detection of the
Aharonov-Casher interference of Abrikosov vortices may
be attempted[38, 39]. From a technological perspective,
the controlled manipulation of Abrikosov vortices within
mesoscopic superconducting devices lays the groundwork
for a variety of superconducting electronics[7–9].

Useful discussions with K. Roberts and A. J. Leggett
are gratefully acknowledged. The work at Penn State
is supported by DOE under Grant number DE-FG02-
04ER46159 with nanofabrication done at the Penn
State MRI Nanofabrication Lab under NSF Cooperative
Agreement 0335765, NNIN with Cornell University as
well as DMR 0908700. Work in China was supported
by MOST of China (Grant 2012CB927403) and NSFC
(Grants 11274229 and 11474198).

Appendix A: Current distribution and free energy
in the London approximation

The current density, ~g, in a superconducting loop con-
taining a single vortex (+) or anti-vortex (-) at position
~v can be calculated by solving the equations

2πΛ

c
~∇× ~g = ±φ0δ(~r − ~v)−H, (A1)

~∇ · ~g = 0, (A2)

where Λ(T ) = 2λ(T )2/d is the Pearl length, φ0 = h/2e
is the flux quantum, and H is the applied field. If the
radius of the loop, r, satisfies r � Λ, as is the case with
the devices considered in the main text, the self-fields
of the currents within the loop are negligibly small. By
introducing a scalar stream function,

~g = ~∇×Gẑ, (A3)

Eq. A2 is automatically satisfied, and Eq. A1 can be
expressed as

2πΛ

c
∇2G = ∓φ0δ(~r − ~v) +H. (A4)

The linearity of Eq. A4 allows for solutions of the form

G = Gv +GH , (A5)

where

∇2Gv = ∓ cφ0

2πΛ
δ(~r − ~v) (A6)

and

∇2GH =
c

2πΛ
H. (A7)

The latter equation is readily solved, and the for-
mer can be solved using techniques from electrostatics.
Eq. A6 is analogous to that of an electric charge trapped
between two grounded, concentric cylinders, for which
the exact solution is given by Jacobi elliptic functions.
For loops of the size considered in Ref. 15 as well as in
the main text, the exact solution can be approximated
by

G(r, θ) ≈ cH

8πΛ
r2 +G0 ln

r

a

± cφ0

4π2Λ
Re

{
ln

sin[π ln(vreıθ/a2)/2 ln(b/a)]

sin[π ln(v/reıθ)/2 ln(b/a)]

}
,

(A8)

where

G0 = − cφ0

4π2Λ

[
N ± ln b/v

ln b/a

]
, (A9)

and a and b are the inner and outer radii, respectively.
Note that Kogan et al. erroneously omit the factor of 2
in the denominator of the logarithm argument in Eq. A8.
The presence of a vortex leads to an ambiguity in defining
the winding number, N , so we follow the convention of
Ref. 15 that with a vortex present, contours enclosing the
annulus hole and the point ~v acquire a phase of 2π(N+1),
whereas contours enclosing just the annulus hole acquire
a phase of 2πN . Eqs. A3 and A8 are used to generate
the current distribution shown in Fig. 1a.

Once the exact current distribution is known, the free
energy (F) of the loop can be calculated as the sum of the
kinetic and magnetic energies. This energy calculation is
the main result of Ref. 15. Kogan et al. obtain

F (N, v,H) = εv(v) + ε0

[(
N + ln(b/v)

ln(b/a)

)2

− 2
(
H

∆H

)(
N + b2−v2

b2−a2

)
+
(
H

∆H

)2

χ

]
, (A10)

where

εv(v) =
φ2

0

8π2Λ(T )
ln

[
2v ln(b/a)

πξ(T )
sin

π ln(v/a)

ln(b/a)

]
(A11)

is the self-energy of the vortex, ε0 = φ2
0 ln(b/a)/8π2Λ(T )

is a characteristic energy scale, χ = b2/a2+1
b2/a2−1 ln(b/a) is

a geometric factor, and ∆H = 2φ0 ln(b/a)/
(
π(b2 − a2)

)
.

The energy of the vortex-free state is then

F0(N,H) = ε0

(
N2 − 2N

(
H

∆H

)
+

(
H

∆H

)2

χ

)
.

(A12)
Eqs. A10 and A12 are used to generate the curves in
Figs. 1b-c.
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Finally, the free energy difference between the vortex-
trapped and vortex-free states is given by

Vin(N, v,H) = F(N, v,H)−F0(N,H). (A13)

Vin determines the stability of a vortex at a given position
within the arms of the loop. Hc1 is defined as the field
at which a global minimum of Vin is first found in the
sample[32]. In Figure 4a we plot Vin for the loop in Fig-
ure 1a at different values of applied magnetic field. We
see µ0Hc1 ≈ 0.38 T, as indicated by the blue curve. If we
consider a thinner loop with a = 70 nm and b = 105 nm,
we find µ0Hc1 ≈ 1.77 T (Fig. 4b).

At this point, we will discuss the limitations of the
London approach. The finite size of the vortex core (on
the order of ξ(T )) is not considered in Eq. A1. Thus,
in a physical system, the formalism breaks down within
∼ ξ(T ) of the edges of the sample. To avoid an unphys-
ical divergence, the authors of Ref. 15 set ε0 = 0 within
ξ(T )/2 of the sample boundaries. Unfortunately, this es-
sentially arbitrary choice has a direct impact on the nu-
merically calculated Hc1 when b−a ∼ ξ(T ). For instance,
if we instead choose to set a cutoff of ξ(T ), we calculate
µ0Hc1 ≈ 0.32 T for the same geometry as considered in
Fig. 1a. For the sake of consistency, we maintain the
cutoff employed in Ref. 15, but the level of quantitative
agreement between theory and experiment must be un-
derstood in light of these limitations. We stress, however,
that the qualitative results reported in the main text,
namely, the existence of a free energy oscillation phase
shift and the temperature, current, and geometry depen-
dence of the trapping field, are unaffected by the choice
of cutoff.

Appendix B: Background resistance and oscillation
amplitude

For loops without artificial constrictions, the observed
magnetoresistance oscillations are superimposed on a re-
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FIG. 5. (a) Magnetoresistance of thick loop without con-
strictions. The smooth resistive background indicated by the
dashed line is subtracted to obtain the oscillations in Fig. 2c.
The amplitude of oscillations is small compared to the thin
loop in (b). Inset: Comparison of raw (black) and back-
ground subtracted resistance data (blue) near 0.36 T. Curves
shifted vertically for clarity. The dashed line indicates the ex-
pected (unshifted) position of the n = 7 resistance maximum.
(b) Magnetoresistance of thin loop without constrictions. A
smooth resistive background is still apparent (indicated by
the dashed line). The amplitude of oscillations is large com-
pared to the thick look in (a). Inset: SEM image of thin loop,
with w ≈ 30 nm.

sistive background. To more clearly observe the vortex-
related oscillations and phase shift in Sample A (Fig-
ure 2c), we subtracted a smooth background from the
measured resistance data. For completeness, we show
the original data for Sample A in Figure 5a. The dashed
line shows the polynomial fit used for the background
subtraction.

As discussed in the main text, it is possible to in-
troduce an artificial phase shift with an improper back-
ground subtraction, especially given that the observed
background features a “shoulder” very near the critical
field for vortex trapping. However, we can be confident
that the observed phase shifts in Figure 2c are not an ar-
tifact of a poor background subtraction near this shoul-
der for three reasons. Firstly, the phase shift is seen in
the constricted thick loop without a background subtrac-
tion. Secondly, the magnitude of the phase shift is the
same for the background subtracted thick loop as for the
non-background subtracted constricted thick loop, which
would be highly unlikely if the apparent phase shift in
the former case was a subtraction artifact. Thirdly, we
can directly compare the position of the extrema be-
fore and after the background subtraction. In the in-
set to Figure 5a, we plot the raw resistance data (black)
and the background-subtracted resistance data (blue) for
the thick loop without constrictions. The data has been
shifted vertically for ease of comparison. We see that the
background subtraction produces no substantial shift in
the position of the resistance maximum within the resolu-
tion of our measurement. For comparison, the expected
location of this maximum in the absence of vortex trap-
ping is indicated by the dashed line.

In Figure 5b, we plot the magnetoresistance data for a
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520 Oe except where indicated. Shaded regions denote where
oscillations acquire phase shifts. Inset: SEM image of NbSe2
thick loop with constrictions with s ≈ 200 nm and w ≈ 70 nm.
The constrictions on the top and bottom of the loop have a
width ≈ 30 nm.

second NbSe2 loop. This sample features thin arms with
a width w ≈ 30 nm. This arm width was designed to
mimic the width of the artificial constrictions introduced
to Sample B in the main text. We make two observations
regarding this “thin loop.” First, the resistance back-
ground is still present, which is consistent with our attri-
bution of the background to the lack of a preferred vortex
crossing site. Second, the oscillation amplitude is larger
than that observed in Sample A (note the same scale of
the ordinate axes in Figs. 5a and 5b), which is consistent
with the claim that vortex crossing occurs more readily
in narrow samples.

Despite all this, our measurements provide only indi-
rect confirmation of the proposed effect of artificial con-
strictions on the vortex crossing events. It would be ben-
eficial to utilize high-resolution magnetic imaging tech-
niques to confirm the positions of trapped and crossing
vortices.

Appendix C: Field asymmetry and multiple vortex
trappings

In the case of the loop with constrictions discussed in
the main text, several phase shifts are evident at different
applied fields (see shaded regions in Fig. 6). These phase
shifts may result from subsequent vortex trapping events,
though the present theory does not address this situation.
The electrostatic analogy employed in Appendix A can be
extended to the case of n charges equally spaced around
two grounded concentric cylinders, though this extension
is beyond the scope of this work. Qualitatively, it is rea-
sonable to expect each subsequent vortex trapping event
to be accompanied by an additional phase shift in the
magnetoresistance oscillations. Alternatively, the addi-
tional phase shifts may simply reflect a change in the
location of the trapped vortex, since the phase shift de-
pends on v (Eq. 1).

A magnetic field asymmetry is seen in Figure 6, and
this likely results from a fabrication-limited device asym-
metry. In positive field, the first phase shift occurs at
µ0H ≈ 0.28 T, while in negative field, the first phase shift
does not occur until µ0H ≈ −0.38 T. However, the phase
shift in each orientation is equal in magnitude (0.3∆H).
This asymmetry is not considered in the London calcu-
lations, but can be understood as follows: In a perfectly
symmetric loop in our measurement geometry, for posi-
tive (negative) fields and positive applied current, a vor-
tex will be trapped in the loop at a well-defined Hc1

in the bottom (top) arm of the loop due to the tilting
of the potential energy. The zero-current Hc1 on either
arm is sensitive to inhomogeneities in the sample. This
will produce an asymmetry in Hc1 in the presence of a
measurement current. Once a vortex is trapped in an
arm, it generates a phase shift of fixed magnitude, as
seen experimentally.
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