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Magneto-optical Kerr effect, normally found in magnetic materials with nonzero magnetization such as fer-

romagnets and ferrimagnets, has been known for more than a century. Here, using first-principles density

functional theory, we demonstrate large magneto-optical Kerr effect in high temperature noncollinear antiferro-

magnets Mn3X (X = Rh, Ir, or Pt), in contrast to usual wisdom. The calculated Kerr rotation angles are large,

being comparable to that of transition metal magnets such as bcc Fe. The large Kerr rotation angles and elliptici-

ties are found to originate from the lifting of the band double-degeneracy due to the absence of spatial symmetry

in the Mn3X noncollinear antiferromagnets which together with the time-reversal symmetry would preserve the

Kramers theorem. Our results indicate that Mn3X would provide a rare material platform for exploration of

subtle magneto-optical phenomena in noncollinear magnetic materials without net magnetization.

PACS numbers: 71.15.Rf, 75.30.-m, 75.50.Ee, 78.20.Ls

I. INTRODUCTION

Magneto-optical coupling effects reflecting the interactions
between light and magnetism are fundamental phenomena in
solid state physics.1 In the nineteenth century, Faraday2 and
Kerr3 discovered, respectively, that when a linearly polarized
light beam hits a magnetic material, the polarization plane of
the transmitted and reflected light beams rotates. Although
magneto-optical Faraday and Kerr effects have been known
for over a century, they have become the subjects of intense
investigations only in the past decades, mainly due to the
applications of optical means in modern high-density data-
storage technology.4 Faraday effect attracts less attention than
Kerr effect because it can only occur in ultra-thin films, where
complexities of multiple reflections and discontinuous polar-
izations at the interfaces with the substrate arise. In contrast,
magneto-optical Kerr effect (MOKE) is widely used as a pow-
erful probe of the electronic and magnetic properties of mate-
rials, such as the domain wall,5,6 surface plasma resonance,7,8

magnetic anisotropy,9,10 and topological insulator.11,12

Band exchange splitting caused by magnetization together
with relativistic spin-orbit coupling (SOC) has been recog-
nized as the origin of MOKE.13–21 Therefore, MOKE in vari-
ous ferromagnetic transition metals as well as their alloys and
compounds has been investigated extensively. By ferromag-
nets here we meant the magnetic materials with net magne-
tization including ferrimagnets. Experimentally, Erskine and
Stern14,15 first reported the MOKE spectra of bulk Fe, Co, Ni,
and Gd, and discussed their relationships with d-band widths
and electron spin polarizations. After that, large Kerr rota-
tion angles of ∼1.0◦ were observed in several Mn-based ferro-
magnetic alloys, such as PtMnSb,22 MnBi,23 and MnPt3.24 On
the theoretical side, first-principles density functional calcula-
tions can directly capture the MOKE spectra with an impres-
sive accuracy compared to experiments. For instance, Guo

and Ebert16,17 studied the MOKE spectra in bulk Fe and Co
as well as their multilayers. Kim et al.18 focused on the sur-
face effect and structural dependence of the MOKE spectra
in Co thin films and CoPt alloys. Stroppa et al.19 analyzed
the electronic structure and magneto-optical property of uni-
formly Mn-doped GaAs. Very recently, Rosa et al.20 also
performed the study of the magneto-optical property of Mn-
doped GaAs in a special digital ferromagnetic heterostructure.
Moreover, Ravindran et al.21 investigated the magnetic, opti-
cal, and magneto-optical properties of manganese pnictides
and found a systematic increase of the Kerr rotation angles
from MnAs, to MnSb, and to MnBi.

Although MOKE experiments have been conducted on var-
ious types of ferromagnets in the past14–24, no explicit conclu-
sion has been established that MOKE must be absent when
either magnetization or SOC is not present. In particular,
whether MOKE can arise from a spin non-polarized system
(without magnetization) or not is still an open question. Re-
cently, Chen et al.25 showed theoretically that the anomalous
Hall effect, which has a physical origin akin to that of MOKE,
is large in the noncollinear antiferromagnet Mn3Ir with zero
net magnetization. This surprising result stems from the fact
that in a three-sublattice kagome lattice with a noncollinear
triangle antiferromagnetic configuration, not only the time-
reversal symmetry T is broken but also there is no spatial
symmetry operation S which, in combination with T , i.e., the
T S , is a good symmetry that preserves the Kramers theorem.
In other words, band exchange splitting exists in this system
despite of zero net magnetization. Naturally, it would be in-
teresting to explore possible MOKE in Mn3Ir as well as its
isostructural materials Mn3Rh and Mn3Pt, which are widely
considered as the promising candidates in information-storage
devices due to their prominent exchange-bias properties26 and
high Néel temperatures.27–29

In this paper, we present a comprehensive first-principles
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study of MOKE in spin non-polarized systems, focusing on
antiferromagnets Mn3X (X = Rh, Ir, or Pt) in two low-
energy noncollinear spin structures. We show that, because of
the strong SOC and the breaking of band double-degeneracy,
the absorption rates of the left- and right-circularly polarized
lights differ significantly, giving rise to a previously unde-
tected MOKE in these antiferromagents without net magne-
tization. The Kerr rotation angles of Mn3X increase from X
= Rh, to Ir, and to Pt, due to the increased SOC strength of
the X atom. The largest one of ∼0.6◦ in Mn3Pt is compara-
ble to those of elemental transition metals, such as Fe and Co,
reported previously16,17. Our first-principles calculations also
show that the MOKE would diminish if the SOC is switched
off, demonstrating the essiential role of the SOC for the occur-
rence of the MOKE in these systems. Our theoretical results
suggest noncollinear antiferromagnets Mn3X to be an inter-
esting material platform for further studies of novel magneto-
optical phenomena and technological applications.

II. THEORY AND COMPUTATIONAL DETAILS

MOKE generally refers to the change in the polarization
property of light when it interacts with magnetism, that is,
a linearly polarized light shone on the surface of a mag-
netic sample will become elliptically polarized in the reflected
beam. The ellipticity ǫK and Kerr angle θK (rotation of the
major axis relative to the polarization axis of the incident
beam) are widely used to probe and characterize magnetic
materials. ǫK and θK are usually combined into the complex
Kerr angle, φK = θK + iǫK . Depending on the directions of
photon propagation and magnetization vector with respect to
the surface plane, there are three different geometries of the
Kerr effect, namely, the polar, longitudinal, and transverse ge-
ometries. Of these, the polar geometry has the largest complex
Kerr angle and thus is the most interesting one in connection
with technological applications. In this paper, we consider the
polar geometry as a prototype and the other two geometries
can be obtained similarly.

For a solid with at least threefold rotational symmetry, the
elements of optical conductivity tensor satisfy σxx = σyy and
σxy = −σyx. In such a case, the absorptive parts of optical
conductivity tensor (real diagonal and imaginary off-diagonal
elements) due to interband transitions, can be obtained using
the Kubo’s formula within the linear response theory,30–32
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where λ = πe2

2~m2V
is a material specific constant, ~ω the

photon energy, ~ωjj′ the energy difference between the occu-
pied and unoccupied bands at the same k-point, and Π±

jj′ =

〈kj| 1√
2
(p̂x ± ip̂y) |kj

′〉 the dipole matrix elements for circu-

larly polarized light with + and − helicity, respectively. The
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FIG. 1. (Color online) Cubic L12 crystal structure of Mn3X (X =

Rh, Ir, or Pt) with (a) T1 and (b) T2 spin configurations, as well as

the corresponding (111) planes in (c) and (d), respectively. The red

and green balls represent Mn and X atoms, respectively. The dashed

lines in (c) and (d) stand for the primitive cell of the kagome lattice.

corresponding dispersive parts, namely, the imaginary diago-
nal element σ2

xx (ω) and real off-diagonal element σ1
xy (ω),

can be obtained by use of the Kramer-Kronig transforma-
tion.33

In the polar geometry, the complex Kerr angle of a sam-
ple with higher than threefold rotational symmetry, is simply
given as,34

θK + iǫK =
−σxy

σxx

√

1 + i (4π/ω)σxx

, (3)

which can be explicitly evaluated from the optical conductiv-
ity tensor calculated from the electronic structure of the solid
concerned. Since the intraband transitions contribute little to
the off-diagonal elements of optical conductivity tensor in the
magnetically ordered materials1 and affect mainly the MOKE
spectra below 1∼2 eV,16,17,19 here we take into account only
the interband transition contribution as expressed in Eqs. (1–
3).

In this paper, we consider ordered cubic L12 Mn3Rh,
Mn3Ir, and Mn3Pt alloys and adopt the experimental lattice
constants of 3.813 Å,27 3.785 Å,35 and 3.833 Å27, respec-
tively. The total energy and electronic structure are calculated
based on first-principles density functional theory with the
generalized-gradient approximation in the form of Perdew-
Berke-Ernzerhof36. The accurate frozen-core full-potential
projector-augmented wave method37, as implemented in the
Vienna ab initio simulation package (VASP)38,39, is used. The
fully relativistic projector-augmented potentials are adopted
in order to include the SOC. The valence configurations of
Mn, Rh, Ir, and Pt atoms taken into account in the cal-
culations are 3d64s1, 4d85s1, 5d86s1, and 5d96s1, respec-
tively. A large plane-wave energy cutoff of 350 eV and a
fine Monkhorst-Pack k-point mesh of 16×16×16 are used
for the self-consistent electronic structure calculations. For
the calculation of optical conductivity tensors, a denser k-
point mesh of 20×20×26 (8833 k-points in the irreducible
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Brillouin zone) is used in the tetrahedron integration.

III. RESULTS AND DISCUSSION

In this section, we first present the calculated total energy
and magnetic properties of the low energy noncollinear mag-
netic structures (T1, T2 and T3) of Mn3X (X = Rh, Ir, or
Pt) and also compared our results with available previous re-
ports in Sec. III A. Then, the calculated optical conductivity,
the key ingredient for evaluating the MOKE, for the two low
energy spin structures (T1 and T2) is reported in Sec. III B.
Finally, we present the large magneto-optical Ker effect in the
ordered Mn3X alloys in Sec. III C.

A. Magnetic structure

There are two kinds of crystal structures for Mn3X al-
loys, namely, ordered L12-type and disordered γ-phase. The
ordered alloys were found to be noncollinear antiferromag-
netic with one of the two nearly degenerate spin configura-
tions, namely, the T1 and T2 triangle structures, as shown
in Figs. 1(a) and 1(b), respectively. The Mn spin mag-
netic moments basically lie in the (111) plane and point to
the center (along the edge) of the triangle, forming three
nearest-neighboring Mn sublattices, for the T1 (T2) config-
uration, which can be viewed as two-dimensional kagome lat-
tices shown in Figs. 1(c) and 1(d). Due to strong exchange-
interactions acting on the Mn moments, the Néel temperatures
in these Mn-based alloys are as high as 475 K in Mn3Pt,27 855
K in Mn3Rh,28 and 960 K in Mn3Ir.29

TABLE I. The calculated total energies and spin magnetic moments

for the T1, T2 and T3 magnetic structures of the Mn3X alloys. Small

total spin magnetic moments, being parallel to the 〈111〉 direction

and due to the spin-canting caused by SOC, exist. The X atoms

have a zero magnetic moment, dictated by the site-symmetry of their

positions in the crystal structure. The available previously reported

Mn spin moments are also listed for comparison. Note that the T2

structure reported in Ref. 40 is named the T3 structure here because

it has a higher energy than the T2 structure here. The listed total

energies are relative to that of the T1 state.

Energy mMn mtot (〈111〉‖)

(meV) (µB/atom) (µB/cell)

Mn3Rh T1 0.0 3.17, 3.6a, 3.10b, 2.78c 0.001

T2 0.35 3.18 0.002

T3 1.33 3.19, 3.10b 0.000

Mn3Ir T1 0.0 2.96, 2.91d, 2.66e, 2.62f 0.029

T2 2.06 2.96 0.027

T3 8.47 2.97 0.000

Mn3Pt T1 0.0 3.12, 3.0a, 2.93b 0.013

T2 0.76 3.11 0.012

T3 2.92 3.15 2.93b 0.000

aRef. 27 (experiment), bRef. 40 (theory), cRef. 41 (theory), dRef. 25

(theory), eRef. 42 (theory), fRef. 43 (theory).

The calculated total energy and spin magnetic moments to-
gether with previously reported experimental and theoretical
results are listed in Table I. Clearly, T1 is the magnetic ground
state of the Mn3X alloys, being in good agreement with previ-
ous experimental27 and theoretical40 works. Nevertheless, the
energy difference between the T1 and T2 spin configurations
is small (being in the order of ∼1 meV), i.e., the T1 and T2 are
nearly degenerate. Indeed, in the absence of the SOC, all the
T1, T2 and T3 spin structures have the same total energy be-
cause they are equivalent. Note that the T2 configuration here
is not the same as the T2 magnetic structure reported in Ref.
40. Our total energy calculations show that for Mn3Ir, the to-
tal energy of the T2 structure in Ref. 40 is ∼6.4 meV higher
than the T2 configuration here, and thus should be refered to
as the T3 spin configuration. In the T3 configuration, the Mn
magnetic moments lie along the edges of the triangles formed
by three nearest-neighboring X atoms in the (111) plane [see
Figs. 1 (c) and 1 (d), and also Fig. 5 (a) in Ref. 40].

The calculated spin magnetic moment of the X atom is al-
ways zero, due to its special site-symmetry, while those of
the Mn atoms have nearly identical values of ∼ 3µB for all
the three states. The calculated spin magnetic moments agree
fairly well with previous reports.25,27,40–43 Further inspecting
the total magnetization, we find a nonvanishing component
along the 〈1̄1̄1̄〉 (〈111〉) direction for the T1 (T2) states, be-
cause the Mn moments rotate slightly away from the (111)
plane within a very small angle of ∼ 0.1◦. Nonetheless, the
Mn3X alloys could still be considered as spin non-polarized
systems in the sense that the net total magnetization is very
small and hardly affacts the physical quantities of interest
here, such as optical conductivities and MOKE spectra, as will
be discussed in the next subsection. Note that this small spin-
canting is caused by the presence of the SOC. Interestingly,
such a small spin-canting does not occur in the T3 structure
(Table I).

B. Optical conductivity

The absorptive parts of optical conductivity, i.e., σ1
xx and

σ2
xy , have direct physical interpretations. From Eqs. (1) and

(2), it is clear that σ1
xx measures the average in the absorption

of left- and right-circularly polarized light while σ2
xy measures

the corresponding difference. In Figs. 2(a) and 2(b), we show
the σ1

xx for the T1 and T2 spin configurations, respectively, in
the energy range of 0∼6 eV. Since the σ1

xx is directly related to
the joint density of states and interband transition probability
but does not depend strongly on the details of the spin struc-
ture,19 it is not surprising that the calculated σ1

xx are nearly
the same for the two different spin configurations. Moreover,
the σ1

xx for all the three Mn3X alloys have similar behaviors,
mainly due to their isostructural nature. In particular, the σ1

xx

for all the three alloys has a prominent broad peak centered at
2.5 eV. The σ2

xy for the T1 and T2 configurations are displayed
in Figs. 2(c) and 2(d), respectively. For both configurations,
the σ2

xy of all the three Mn3X alloys have pronounced oscil-
latory peaks in the low energy region and its magnitude re-
duces gradually to a small value above 6 eV (not shown). For
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FIG. 2. (Color online) (a) and (b) The calculated real diagonal (σ1

xx)

as well as (c) and (d) imaginary off-diagonal (σ2

xy) components of the

optical conductivity tensor for the T1 and T2 spin configurations of

the Mn3X alloys. Both σ1

xx and σ2

xy are broadened with a Lorentzian

of 0.1 eV to simulate the finite lifetime effect of electron.

each individual Mn3X alloy, the σ2
xy for the T1 and T2 states

are similar in line shape and magnitude. Positive (negative)
σ2
xy suggests that the interband transitions are dominated by

the excitations due to the left (right) circularly polarized light.
Interestingly, the sign of the σ2

xy for the T1 structure can be
reversed by reversing the Mn spin moments while that for the
T2 structure remains unchanged when the chirality of the spin
structure is reversed.

The dispersive parts of optical conductivity, i.e., σ2
xx and

σ1
xy , can be obtained from the corresponding absorptive parts

by use of the Kramers-Kronig transformation. In Fig. 3, we
plot the σ2

xx and σ1
xy for the T1 and T2 spin configurations,

respectively. Figs. 3(a) and 3(b) show that, similar to the σ1
xx,

the σ2
xx are almost the same for the T1 and T2 configurations.

The σ2
xx for all the Mn3X alloys have common characteris-

tics such as a broad valley around 1.0∼1.5 eV, a negative to
positive crossing point at 2.5 eV, and a broad plateau above
3.0 eV. Figures 3(c) and 3(d) show that the σ1

xy spectra for the
T1 and T2 configurations also have similar profiles, and grad-
ually decay to small values in the high energy region, which
are similar to the behavior of σ2

xy .

Physically speaking, the dc limit of the real part of the
off-diagonal element of optical conductivity, σ1

xy (ω = 0), is

nothing but the anomalous Hall conductivity,44,45 which can
also be precisely evaluated by the integration of the Berry cur-
vature over the Brillouin zone.44,46,47 Chen et al.25 recently
pointed out that the anomalous Hall effect can arise from non-
collinear antiferromagnet Mn3Ir in the T1 spin structure with-
out net magnetization due to the absence of certain spatial
symmetries. This could be understood in terms of the fact that
in the kagome lattice [the (111) plane of the Mn3X alloys,
as shown in Figs. 1 (c) and (d)] there is no spatial symme-
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FIG. 3. (Color online) (a) and (b) The calculated imaginary diagonal
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xx) as well as (c) and (d) real off-diagonal (σ1

xy) components of

optical conductivity tensor for the T1 and T2 spin configurations of

the Mn3X alloys. Both σ2

xx and σ1
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of 0.1 eV.

try S such as mirror and rotation that in combination with the
time-reversal symmetry T (i.e., the ST ) can be a good sym-
metry such that the band Kramers degeneracy will be kept in
the system with broken time-reversal symmetry (TRS). This
is certainly in contrast to the case of, e.g., a collinear bipartite
antiferromagnet, where the combination of the translational
operation of half of a lattice vector with the time-reversal oper-
ation is a good symmetry that will preserve the band Kramers
degeneracy despite of the broken TRS due to the antiferro-
magnetism. This lifting of the band Kramers degeneracy to-
gether with the strong SOC in the Mn3X alloys gives rise to
the nonzero anomalous Hall conductivity. Similarly, one can
expect that the σxy at optical frequencies would be nonzero
as well and from Eq. (3), result in nontrivial magneto-optical
Kerr effect in the Mn3X alloys, which will be discussed in
next subsection. Of course, one may argue that the nonzero
σ2
xy and σ1

xy could be due to the nonzero total spin magnetic
moment in the T1 and T2 spin structures (Table I). To clarify
this, we also calculate the σ2

xy spectrum from the electronic
structure with a zero spin magnetic moment obtained by forc-
ing all the Mn moments lying in the (111) plane, and the calcu-
lated σ2

xy spectrum (not shown here) is nearly identical to that
obtained without fixing the Mn moments to lie in the (111)
plane.

C. Magneto-optical Kerr effect

After discussing the magnetic and optical properties of the
Mn3X alloys, we now turn our attention to their magneto-
optical property. From the complex Kerr angle spectra pre-
sented in Fig. 4, one can find their key features as follows: (1)
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The calculated Kerr rotation angles (θK) and ellipticities (ǫK)
for the T1 and T2 states have the same signs, inheriting from
the behaviors of the off-diagonal elements of optical conduc-
tivity, σ1

xy [see Figs. 3(c) and 3(d)] and σ2
xy [see Figs. 2(c)

and 2(d)]; (2) The sign reversals of θK and ǫK are frequent in
the given energy range. When ǫK crosses the zero line, a peak
turns up in the corresponding θK spectrum, and vice versa,
which may be ascribed to the Kramers-Kronig relation; (3)
The overall features and maximum values of θK and ǫK have
a size sequence of Mn3Pt > Mn3Ir > Mn3Rh, which suggests
that the SOC strength of the X atom contributes significantly
to the enhancement of the MOKE spectra; (4) The largest Kerr
rotation angle that appears in Mn3Pt is ∼0.6◦ at incident pho-
ton energy of 0.7 eV. This angle arising from a noncollinear
antiferromagnet is remarkably large and comparable to those
of transition metals, such as the bulk and multilayers of Fe and
Co studied earlier.16,17

Finally, let us analyze the origin of the large MOKE in the
Mn3X alloys. Equation (3) indicates that a peak in a Kerr
spectrum could stem from either a small σxx in the denom-
inator or a large σxy in the numerator, which are called the
“optical” and “magneto-optical” origins, respectively. From
Figs. 3(c) and 4(a), one can observe that the positions of the
peaks of σ1

xy and θK for the T1 state overlap with each other,
such as the first peak at 0.7 eV in Mn3Pt and the twin peaks in
the low energy range of 0∼1.0 eV in Mn3Ir, and the same can
be seen for the T2 state by comparing Fig. 3(d) with Fig. 4(b).
Furthermore, the positions of the peaks of ǫK and σ2

xy are
close, as shown in Figs. 2(c) and 2(d) as well as Figs. 4(c)
and 4(d), respectively. However, the magnitudes of the peaks
of θK and ǫK are modulated by the σxx, as shown in Figs. 2(a)
and 2(b) as well as Figs. 3(a) and 3(b), respectively. Since the

Kerr rotation angle and also the ellipticity entangle in a com-
plicated way with both the real and imaginary components of
the optical conductivity tensor, there are no analytic forms for
strictly separating the “optical” and “magneto-optical” origins
for them. On the other hand, the nonzero σxy is clearly the
fundamental cause for the emergence of the Kerr effect in this
kind of noncollinear antiferromagnets, as already discussed in
the preceding subsection. This is corroborated by our test cal-
culations which show that both the σxy and MOKE in these
antiferromagnets would become zero without the SOC in-
cluded. Therefore, it can be concluded that the large MOKE
in the Mn3X alloys has a “magneto-optical” origin rather than
the “optical” origin.

IV. SUMMARY

In conclusion, using first-principles density functional cal-
culations, we have investigated the possible magneto-optical
Kerr effect in noncollinear antiferromagnets Mn3Rh, Mn3Ir
and Mn3Pt. We found that the Kerr rotation angle can be
as large as ∼0.6◦ in Mn3Pt, which is comparable to that
in elemental transition metal ferromagnets such as bcc Fe.
We also discussed the differences in the magneto-optical re-
sponses for the T1 and T2 spin configurations. The surpris-
ingly large magneto-optical Kerr effect in the noncollinear an-
tiferromagnets with nearly zero magnetization is attributed to
the nontrivial off-diagonal components of optical conductiv-
ity, i.e., having the so-called “magneto-optical” origin. Our
results demonstrate that one cannot assume a priori vanishing
magneto-optical Kerr effect in antiferromagnets with zero net
magnetization. The large Kerr rotation angle of the Mn3X
alloys, plus their other interesting physical properties such as
prominent exchange-bias properties26 and high Néel temper-
atures27–29, would make these materials an exciting platform
for exploring novel information-storage devices.

ACKNOWLEDGMENTS

Q.N. and G.Y.G. thank Hua Chen and Alan MacDon-
ald for stimulating discussions. W.F. and G.Y.G acknowl-
edge support from the Ministry of Science and Technol-
ogy, the Academia Sinica and NCTS of Taiwan. W.F. and
Y.Y. were supported in part by the MOST Project of China
(Grant Nos. 2014CB920903 and 2011CBA00108), the NSF
of China (Grant Nos. 11374033, 11225418, and 11174337),
the Specialized Research Fund for the Doctoral Program of
Higher Education of China (Grant Nos. 20121101110046
and 20131101120052), and the Basic Research Fund of Bei-
jing Institute of Technology (Grant No. 20141842004). Q.N.
was supported in part by DOE-DMSE (Grant No. DE-FG03-
02ER45958) and the Welch Foundation (Grant No. F-1255).
W.F. also acknowledges the use of the computational re-
sources provided by the National Supercomputer Center in
Tianjin (NSCC–TJ).



6

∗ gyguo@phys.ntu.edu.tw
1 V. Antonov, B. Harmon, and A. Yaresko, Electronic Structure and

Magneto-Optical Properties of Solids (Kluwer Academic, Dor-

drecht, 2004).
2 M. Faraday, Phil. Trans. R. Soc. 136 1 (1846).
3 J. Kerr, Phil. Mag. 3 321 (1877).
4 M. Mansuripur, The Physical Principles of Magneto-Optical

Recording (Cambridge University Press, New York, 1995).
5 W. Jiang, P. Upadhyaya, Y. Fan, J. Zhao, M. Wang, L.-T. Chang,

M. Lang, K. L. Wong, M. Lewis, Y.-T. Lin, J. Tang, S. Cherepov,

X. Zhou, Y. Tserkovnyak, R. N. Schwartz, and K. L. Wang, Phys.

Rev. Lett. 110, 177202 (2013).
6 W. Jiang, Y. Fan, P. Upadhyaya, M. Lang, M. Wang, L.-T. Chang,

K. L. Wong, J. Tang, M. Lewis, J. Zhao, L. He, X. Kou, C. Zeng,

X. Z. Zhou, R. N. Schwartz, and K. L. Wang, Phys. Rev. B. 87,

014427 (2013).
7 V. G. Kravets, L. V. Poperenko, I. V. Yurgelevych, and D. Yu.

Manko, J. Magn. Magn. Mater. 290, 562 (2005).
8 I. Razdolski, D. G. Gheorghe, E. Melander, B. Hjörvarsson, P.

Patoka, A. V. Kimel, A. Kirilyuk, E. Th. Papaioannou, and Th.

Rasing, Phys. Rev. B 88, 075436 (2013).
9 A. Lehnert, S. Dennler, P. Bloński, S. Rusponi, M. Etzkorn, G.
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